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ABSTRACT 
Abstract 
This study utilizes factor and discriminant analysis to identify the parameter source and evaluate the 
quality of water from ex-mining ponds and lakes in Selangor. Factor analysis (FA) which explain 
83.77% of the surface water quality variation shows that As and Cd that mostly originated from 
mining activity, and pH are the parameters responsible for the major variation in the surface water 
quality and were strongly associated with varimax factor 1 (VF1), while Pb, Mn and DO were 
associated with varimax factor 2 (VF2). The  Discriminant analysis (DA) reveals that As, Cd, Mn, Fe and 
pH are the parameters that significantly differentiate ex-mining ponds from the lake (p < 0.05 and F - 
ratio >> 1), and supported by the correlation study. The elevated metal concentrations in ex-mining 
ponds compared to lakes were plausibly associated with the past mining operation, thereby indicating 
heavy metal dominance in ex-mining ponds. DO and BOD are associated with the anthropogenic input 
from residential sources. Findings of this study therefore show the need and usefulness of multivariate 
statistical analysis to get information on the quality status of surface water.  
Keywords: Discriminant analysis, Ex-mining pond, Factor analysis, Lake, Water quality.  

 
INTRODUCTION 
Surface water is the main source of water for domestic 
and industrial uses in many countries of the world 
thereby supporting human lives and facilitates economic 
developments (Gleick 2003). However, the quality of 
water is of much concern in the recent time due to 
continuous increase in water contamination as a result 
of rapid increase in human and industrial activities. 
Mining is one of the activities that deteriorate the 
quality of surface water, generating contaminants that 
are difficult to handle and of health concern in an 
environment. This renders the water unfit for any 
beneficial purposes.  
The contaminants of concern in mining are heavy 
metals such as Cd, Pb, As and Mn reported at elevated 
concentrations in lakes and adjacent rivers (Rojas and 
Vandecasteele, 2007; Acheampong et al., 2013). These 
metals originated from oxidation of the sulphide mineral 
ores such as arsenopyrite (FeAsS) and greenockite 
(CdS) in the presence of water and oxygen, and are 
further liberated in higher concentration under acidic pH 
generated (Koki et al., 2017; Low et al., 2016). Heavy 
metal contaminants have the characteristic of high 
toxicity and mobility, and are difficult to manage in 
natural environment (Ning et al., 2011). The high 
organic matter associated with mining operation 
depletes oxygen level in surface water there by 

endangering aquatic lives (Onichandran et al., 2013). 
Considering the contamination associated with long-
years of mining activity in Selangor Malaysia, water 
quality of ex-mining ponds needs to be studied and 
evaluated to ascertain the levels and distribution of 
relevant parameters. This could be helpful in providing 
the scientific basis for proper management and future 
uses of the surface waters.    
Large water quality data comprising of numerous 
parameters can accurately be analyzed and evaluated 
using multivariate statistical analysis. Unlike the use of 
conventional descriptive analysis to evaluate water 
quality with many limitations such as, lack of precise 
source apportionment and long term correlation among 
parameters. The use of combined chemometric 
approach in this study is pertinent to evaluate the 
relationship among the parameters and water pollution 
source apportionment, and to precisely discriminate the 
ex-mining ponds from lakes. FA analyzes large number 
of variables in terms of their common underlying 
dimensions. This constructs a small number of factors 
that are linear combinations of the original variables 
(Rogerson 2006). FA has been used to identify the 
pollution sources in the study areas. It identifies the 
latent factor that explains the major variation in the 
entire data set (Mustapha et al., 2013).  
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DA maximizes the similarities in variances between-
groups relative to the within-group (Koklu et al., 2010). 
It is used to sort out the most significant parameters 
that result in water quality variation among the studied 
sites (Juahir et al., 2010). The objectives of this study 
were to study the distribution pattern and source of the 
contaminants, and to identify the dominant parameters 
that explain the overall water quality differences among 
the sites using selected chemometric methods.  
 

MATERIALS AND METHODS 
Study Area 

Selangor (3°20’0″N, 101°30’0″E) is the most populous 
state in Malaysia with 7.5 million people, it is the 
industrial and commercial region of Malaysia (Figure 1). 

The geology of Selangor involves different type of rocks, 
but mostly dominated by the Kenny hill formation, 
especially in Puchong district which is an area with 
abundant ex-mining ponds. There is deposit of 
limestone basement predominantly around Kuala 
Lumpur. Selangor state was one of the major producer 
of tin in Malaysia, reaching up to 22% of the total 
Malaysia’s tin output. There exist abundant ex-mining 
ponds in Selangor due to the intensive mining activity 
with about 4909.6 hectares of ex-mining land 
(Althuwaynee et al., 2012; Morgan, 1968). There are 
also natural lakes that had no mining activity which are 
mostly utilized for recreational activities. Description of 
the sampling sites and their coordinates are shown in 
Table 1.  

