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ABSTRACT 
Hepatitis C virus (HCV) NS5B RNA
enzyme in HCV viral replication and has no functional equivalent in mammalian cells. In 
silico study was carried out to develop a Quantitative structure activity
molecular docking on some selected imidazole derivatives as anti
Density functional theory with B3LYP/6
optimization Five QSAR models were generated using Genetic Function Algorithm (GFA) 
of the material studio software version 8, in which model one (1) was selected as the 
best model and reported based on the validation parameter with the squared correlation 
coefficient (R2) of 0.7114. Adjusted squared correlation coefficient (R
0.6458 and cross-validation coefficient (Q
was subjected to external validation and was found to be R
obtained from molecular docking studies shows that the compound with the be
affinity of -10.7 Kcal/mol formed hydrogen bonding of (GLN
hydrophobic interaction with the amino acid residues of the
polymerase(NS5B polymerase) 
propose the direction of designing new imidazole derivatives agent with better activity 
against the NS5B polymerase target site.  
Keywords: Binding affinity, HCV, imidazole, molecular docking, NS5B p
 
INTRODUCTION 

Hepatitis C Virus (HCV) infection is a global 
health threat. Currently about 180 million 
individuals have been chronically infected with 
HCV according to the database of World Health 
Organization (WHO) (Lavanchy, 2009
than 350,000 people die every year from 
hepatitis-related liver diseases caused by HCV 
infection, such as cirrhosis (Marcellin
2002), liver failure, and hepatocellular carcinoma 
(HCC) (Mas et al., 2009). Its progression is slow, 
and symptoms are mild, those features make it 
a stealth epidemic, and most infections progress 
to the chronic state that persists for decades. 
(Shepard et al., 2005). The HCV NS5B 
polymerase, and RNA depe
polymerase (RdRp) are central enzyme in the 
replication of the virus, so the research and 
development of efficient NS5B polymerase 
inhibitors provide a comprehensive strategy fo
antiviral therapy against HCV infection
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Hepatitis C virus (HCV) NS5B RNA-depended-RNA-polymerase (RdRp) is an essential 
enzyme in HCV viral replication and has no functional equivalent in mammalian cells. In 
silico study was carried out to develop a Quantitative structure activity-relationship 
molecular docking on some selected imidazole derivatives as anti-hepatitis C compounds. 
Density functional theory with B3LYP/6-311G* was employed for complete geometry 
optimization Five QSAR models were generated using Genetic Function Algorithm (GFA) 
of the material studio software version 8, in which model one (1) was selected as the 
best model and reported based on the validation parameter with the squared correlation 

) of 0.7114. Adjusted squared correlation coefficient (R2 adj) value
validation coefficient (Q2) LOO 0.5810. The best model that is model (1) 

was subjected to external validation and was found to be R2 pred. = 0.5729. The result 
from molecular docking studies shows that the compound with the be

10.7 Kcal/mol formed hydrogen bonding of (GLN 446 and GLU143) and 
hydrophobic interaction with the amino acid residues of the Non-Structural 5B 

) receptor. The QSAR model and molecular docking results 
propose the direction of designing new imidazole derivatives agent with better activity 

target site.   
: Binding affinity, HCV, imidazole, molecular docking, NS5B polymerase, QSAR.

Hepatitis C Virus (HCV) infection is a global 
health threat. Currently about 180 million 
individuals have been chronically infected with 
HCV according to the database of World Health 

Lavanchy, 2009) and more 
000 people die every year from 

liver diseases caused by HCV 
Marcellin et al., 

, liver failure, and hepatocellular carcinoma 
Its progression is slow, 

and symptoms are mild, those features make it 
a stealth epidemic, and most infections progress 

nic state that persists for decades. 
The HCV NS5B 

RNA dependent RNA 
central enzyme in the 

replication of the virus, so the research and 
development of efficient NS5B polymerase 
inhibitors provide a comprehensive strategy for 
antiviral therapy against HCV infection. 

