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ABSTRACT 
The exponential Lomax distribution is an 
by El-Bassiouny et al. (2015). This distribution is very useful and has been found to 
outperform other extensions of the Lomax distribution such as the exponentiated Lomax, 
Marshall-Olkin extended-Lomax, beta
and gamma-Lomax based on some applications to lifetime datasets. In this article, the 
scale parameter of the exponential Lomax is estimated using the Bayesian method of 
estimation under two non-informative (Jeffery an
(Gamma prior) distribution and compared to the estimates of maximum Likelihood
three loss functions (Square error, Quadratic, and Precautionary loss function). The 
posterior distributions of the said parameter w
risks were also obtained using the priors and loss functions. Furthermore, a simulation 
study was carried out using R software package to assess the performance of the two 
methods by means of their MSEs.
Keywords: Exponential Lomax distribution; MLE;Bayesian Method; Uniform prior; 
Jeffrey’s prior; Gamma prior; Square error, quadratic and precautionary loss functions; 
MSE; Sample sizes. 

1. INTRODUCTION 

The exponential Lomax distribution is an 

extension of the Lomax distribution proposed by 

El-Bassiounyet al. (2015). The Lomax or Pereto 

type II distribution was proposed by Lomax in 
(1954). This distribution has found wide 

applications such as the analysis of business 
failure life time data, income and wealth 

inequality, size of cities, actuarial

Mathematical and statistical properties of 
Exponential Lomax distribution have been 

derived and discussed by El-Bassiouny
(2015). This distribution has been found to out

perform other extensions of the Lomax 
distribution such as the exponentiated Lomax, 

Marshall-Olkin extended-Lomax, beta

Kumaraswamy-Lomax, McDonald-
gamma-Lomax based on some applications to 

life time data sets. 

In statistics, we have two basic

ofparameter estimationand these are the 

classical and the non-classical methods. In the 
classical theory of estimation, the parameters 

are taken to be fixed but unknown
consider the parameters to be unknown and 

random just like variables. The most popular and 
unique method under classical theory is the 

method of maximum likelihood estimation while 

the Bayesian estimation method is considered 
under non classical theory. But, in 

life problemsdescribed by life time
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The exponential Lomax distribution is an 

extension of the Lomax distribution proposed by 

. (2015). The Lomax or Pereto 

type II distribution was proposed by Lomax in 
distribution has found wide 

applications such as the analysis of business 
failure life time data, income and wealth 

inequality, size of cities, actuariale.t.c.Several 

Mathematical and statistical properties of 
distribution have been 

Bassiounyet al. 
(2015). This distribution has been found to out-

perform other extensions of the Lomax 
distribution such as the exponentiated Lomax, 

Lomax, beta-Lomax, 

-Lomax and 
Lomax based on some applications to 

two basicmethods 

and these are the 

methods. In the 
theory of estimation, the parameters 

but unknown whereas we 
be unknown and 

The most popular and 
unique method under classical theory is the 

method of maximum likelihood estimation while 

the Bayesian estimation method is considered 
, in common real 

by life timedistributions, 

the parameters cannot be treated as 

the life testing periodaccording to 

Waller (1982) as well asIbrahim 

and Singpurwalla (2006).Based on this fact, it 

becomes obvious the frequentist or classical 
approach can no longer handle adequately 

problems of parameter estimationin life time 
models and therefore the need for 

or Bayesian estimation in life time models.  

Due to the stated problem above, 
research works on Bayesian estimation

of parametersesimates have been 
and a highlight of some of these studies which 

dependent on the distribution in question are as 
follows:Bayesian estimation for the extreme 

value distribution using progressive censored 

data and asymmetric loss by Al-
Bayesian estimators of the shape and scale 

parameters of modified Weibull distribution 

using Lindley’s approximation under the squared 

error loss function, LINEX loss function and 

generalized entropy loss function by Preda
(2010),comparison of Bayesian estimates of the 

shape parameter of Generalized Exponential 
Distribution based on a class of non

prior under the assumption of quadratic loss 
function, squared log-error loss function and 

general entropy loss function (

maximum likelihood estimates by 
Bayesian Survival Estimator for Weibull 

distribution with censored data by 

http://dx.doi.org/10.4314/bajopas.v12i1.16
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e parameters cannot be treated as fixed in all 

according to Martz and 

Ibrahim et al. (2001) 

and Singpurwalla (2006).Based on this fact, it 

frequentist or classical 
ndle adequately 

problems of parameter estimationin life time 
the need for non-classical 

life time models.   