 

 
Figure 1: Map of the study area showing sampling sites in Selangor, Malaysia 
                             
Table 1: Sampling Sites in Selangor, Malaysia. 

Type Sites Code Location 
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Kelana Jaya KJA 
N 03°05′35.4″  
E 101°35′53.2″  

 Putra Perdana 
PPA 

N 02° 57' 27.8" 
E 101° 36' 52.2" 

PPB 
N 02° 57' 46.4" 
E 101° 36' 21.8" 

Prima Perdana PRP 
N 02° 59' 10.0" 
E 101° 35' 49.4" 
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Taman Jaya TJA 
N 03° 06' 17.8" 
E 101° 38' 53.0" 

 Perdana PDL 
N 03° 08' 31.9" 
E 101° 41' 06.5" 

Shah Alam 
SAL N 03° 04' 27.0" 

E 101° 30' 47.3" 
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Sampling and Sample Preparation 
Water samples were collected from ex-mining ponds 
and lakes in Selangor. The samples were collected from 
a 25 cm depth using a Wildco water sampler with nine 
samples per site for analysis. Conc. HNO3 (Merck 
Suprapur) was used to acidify all the water samples to 
preserve the samples by preventing metals 
sedimentation in the container (Sadeghi et al., 2012). 
The samples were stored in acid washed polyethylene 
bottles and transported to the laboratory in ice boxes 
conserved at 4°C for metals analysis. Physico-chemical 
parameeters such as dissolved oxygen (DO) and pH 
were measured and recorded in the field using portable 
YSI Pro multi parameter water quality meter, and 
biological oxygen demand (BOD) was also measured in-
situ using a portable modern water meter to avoid 
changes in the bacterial concentration with time. The 
water sample were filtered using 0.45µm PTFE filters 
before the metal analysis using inductively coupled 
plasma-mass spectrophotometry (ICP-MS). The filtered 
water samples were subsequently analysed for Cd, As, 
Mn, Pb and Fe, with ICP-MS 7500ce (Agilent Scientific 
Technology Ltd., USA).  
Quality Control  
Blank and certified reference materials (CRM) were 
checked after every ten samples to demonstrate the 
validity of the previous runs. All analyses were carried 
out in triplicates and the results were expressed as 95% 
confidence interval of the mean in µg/L. The R2 values 
(coefficients of determination) for ICP-MS calibration 
curves were all close to 1.0. The CRM shows a good 
agreement with the certified values with analyte 
recoveries found to be within the acceptable ranges.  
 

Data Analysis 
Multivariate statistical analysis and parameter 
correlation analyses were carried out using JMP Pro 12 
to study the parameter variations among the sampling 
sites, and to study the relationship among the studied 
parameters.    
 

RESULTS AND DISCUSSION 
The results of statistical summary of selected water 
quality parameters (Mean and standard deviation) are 
presented in Table 2. World Health Organisation (WHO) 
and drinking water quality standard for raw water 
(DWQSRW) were used as reference standard to 
evaluate the contamination level. The results show a 
wide variation in the study areas with mean As 
concentrations ranging from 1.13 to 116 µg/L. High As 
concentration in some of the ex-mining ponds above 
WHO limits (WHO 2011) and DWQSRW (MOH 2004) 
limit of 10 µg/L may be associated with the past mining 
operation. Low As concentration in ex-mining pond KJA 
could be linked to the continuous flow of rain water and 
domestic effluent (Yap et al., 2007). The mean Cd 
concentrations were between 0.02 to 12.9 µg/L, low Cd 
concentrations were observed in the lakes. However, 
ex-mining ponds record higher concentrations above 
drinking water Cd recommended value of 3 µg/L except 
KJA. High Cd concentrations could be much related to 
the previous mining activity. The concentrations of Pb, 
Mn and Fe were below the recommended values except 
Fe in KJA ex-mining pond with concentration of 1166 
µg/L which is above the DWQSRW of 1000 µg/L (MOH 
2004). High Fe concentration in KJA compared to other 
studied sites could be related to the flow of domestic 
effluent.     
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Table 2: Univariate statistical summary of the selected water quality parameters  
 Code As Cd Pb Mn Fe pH DO BOD 

E
x
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PRP 42.0 ± 0.5 
 

12.19 ± 0.01 
3.7 ± 0.3 

3.3 ± 0.1 
 

15.1 ± 0.1 
 

8.23 ± 0.09 
 

0.47 ± 0.04 
 

2.77 ± 0.07 
 

KJA 7.5 ± 0.2 
0.03 ± 0.01 

 
 

0.23 ± 0.03 124 ± 3 1166 ± 11 
0.93 ± 0.09 

 
0.91 ± 0.07 

 
5.9 ± 0.4 

 