Currently, a vaccine against HCV is unavailable 
(Fauvelle et al., 2013) and (Zhao
The traditional method named as the standard 
of care (SOC), is a combination of regular 
pegylated α-interferon (PEGeIFNea) injections 
with oral Ribavirin (RVB) and is analytically used 
for the treatment of HCV infection. However, it 
is associated with various side effects and yields 
at best a 50% sustained virological response 
(SVR) only for genotype 1 infected patients
(Hadziyannis et al., 2004). Therefore, it is very 
important to develop new anti-HCV drugs with 
promising activity and less toxic. 
Computer drug designs have been extensively 
used for drug discovery and development due to 
their extrusive advantages of time
cost-reducing, the high efficiency in silico 
screening and prediction of candidate drugs with 
advancement in computer techniques and 
simulation software (Mohammad and Zohreh, 
2013) over the traditional wet laboratory 
method.  

http://dx.doi.org/10.4314/bajopas.v11i2.8
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Quantitative structure-activity relationship 
(QSAR) are predictive mathematical models 
correlating one or more piece of response data 
about chemicals, with the information 
numerically encoded in the form of descriptors. 
Various statistical tools, including regression and 
classification-based strategies, are used to 
analyze the response and chemical data and 
their relationship (Roy et al., 2015). Molecular 
docking is one of the most frequently used 
methods in structure-based drug design SBDD 
because of its ability to predict, with a 
substantial degree of accuracy, the confirmation 
of small-molecule ligands within the appropriate 
target binding site (Meng et al., 2011). This 
research was aim to develop various QSAR 
models using Genetic Function Algorithm (GFA) 
method for predicting the activities of some 
selected imidazole derivatives and to predict the 
strength of interactions between imidazole 
derivatives (inhibitors) and NS5B RpRd (PDB 
code 1CSJ), an enzyme that is responsible for 
Hepatitis C. 
 
MATERIALS AND METHODS 
Thirty-five (35) imidazole derivatives compounds 
were selected from the literature (Zhao et al., 
2015). The compounds were divided into a 
training set (80) and test set (20) to validate the 
model. The activities of imidazole compounds 
were measured in IC50 (nM) were expressed as 
logarithmic scale as pIC50 (pIC50 =log1/IC50) was 
used as dependent variable, consequently 
correlating the data linearly with the 
independent variable/ descriptors. The observed 
structures and the biological activities of these 
compounds are presented in Table 1. 
Structure Optimization 

ChemDraw software version 12.0.2 (Li et al., 
2004) were used to draw the structure of the 
molecules as presented in Table 1. Spartan 14 
Version 1.1.4 software was used to optimize the 
imidazole compound in which Density functional 
theory with B3LYP/6-311G* was employed for 
complete geometry optimization of the drawn 
structures to obtain the lowest energy for all the 
inhibitors. 
Molecular descriptor calculation 
Padel descriptor software version 2.18toolkits 
(Yap, 2011) was used to generate molecular 
descriptors for all the thirty-five (35) molecules 
of the inhibitory compound. 
 
 

 

Dataset Division 

Kennard–Stone Algorithm was used to divide the 
dataset into the training set and test set 
(Kennard and Stone, 1969). The training set 
contains 80% of the dataset which was used to 
build the model and the remaining 20% which is 
the test set was used to validate the build 
model. 
Model Building 

Genetic Function Algorithm (GFA) of material 
studio software version 8 was used to determine 
the internal validation parameters. The number 
of descriptors in the regression equation was 5, 
and Population and Generation were set to 1000 
and 1500 respectively. The models were scored 
based on Friedman’s Lack of Fit (LOF) which 
measured the fitness score of the model. The 
revised formula of LOF (Khaled, 2011) is as 
follows: 

LOF = 
���

������	
 ��
                          (1) 

Where SSE is the sum of squares of errors, c is 
the number of terms in the model, other than 
the constant term, d is a user-defined smoothing 
parameter, p is the total number of descriptors 
contained in all model terms (ignoring the 
constant term) and M is the number of samples 
in the training set (Khaled, 2011). 
Quality assurances of the model 