Due to the stated problem above, a number of 
Bayesian estimation method 

have been conducted 
se studies which 

dependent on the distribution in question are as 
Bayesian estimation for the extreme 

value distribution using progressive censored 

-Aboud (2009), 
Bayesian estimators of the shape and scale 

parameters of modified Weibull distribution 

using Lindley’s approximation under the squared 

error loss function, LINEX loss function and 

generalized entropy loss function by Predaet al. 
Bayesian estimates of the 

shape parameter of Generalized Exponential 
Distribution based on a class of non-informative 

prior under the assumption of quadratic loss 
error loss function and 

general entropy loss function (GELF) and 

maximum likelihood estimates by Dey (2010), 
Bayesian Survival Estimator for Weibull 

distribution with censored data by Ahmed et al.  
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(2011) as well as Pandeyet al. (2011), Al-Athari 
(2011).  

Similarly, Aliyu and Yahaya (2016) studied the 

shape parameter of generalized Rayleigh 

distribution under non-informative priors with a 

comparison to the method of maximum 
likelihood. Besides, a good number of loss 

functions have been shown to be performing 

during estimation under Bayesian method in so 
many studies including  Ahmad and Ahmad 

(2013), Ahmad et al. (2015), Ahmad et al. 
(2016), Ieren and Oguntunde (2018), Gupta and 

Singh (2017), Gupta (2017) and Ieren and 
Chukwu (2018) and many others. 

Since the approach of estimating a parameter 

differs from one parameter of a distribution to 

another, this studyaims at estimating the scale 

parameter of the Exponential Lomax distribution 
using Bayesian approach and making a 

comparison between the Bayesian approach and 

the method of maximum likelihood estimation 
approach. The rest of this paper is presented in 

sections and sub-sectionsas follows: 

 
2. MATERIALS AND METHODS 

2.1 PDF and Likelihood function 

The pdf of the Exponential Lomax distributionwith unknown parameter vectorisgiven as: 

1
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Where, , 0, 0, 0x β α β ω≥ > > > α  and β are the shape parameters respectively and ω is the 

scale parameter of the exponential distribution. 

The total log-likelihood function is obtained from f(x) as follows: 
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The likelihood function for the scale parameter,ω , is given by; 
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2.2   Bayesian Analysis under the Assumption of Uniform Prior Using Three Loss Functions 
To obtain the posterior distribution�(�|�), the probability distribution of the parameter once the data 

has been observed, we apply bayes’ Theorem 

( ) ( | )
( | )
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Where g(x) is the marginal distribution of X and  

g(x) =

.
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where

.

( ) ( | )p L xω ω
∞
∑ when ω is discrete and ( ) ( | )p L x dω ω ω

∞

−∞∫  when ω is continuous  

where ( )p ω  and ( | )L x ω  are the prior distribution and the Likelihood function respectively. 

The uniform prior is defined as: 

( ) 1;p α ∝ 0 α< < ∞  

The posterior distribution of the scale parameter ω  under uniform prior is obtained from equation 

(4) using integration by substitution method as 
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The Bayes estimators and posterior risksunder uniform prior using SELF, QLF and PLF are given 

respectively as follows: 
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2.3   Bayesian Analysis under the Assumption of Jeffrey’s Prior Using Three Loss 
Functions 

Also, the Jeffrey’s prior is defined as: 

( ) 1
;0p α α

α
∝ < < ∞ (12) 

The posterior distribution of the scale parameter ω  for a given data under Jeffrey prior is obtained 

from equation (4) using integration by substitution method as 
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The Bayes estimators and posterior risks under Jeffrey’s prior using SELF, QLF and PLF are given 

respectively as follows: 
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2.4   Bayesian Analysis under the Assumption of Gamma Prior Using Three Loss Functions 

Also, the gamma prior is defined as: 
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The posterior distribution of the scale parameter ω  for a given data under gamma prior is obtained 

from equation (4) using integration by substitution method as 
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The Bayes estimators and posterior risks under gamma prior using SELF, QLF and PLF are given 

respectively as follows: 
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2.4   Maximum Likelihood Estimation 

Let 1 2, ,......, nx x x  be a random sample from a population X with probability density function ( ),f x . 