PPA 
11.3 ± 0.4 

 
12.9 ± 0.2 

 
4.5 ± 0.3 

 
125 ± 2 

 
460 ± 4 

 
6.1 ± 0.2 

 
6.1 ± 0.1 

 
8 ± 1 

 

PPB 
116 ± 2 

 
12.23 ± 0.02 

 
3.6 ± 0.2 

 
1.4 ± 0.3 

 
35.8 ± 0.6 

 
10.00 ± 0.09 

 
0.38 ± 0.03 

 
2.8 ± 0.3 

 

L
a

k
e

 

TJA 1.13 ± 0.06 0.33 ± 0.02 
 

0.52 ± 0.02 
 

186 ± 1 
 

151 ± 4 
 

7.9 ± 0.2 
 

3.3 ± 0.2 
 

7.5 ± 0.2 
 

PDL 
3.8 ± 0.1 

 
0.06 ± 0.01 

 
0.36 ± 0.01 

 
35.7 ± 0.3 

 
228 ± 6 

 
8.32 ± 0.02 

 
3.6 ± 0.1 

 
3.54 ± 0.07 

 

SAL 3.37 ± 0.2 
0.02 ± 0.01 

 
< 0.05 

 
68 ± 2 

 
279 ± 6 

 
8.49 ± 0.03 

 
2.8 ± 0.1 

 
8.85 ± 0.08 

 
Water 

Standards 
WHO 10 3 10 400 - 6.5 - 8.5 4 - 10 < 5 

DWQSRW 10 3 50 200 1000 5.5 - 9.0 5 - 7 6 
Metal concentrations are given in µg/L, DO and BOD in mg/L, and pH no unit. 
DWQSRW – Malaysia Drinking Water Quality Standard for Raw Water 
WHO – World Health Organization Drinking Water Standard 
 
 The mean values of pH, BOD and DO are 0.93 to 10.00, 2.77 to 8.85 mg/L, 
and 0.47 to 6.1 mg/L respectively. These values indicate the influence of 
mining and other anthropogenic activities around the studied sites some of 
which are surrounded by residential houses. The pH of lakes are within the 
acceptable limit of 6.5-8.5, while the ex-mining ponds are not within the 
acceptable limit except PRP with pH value of 8.23. Depending on the 
mineralogy of the study area, ex-mining ponds could be acidic or basic 
(Wolkersdorfer 2008). BOD and DO are parameters indicating quantity of 
oxygen consumed due to microbial decomposition of organic matter, and the 
quantity of dissolved oxygen present in surface water respectively; they are 
indicators of organic pollution. BOD concentrations in KJA, PPA, TJA and SAL 
are above the recommended values of 5 mg/L and 6 mg/L respectively for 
WHO and DWQSRW. This could be attributed to the domestic discharge and 
surface run-off. The levels of DO in all the studied sites are less than 
acceptable limit of 4 - 10 mg/L and 5 – 7 mg/L respectively for WHO and 

DWQSRW except an ex-mining pond PPA. This confirms the high level of 
organic matter influence on the surface water quality of the areas under study.  
 
Factor Analysis 

The result of factor analysis employed in this study reveals variation in water 
quality parameters (Figure 2). Three varimax rotated factors (VF) with 
eigenvalue > 1 represent 83.77% of the total variation in the data set (Table 
3). The sources of pollution were apportioned considering absolute factor 
loading > 0.75 indicating strong loading, 0.75 – 0.50 moderate loading and 
0.50 - 0.30 weak loading (Crowther et al., 2001; Liu et al., 2003). VF1 
accounts for 41.68% of the total variance in the entire data set with a strong 
positive loading on As and pH, and moderate loading on Cd, Mn, Fe and DO. 
This factor contains variables that are linked to dissolution of mineral ores 
from mining operation (Navarro et al., 2008). 
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The high positive loading on pH and DO indicates 
variation in acidity and alkalinity, and presence of 
organic matter in the surface water samples. Moderate 
negative loading on Fe indicates less influence of 
natural background sources.  VF2 consist of strong 
positive loading on Pb and moderate loading on Mn 
which are associated with mining and dissolution of 
rocks. Pb is present in mineral ores as an impurity and 
gets into the solution during mining operation (Bao et 
al., 2016). Manganese is abundant and distributed on 
the earth's crust in association with ores of iron 
(Muthaiah et al., 2016). VF3 shows moderate loading on 
BOD, DO, pH, and negative loading on Fe indicating 
organic matter influence on the water quality at the 
studied sites.  