The fitness, reliability, and predictability of the 
developed QSAR models were evaluated by the 
internal and external validation parameters. 
Table 2 shows the minimum recommended 
values for the validation parameters (internal 
and external) for generally acceptable QSAR 
model. 
Internal and external validations 
The square of the correlation coefficient (R2) 
describes the fraction of the total variation 
attributed to the model. The closer the R2 value 
to 1.0, the better the model generated. R2 is 
expressed as: 

R2 = 1 - 
Ʃ	�������	������

Ʃ	�����������������																(2) 

where Yobs, Ypred, and Ytraining are the 
experimental property, the predicted property 
and the mean experimental property of the 
samples in the training set, respectively 
(Veerasamy et al., 2011). Adjusted R2 (R2 adj) 
value varies directly with the increase in a 
number of repressors i.e. descriptors; thus, R2 
cannot be a useful measure of the goodness of 
model fitness. Therefore, R2 is adjusted for the 
number of explanatory variables in the model. 
The adjusted R2 is defined as follows: 
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R2
adj = 1 - (1-R2) 

���
�����	= 

	���������
�����        (3) 

Where p and n are a number of descriptors in 
the model and number compounds that made 
up the training set (Abdulfatai et al., 2017). 
The cross-validation coefficient (Q2

cv) was used 
to determine the strength of the QSAR model to 
predict the activity of a new compound. The 
cross-validation coefficient (Q2

cv) is defined as: 

Q2 = 1 - 
Ʃ�� ����
Ʃ	����!��                    (4) 

Where Yp and Y represent the predicted and 
observed activity respectively of the training set 
and Ym the mean activity value of the training 
set(Jalali-Heravi and Kyani, 2004). 
External validation of the developed model was 
assessed by the value "test

2value. The "test
2 is 

defined by as: 

"test
2 = 1 - 

Ʃ�� #$%&'(&��$) &'(&�*
Ʃ�� #$%&'(&�ӯ&+,-.-./�*

          (5) 

Where 012345$65and 03715$65are the predicted 
and experimental activity test set. While 
ӯ5#89:9:; is the training set mean values of the 

experimental activity. 
 

Applicability domain 
The model built by QSAR was evaluated based 
on the approach of the applicability domain in 
order to establish the model that is robust and 
reliable and that predict the activities of the 
inhibitory compounds.(Tropsha et al., 2003). 
Leverage indicates a compound’s distance from 
the centroid of X. The leverage of a compound 

in the original variable space is defined as 
follows: 
hi =<9=(XT X)-1 Xi (6) 
The warning leverage (h*) is defined as follows: 

Hi = 
>�?���

@                                (7) 

Where N is the number of training compounds, 
and p is the number of predictor variables. 
Where Xi is the descriptor vector of the 
considered compound and X is the descriptor 
matrix derived from the training set descriptor 
values. Fig. 3, shows only three (3) of the test 
set fall inside the domain of the model (the 
warning leverage limit is 0.7), hence they are 
accepted as Y influential. 
 
Molecular docking 

Molecular docking studies between the targets 
protein (1CSJ) and the imidazole derivatives 
(ligands) were carried out. The crystal structure 
of the target protein 1CSJ was retrieved from 
the protein data bank website (PDB). Initially, 
the optimized structure of imidazole derivatives 
was saved as SDF files which were letter 
converted to PDB files by Spartan 14 Version 
1.1.4 software. Autodock Vina incorporated in 
Pyrx software were used for docking the 
prepared ligands with the prepared structure of 
1CSJ receptor. The docked results were 
visualized and analyzed using Discovery Studio 
Visualizer. 
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Table 1 Biological activities of training and test set derivatives. 
S/n Structure pIC50 (AM) Pred. pIC50 
1Y 

 

1.00 1.13045800 

2Y 

 

0.17 0.92096100 

3Y 

 

1.01 0.83937600 

4X 

 

0.52 -0.15048 

5X 

 