The likelihood function, ( )| , ,L X α β ω , is defined to be the joint density of the random variables 

1 2, ,......, nx x x . The pdf of the ELD is given as 
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The likelihood function for the scale parameter,ω , is given by; 

( ) 1|

n

ii
xnL X e

α
βω

βω ω

−

=

 
−  + 
∑

∝ (29) 

 

Let the log-likelihood function, ( )log |l L X ω=
, 
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Differentiating � partially with respect toω , the scale parameter and solving for ω̂  gives; 
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Which is the MLE of the scale parameter,ω. 
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3. RESULTS AND DISCUSSIONS 

3.1 Simulation and Comparison 
In this section, a package in R software is considered to generate random samples of sizesn = (10, 

15, 20, 27, 35, 55, 95, 125) from Exponential Lomax distributionunder the following combination of 

parameter values: 1, 1α β= =  and 0.5ω = ; 1, 3α β= =  and 0.5ω = ; 3, 1α β= =  and 

0.5ω = 0.5, 0.5α β= = 1ω = .The following tables present the results of our simulation study by 

listing the estimates of the scale parameter with their respective Mean Square Errors (MSEs) under 
the appropriate estimation methods such as the Maximum Likelihood Estimation (MLE), Squared Error 

Loss Function (SELF), Quadratic Loss Function (QLF), and Precautionary Loss Function (PLF) under 
Uniform Jeffrey and gamma priors respectively.  

Table 1: Estimators their Estimates and Mean Squared Errors based on the replications and sample 

sizes where 1, 1α β= =  and 0.5ω =  

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

10 Estimate 0.556 0.6116 0.5004 0.6388 0.556 0.4448 0.5831 0.5548 0.4694 0.5757 
MSE 0.0411 0.0584 0.0308 0.0694 0.0411 0.0274 0.0487 0.0234 0.0155 0.0277 

15 Estimate 0.5365 0.5723 0.5008 0.5899 0.5365 0.465 0.5541 0.5411 0.481 0.556 

MSE 0.0228 0.0296 0.0187 0.034 0.0228 0.0173 0.0258 0.0165 0.0121 0.0188 
20 Estimate 0.5257 0.552 0.4994 0.565 0.5257 0.4731 0.5387 0.5314 0.4852 0.5428 

MSE 0.016 0.0196 0.0138 0.0219 0.016 0.0131 0.0176 0.0127 0.01 0.0141 

27 Estimate 0.5194 0.5386 0.5002 0.5482 0.5194 0.4809 0.5289 0.5248 0.4898 0.5335 

MSE 0.0113 0.0133 0.0102 0.0145 0.0113 0.0098 0.0122 0.0097 0.0081 0.0105 
35 Estimate 0.5149 0.5296 0.5002 0.537 0.5149 0.4855 0.5222 0.5198 0.4924 0.5266 

MSE 0.0082 0.0093 0.0075 0.01 0.0082 0.0073 0.0087 0.0073 0.0063 0.0078 

55 Estimate 0.5098 0.5191 0.5005 0.5237 0.5098 0.4913 0.5144 0.5134 0.4957 0.5178 
MSE 0.005 0.0054 0.0047 0.0057 0.005 0.0046 0.0052 0.0047 0.0042 0.0049 

95 Estimate 0.5047 0.51 0.4994 0.5126 0.5047 0.494 0.5073 0.507 0.4967 0.5096 
MSE 0.0027 0.0029 0.0027 0.003 0.0027 0.0026 0.0028 0.0026 0.0025 0.0027 

12

5 

Estimate 0.5042 0.5082 0.5002 0.5102 0.5042 0.4961 0.5062 0.506 0.4981 0.508 

MSE 0.0021 0.0022 0.002 0.0022 0.0021 0.002 0.0021 0.002 0.0019 0.0021 

 

The results in table 1 show that the estimator of 
the scale parameter using QLF under Gamma is 

better than the other estimators (uniform and 
Jeffrey prior and MLE) with small MSE 

irrespective of the variation in the samples. This 

behavior of minimum MSE for Bayesian 

estimation (using QLF under Uniform, Jeffrey 
and gamma priors) is an indication that the 

method for this parameter is better than the 
Method of Maximum Likelihood estimation (MLE) 

for the chosen parameter values irrespective of 

small, medium or large sample sizes.
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Table 2: Estimators their Estimates and Mean Squared Errors based on the replications and sample 

sizeswhere 1, 3α β= =  and 0.5ω = . 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

10 Estimate 0.5508 0.6058 0.4957 0.6328 0.5508 0.4406 0.5776 0.5507 0.466 0.5715 

MSE 0.04 0.0565 0.0304 0.0671 0.04 0.0275 0.0472 0.0227 0.0155 0.0268 

15 Estimate 0.5351 0.5707 0.4994 0.5883 0.5351 0.4637 0.5526 0.5399 0.4799 0.5546 

MSE 0.0227 0.0294 0.0187 0.0337 0.0227 0.0174 0.0257 0.0165 0.0122 0.0187 
20 Estimate 0.524 0.5502 0.4978 0.5632 0.524 0.4716 0.537 0.5299 0.4839 0.5413 