Discriminant Analysis 

The results of discriminant analysis using multivariate 
analysis of variance (MANOVA) as shown in Table 4 
shows larger F – ratio (much greater than 1), and the 
corresponding p – value, which represent the significant 
difference (p < 0.05) among  the studied parameters. It 
is clear that pH has the largest F – ratio of 55.601 (p = 
0.0000001) indicating much differences in acidity 
between ex-mining ponds and lakes in Selangor. Fe with 
F – ratio = 41.481 and p = 0.0000012 shows significant 
difference among the sites indicating contribution of 
high Fe concentration from mining operation beside the 
natural source (Madzin et al., 2015).   

 
Table 3: Loadings of parameters on significant VFs for ex-mining ponds and lakes 

 VF1    VF2    VF 3 

As 0.858193 0.119333 -0.318400 
Cd 0.658575 0.271156 -0.104374 
Pb 0.213707 0.931001 -0.236102 
Mn 0.724760 0.622419 -0.073688 
Fe -0.678886 -0.427528 -0.531342 

DO 0.601528 0.463570 0.505126 

BOD -0.463923 -0.442354 0.568237 

pH 0.765603 0.204489 0.596657 

Eigen Value 
Variability (%) 
Cumulative (%)     

3.3 
    41.68 

41.68 

1.9 
24.71 
66.40 

1.3 
17.37 
83.77 

                              Values in bold are significant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 2: Factor loading plot of parameters under study 
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Among the toxic heavy metal pollutants, As makes the 
largest contribution (F – ratio = 31.446, p = 0.0000090) 
in explaining the difference in water quality between ex-
mining ponds and lakes, followed by Cd with (F – ratio 
= 18.714, p = 0.0000306). Though Pb has an F – ratio 
slightly greater than 1, no significant difference is 
observed (F – ratio = 1.832, p = 0.1885145). This is 

attributed to the low Pb concentrations in the studied 
sites. This finding support the result of FA suggesting 
that metal variations are related to the past mining 
operation, reaffirming that mining activities resulted in 
the release of toxic heavy metals, thereby significantly 
affecting the useful nature of the surface water quality 
(Wolkersdorfer, 2008). 

 
Table 4: Analysis of discriminating variables in ex-mining ponds and lakes in Selangor 

Variable F – Ratio p - Value 

As 31.446 0.0000090 
Cd 18.714 0.0000306 
Pb 1.832 0.1885145 
Mn 8.122 0.0088393 
Fe 41.481 0.0000012 
DO 0.386 0.5403236 
BOD 0.476 0.4969912 
pH 55.601 0.0000001 

 

Parameter Relationship 
The correlation matrix is presented in Table 5 which 
shows relationship between parameters under study. A 
significant positive relationship is observed between As 
and Cd (r = 0.8689) suggesting a common origin of the 
metals which are much related to mining activity (Oke 
and Vermeulen, 2017), and it reflect the influence of 
heavy metals on the surface water quality. A negative 
correlation is observed between As and DO (r = -

0.5936), high As concentration was reported to lower 
the DO of the surface water (Buchireddy et al., 2009). 
The relationship between Pb and Mn (r = 0.7528), DO 
and Mn (r = 0.5989) are significant. There is strong 
negative correlation between Fe and pH (r = -0.9429). 
Low pH liberates metals from their ores into solution 
especially Fe with very high percent natural abundance 
(Johnson et al., 2000).     

 
Table 5: Correlation coefficient of parameters under study  
         As       Cd    Pb     Mn          Fe     DO     BOD     pH 

As 1.0000        
Cd 0.8689 1.0000       
Pb 0.0202 0.1727 1.0000      
Mn -0.4823 -0.4000 0.7528 1.0000     
Fe -0.4070 -0.3718 -0.1166 0.2243 1.0000    
DO -0.5936 -0.1450 0.4232 0.5989 0.0355 1.0000   
BOD 0.4997 -0.2531 -0.3838 0.0465 0.2783 0.3796 1.0000  
pH 0.4734 0.3404 -0.1169 -0.4292 -0.9429 -0.1006 -0.1593 1.0000 

Bold correlations are significant 
 

CONCLUSION 

The results of factor and discriminant analyses revealed 
a notable influence of mining on the surface water 
quality. The two-factor models obtained show a 
significant variation in toxic heavy metals and 
physicochemical parameters at the studied sites. The 
water quality variations observed are much related to 
the anthropogenic input. Heavy metals predominantly 
As and Cd, and to a lesser extent Pb are associated with 
ex-mining ponds. Furthermore, the correlation analysis 
revealed a strong association between As and Cd which 
proved that metal content in the surface water is 
significantly influenced by the geochemical properties 
originating from mining, and are of concern due to their 
toxicity to humans. Beside the natural sources of Fe and 

Mn, it is clear that mining activity introduces these 
metals to the surface water.  
The influence of pH originated from mining activity, and 
residential discharge results in changes in oxygen levels. 
The chemometric techniques applied in this study gives 
more specific and objective interpretation of the surface 
water quality by identifying the source of the pollutants.   
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