0.49 0.97861 

6Y 

 

1.37 0.93049200 

7Y 

 

1.07 1.02819700 

60 



BAJOPAS Volume 11 Number 2 December, 2018 

 

 

8Y 

 

1.14 1.23255300 

9Y 

 

0.20 0.97875700 

10X 

 

0.56 0.679371 

11X 

 

0.52 0.872689 

12Y 

 

1.30 0.97119100 

13X 

 

0.88 0.786908 

14Y 

 

1.39 1.23001200 
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15X 

 

0.25 0.845448 

16Y 

 

1.22 0.87200400 

17Y 

 

1.36 1.56461200 

18Y 

 

1.79 0.98368900 

19Y 

 

1.76 1.85277500 

20Y 

 

1.95 1.38005900 

21Y 

 

2.22 2.14203100 
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22Y 

 

2.39 2.07264100 

23Y 

 

1.35 0.93151900 

24Y 

 

0.09 0.99231900 

25Y 

 

2.04 1.85480200 

26Y 

 

2.14 2.23238400 

27Y 

 

1.69 1.18567800 
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28Y 

 

2.22 2.20861500 

29Y 

 

0.41 0.31030200 

30Y 

 

0.12 0.46164800 

31X 

 

0.74 0.902028 

32Y 

 

1.11 1.14711500 
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33Y 

 

2.52 2.84826100 

34Y 

N

N

O

N

N
O

O

OH

O

 

2.00 0.47473500 

35Y 

 

1.95 2.19281400 

Y= training set, X= test set. 
 
Table 2 General minimum recommended value for the evaluation of the quantitative 

QSAR model. 

Name  Symbols  Value  
R2 Coefficient of determination ≥0.5 
P(95%) Confidence interval at 95% confidence level <0.05 
Q2 Cross-validation coefficient ≥0.5 
R2- Q2 Difference between R2 and Q2 ≤0.3 
Next. Test set Minimum number of external test set ≥5 
R2

ext Coefficient of determination for external test set ≥0.5 
 
Table 3 List of some physiochemical descriptors used for the best model. 

S/N Symbols  Name of descriptors Class 
1 Energy (aq) Sum of the base energy. 2D 
2 Min loclonpot ATs autocorrelation descriptors weighted by scale 

atomic mass. 
2D 

3 ATSc4 ATS autocorrelation descriptors, weighed by charge 2D 
4 Globaltopochargeindex  Global topological charge index 2D 
5 WTPT-4 Sum path lengths starting from oxygen 2D 
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Table 4 Validation of the genetic function approximation from the material studio. 

Validation parameters EQ 1 EQ 2 EQ 3 EQ 4 EQ 5 
Friedman LOF 0.90378100 0.94202700 0.94716900 0.94924400 0.95035800 
R-squared 0.71144500 0.69923400 0.69759200 0.69693000 0.69657400 
Adjusted R-squared 0.64586400 0.63087800 0.62886300 0.62805000 0.62761300 
Cross validated R-
squared 

0.58109700 0.56223700 0.54578600 0.56179900 0.53685200 

Significant Regression Yes Yes Yes Yes Yes 
Significance-of-
regression F-value 

10.84838200 10.22931100 10.14988400 10.11809000 10.10105900 

Critical SOR F-value 
(95%) 

2.68403600 2.68403600 2.68403600 2.68403600 2.68403600 

Replicate points 0 0 0 0 0 
Computed 
experimental error 

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

Lack-of-fit points 22 22 22 22 22 
Min expt. error for 
non-significant LOF 
(95%) 

0.35948800 0.36701600 0.36801600 0.36841900 0.36863500 

 
Table 5: Calculated descriptors for the test set and predicted Activity. 