MSE 0.0154 0.0189 0.0134 0.0211 0.0154 0.0128 0.017 0.0124 0.0098 0.0137 
27 Estimate 0.52 0.5392 0.5007 0.5488 0.52 0.4815 0.5295 0.5253 0.4903 0.534 

MSE 0.0116 0.0136 0.0104 0.0149 0.0116 0.01 0.0125 0.01 0.0082 0.0108 

35 Estimate 0.5137 0.5284 0.499 0.5357 0.5137 0.4844 0.521 0.5186 0.4913 0.5254 

MSE 0.0084 0.0095 0.0077 0.0102 0.0084 0.0075 0.0089 0.0075 0.0065 0.008 

55 Estimate 0.5089 0.5181 0.4996 0.5227 0.5089 0.4904 0.5135 0.5125 0.4948 0.5169 
MSE 0.005 0.0054 0.0047 0.0057 0.005 0.0047 0.0052 0.0047 0.0042 0.0049 

95 Estimate 0.5051 0.5104 0.4998 0.5131 0.5051 0.4945 0.5078 0.5074 0.4971 0.51 
MSE 0.0028 0.003 0.0027 0.0031 0.0028 0.0027 0.0029 0.0027 0.0026 0.0028 

12

5 

Estimate 0.504 0.5081 0.5 0.5101 0.504 0.496 0.506 0.5058 0.4979 0.5078 

MSE 0.002 0.0021 0.002 0.0022 0.002 0.002 0.0021 0.002 0.0019 0.002 

 

Table 2 also gives a similar pattern of the result 

found in table 1 with lower values of MSEs for 
the estimators using PLF under Uniform, Jeffrey 

and gamma priors. This result indicates that QLF 
under gamma prior produces the best estimator 

more than the QLF under Uniform and Jeffrey 

priors and these effects are found to be 
continuous despite the different sample sizes 

used.

 
Table 3: Estimators their Estimates and Mean Squared Error and based on the replications and 

sample sizes where 3, 1α β= =  and 0.5ω = . 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF  PLF 

10 Estimate 0.554 0.6094 0.4986 0.6365 0.554 0.4432 0.581 0.5621 0.4684 0.585 
MSE 0.0405 0.0575 0.0305 0.0683 0.0405 0.0273 0.0479 0.0298 0.019 0.0353 

15 Estimate 0.5357 0.5714 0.5 0.589 0.5357 0.4643 0.5533 0.5448 0.4807 0.5606 

MSE 0.023 0.0298 0.0189 0.0342 0.023 0.0176 0.026 0.0196 0.0141 0.0223 

20 Estimate 0.5275 0.5538 0.5011 0.5669 0.5275 0.4747 0.5405 0.5356 0.4869 0.5477 

MSE 0.0165 0.0203 0.0142 0.0227 0.0165 0.0134 0.0182 0.0149 0.0114 0.0165 
27 Estimate 0.5199 0.5391 0.5006 0.5487 0.5199 0.4813 0.5294 0.5268 0.4904 0.5358 

MSE 0.0114 0.0133 0.0102 0.0146 0.0114 0.0098 0.0122 0.0106 0.0087 0.0115 
35 Estimate 0.5157 0.5304 0.501 0.5377 0.5157 0.4862 0.523 0.5214 0.4933 0.5284 

MSE 0.0082 0.0094 0.0075 0.0101 0.0082 0.0073 0.0088 0.0079 0.0067 0.0085 

55 Estimate 0.51 0.5192 0.5007 0.5239 0.51 0.4914 0.5146 0.514 0.4959 0.5184 

MSE 0.0051 0.0056 0.0048 0.0058 0.0051 0.0047 0.0053 0.005 0.0045 0.0052 

95 Estimate 0.505 0.5103 0.4997 0.513 0.505 0.4944 0.5076 0.5074 0.497 0.51 
MSE 0.0028 0.0029 0.0027 0.003 0.0028 0.0027 0.0029 0.0028 0.0026 0.0028 

12
5 

Estimate 0.5039 0.5079 0.4998 0.5099 0.5039 0.4958 0.5059 0.5058 0.4978 0.5078 
MSE 0.0021 0.0022 0.0021 0.0022 0.0021 0.002 0.0021 0.0021 0.002 0.0021 

 

Again from table 3, it is confirmed that QLF 
under gamma priorgave the best estimators for 

the scale parameter irrespective of the changes 

in the allocation of sample sizes. This efficiency 
is again followed by the same QLF under 