Energy (aq) Min loclonPot ATSc4 globalTopoChargeIndex WTPT-4 Yp 

-2137.3 38.71 -0.18462 1.759699 13.07891 -0.15048 

-1873.18 33.83 -0.00177 1.740706 12.93923 0.97861 

-1756.45 33.9 -0.00242 1.694046 12.87175 0.679371 

-1571.5 33.72 0.021936 1.657272 8.046833 0.872689 

-2455.01 34.13 -0.1449 1.771896 10.52827 0.786908 

-1945 33.98 0.180821 1.729944 18.25107 0.845448 

-2096.42 33.41 -0.04923 1.704878 8.138622 0.902028 
 
Table 6 Pearson’s correlation matrix for descriptors used in QSAR model for the activities of anti-
hepatitis C molecules. 

  
Energy 
(aq) 

Min 
loclonPot ATSc4 globalTopoChargeIndex WTPT-4 

Energy (aq) 1 
Min loclonPot -0.28228 1 
ATSc4 0.576632 -0.57935 1 
globalTopoChargeIndex -0.84444 0.469726 -0.45897 1 
WTPT-4 -0.02002 0.202936 0.489569 0.392881 1 

 
Table 7. Binding Affinity, Hydrogen bond interaction and hydrophobic interaction formed between 
ligands with best binding energy and the active site of the 1CSJ receptor. 

Ligands Binding energy Residual interaction Hydrogen bond Hydrogen bond distance. 
27 -10.1 TRP397, CYS14 

ALA15, LYS141 
VAL144, MSE139 
ILE160 

ASN142 2.27054 

33 -9.8 PHE193, LEU384 
CYS366, CYS366  
PHE193  

ASN411, ASP318 
GLY410 

3.63321, 3.64693 
3.37238 

32 -10.2 PHE193, PHE193  ASN316, TYR415 
ASN411, TYR195 
GLY449 

2.11111, 3.53307 
3.41174, 3.60541 
2.82589 

31 -10.7 GLU398, VAL144 
TRP397, TRP397  
ALA39, PRO404 
ARG394, B:TRP397  

GLN446, GLU143 2.03685, 3.6066 
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Figure 1: (A) Prepared structure of 1CSJ receptor (B) 3D structure of the prepared ligand. 

 
Fig 2. The plot of the Experimental and predictive activity of both training and test set of the best 
model (1). 
 

 
h* = 0.7 
 
Figure. 3 Williams plot, the plot of the standardized residuals versus the leverage value of both the 
training set and test set of model 1. 
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Figure. 4 3D and 2D structure of the docked - Ligands Complex. (A) Interactions between 1CSJ and 
Ligand 31x. (B) Interactions between 1CSJ and Ligand 32y. (C) Interactions between 1CSJ and 
Ligand 27y.  
 

 
 
Figure 5: H-bond interaction between the ligand 31 and 1CSJ receptor. 
 
RESULTS AND DISCUSSION 

Five QSAR models were developed out of which 
the best model (model 1) was identified and 
reported due to the statistical significance and 
prominent validation parameters. The data set of 
35 compounds were divided into a training set of 
28 compounds which were used to build the 
model and a test set of 7 compounds which 
were used to validate the built model base on 
Kennard-Stone algorithm technique. The name 
and symbols of the descriptors used in the QSAR 
model are shown in Table 3. Table 4gives the 
result of the validation parameter using Genetic 
Function Algorithm (GFA) that confirm the 

stability and robustness of the model which were 
all in agreement with the minimum 
recommended value of validation Parameters for 
a generally acceptable QSAR model presented in 
Table 2. Based on the statistics generated, 
Model 1 was selected as the best QSAR model 
and reported as: pIC50 = 0.000443840 * Energy 
(aq) – 0.164409745 * Min loclonpot + 
1.860290563 * ATSc4 + 7.343032148 * 
globaltopochargeindex – 0.063495786 * WTPT-4 
– 4.58519, N = 35, R2

ext. = 0.572967, R2 = 
0.7114450, Q2

cv = 0.58109700, 
 

C 
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The high calculated value of R2 (0.711) for pIC50 
indicates a good internal validation of the model. 
The external validation of the model was also 
carried out R2 pred. (0.572), the test set 
containing 20% of the data set were used for 
external validation to validate the model which is 
higher than minimum recommended value for 
the evaluation of the quantitative QSAR model. 
From figure 2, the developed model is stable 
and the residuals on both sides of zero are 
randomly propagated. The R2 value of 0.7114 
for the training set and R2

ext value of 0.5629 for 
test set reported in this study was in agreement 
with Genetic Function Approbation (GFA) derived 
R2 value reported in Table 2. This confirms the 
robustness and reliability of the model. 
The Williams' plot shows the leverage value for 
the entire compounds in the dataset, which were 
plotted against its standardized residual value 
resulting in the discovery of influentials 
compound in the models. The results show that 
all the compounds were within the square area 
of ± 3 of standardized cross-validated residual 
produced by the model which shows no outlier 
compound. From figure 3, three compounds of 
test set were found to be influential since their 
leverage value are greater than the warning 
leverage (h* = 0.70). This was attributed to the 
difference in its molecular structure compared to 
other compounds in the dataset. 
Interpretation of descriptors in model 1 

From the model build, it can be concluded that 
the increase in Min loclonpot and ATSc4 and 
a decrease in Energy (aq), 

globaltopochargeindex and WTPT-4 will 
increase the anti-hepatitis C NS5B activity 
(pIC50) of these imidazole derivatives. 
The Result of molecular docking studies of 

imidazole derivatives 
Molecular docking studies were carried out 
between the ligands (imidazole derivatives) and 
its targets (1CSJ). Table 7 shows the docking 
result of the four ligands with the best binding 
affinities which indicates that it has correlated 
with their pIC50. The binding energy values of 
the target protein ranges from -7.2 to -10.7 
kcal/mol. From the docking study, it is observed 
that ligand number 31x with the highest binding 
energy of -10.7 kcal/mole (fig 4A) was 
surrounded by two hydrogen bonding of GLN446 
(2.03685 A˚) and GLU143 (3.6066 A˚) of the 
target. Hydrophobic interaction is a bond formed 
between the ligand and the binding pocket of 
the target site (receptor).  

Ligand 31x formed a hydrophobic bond of 
GLU398, VAL144, TRP397, ALA39, PRO404, 
ARG394, and TRP397 of the target site. Ligand 
32y also bounded by two hydrophobic 
interaction of PHE193 and PHE193 of the target. 
While hydrogen bonding of ASN316, TYR415, 
ASN411, TYR195, and GLY449 (2.11111, 
3.53307, 3.41174, 3.60541, 2.82589 A˚) of the 
target. Moreover, we realized that the binding 
scores generated were found to be better than 
one proposed by Balavignesh et al. (2013). 
 
CONCLUSION 

QSAR model was generated with a descriptor 
(Energy (aq), Min loclonPot, ATSc4, global Topo 
Charge Index, WTPT-4) which were highly 
correlated with biological activities of imidazole 
derivatives. These descriptors produced a robust 
model to predict the anti-hepatitis C activities of 
these compounds. The significant correlation 
coefficient of determination R2value of 0.7114 
and Q2value of 0.5810 indicated a good 
predictive ability of this model. The external 
predictive power (R2= 0.5728) was satisfied with 
the agreement of the recommended value of 
validation parameters for a generally acceptable 
QSAR model. The Molecular docking studies 
showed compound 31x with the best binding 
affinity of -10.7 kcal/mol correlate with it pIC50 
activity which formed H-bond GLN446 (2.03685 
A˚) and GLU143 (3.6066 A˚) and hydrophobic 
pocket of GLU398, VAL144, TRP397, ALA39, 
PRO404, ARG394, and TRP397 with amino acid 
of the target. The high binding affinity of -10.7 
kcal/mole implies that imidazole derivatives 
(inhibitors) will bind tightly to the NS5 
polymerase and inhibit the enzyme through 
amino acid residues. The result of QSAR model 
alongside with molecular docking study provides 
a good approach for Pharmaceutical and 
medicinal researchers to design new anti-
hepatitis C agent against NS5B polymerase 
receptor. 
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