Uniform and Jeffrey priors.  
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Table 4: Estimators their Estimates and Mean Squared Errors based on the replications and sample 

sizes where 0.5, 0.5α β= =  and 1ω = . 

n Measure
s 

MLE Uniform Prior Jeffrey’s Prior Gamma Prior 
SELF QLF PLF SELF QLF PLF SELF QLF PLF 

10 Estimate 1.1095 1.2204 0.9985 1.2747 1.1095 0.8876 1.1636 1.1828 1.0436 1.2171 

MSE 0.1630 0.2313 0.1223 0.2748 0.1630 0.1093 0.1929 0.0946 0.0495 0.1119 
15 Estimate 1.0712 1.1426 0.9998 1.1778 1.0712 0.9284 1.1063 1.1418 1.0380 1.1675 

MSE 0.0914 0.1186 0.0752 0.1360 0.0914 0.0700 0.1034 0.0690 0.0418 0.0792 

20 Estimate 1.0497 1.1022 0.9972 1.1282 1.0497 0.9448 1.0757 1.1129 1.0304 1.1333 

MSE 0.0625 0.0766 0.0542 0.0858 0.0625 0.0517 0.0688 0.0529 0.0353 0.0594 
27 Estimate 1.0419 1.0805 1.0034 1.0997 1.0419 0.9648 1.0611 1.0941 1.0297 1.1100 

MSE 0.0449 0.0529 0.0400 0.0580 0.0449 0.0382 0.0485 0.0413 0.0296 0.0455 

35 Estimate 1.0298 1.0593 1.0004 1.0739 1.0298 0.9710 1.0445 1.0736 1.0225 1.0864 
MSE 0.0337 0.0383 0.0310 0.0412 0.0337 0.0300 0.0358 0.0319 0.0246 0.0346 

55 Estimate 1.0180 1.0365 0.9994 1.0457 1.0180 0.9809 1.0272 1.0488 1.0149 1.0572 

MSE 0.0199 0.0217 0.0189 0.0228 0.0199 0.0186 0.0207 0.0197 0.0164 0.0208 

95 Estimate 1.0103 1.0209 0.9997 1.0262 1.0103 0.9890 1.0156 1.0295 1.0093 1.0345 

MSE 0.0108 0.0114 0.0105 0.0118 0.0108 0.0104 0.0111 0.0109 0.0097 0.0113 
12

5 

Estimate 1.0056 1.0137 0.9976 1.0177 1.0056 0.9895 1.0096 1.0206 1.0051 1.0244 

MSE 0.0082 0.0085 0.0080 0.0086 0.0082 0.0080 0.0083 0.0082 0.0075 0.0084 

 

The above table, table 4 also reveals finally that 

gamma prior with QLF is the most efficient for 
the scale parameter, and looking at all the 

results presented in the tables, we can conclude 

that Bayes estimates using Quadratic loss 

function (QLF) are associated withminimum MSE 

when compared to those obtained using MLE, 
SELF and PLF irrespective of the parameter 

values as well as the allocated sample sizes of 
n=10, 15, 20, 27, 35, 55, 95 and 125. 

 

4. CONCLUSIONS  
In this article, we obtain Bayesian estimators of 

the scale parameter of Exponential Lomax 
distribution. The Posterior distributions of this 

parameter are derived by using Uniform, Jeffrey 
and gamma priors. Bayes estimators and their 

risks have been derived by using three loss 

functions under the three prior distributions. The 

three loss functions are Squared Error Loss 

Function (SELF), Quadratic Loss Function (QLF) 
and Precautionary Loss Function (PLF). The 

performance of these estimators is assessed on 

the basis of their relative Biases and mean 
square errors. Monte Carlo Simulations are used 

to compare the performance of the estimators. 

It is discovered that using the QLF produces 

very minimum measures of MSE under all the 

priors (gamma, Jeffreys and uniform) and most 
especially under gamma prior, then the 

SELF,MLE and lastly the PLF irrespective of the 
parameter values and difference in sample size. 

Most importantly, we found that Bayesian 

Method using Quadratic Loss Function (QLF) 
under gamma prior produces the best estimators 

of the scale parameter compared to estimators 
using Maximum Likelihood method, Squared 

Error Loss Function (SELF) and Precautionary 
Loss Function (PLF) under Uniform and Jeffrey 

priors irrespective of the values of the 

parameters and the different sample sizes. It is 

also discovered that the other parameters have 

no effect on the estimates of the scale 
parameter.
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