

Bayero Journal of Pure and Applied Sciences, 12(1): 155 - 160 Received: June, 2019 Accepted: June, 2019 ISSN 2006 – 6996

 $\alpha\text{-}\mathsf{CUTS}$ and inverse $\alpha\text{-}\mathsf{CUTS}$ in fuzzy soft sets

A. J. Alkali, A. I. Isah Department of Mathematics, Ahmadu Bello University Zaria-Nigeria <u>alkali4real2012@gmail.com</u> Department of Mathematical Sciences, Kaduna State University Kaduna-Nigeria <u>ahmed.isah@kasu.edu.ng</u>, <u>aisah204@gmail.com</u>

Abstract

In this paper, the concepts of α -cuts, strong α -cuts, inverse α -cuts and weak inverse α -cuts of fuzzy soft sets were introduced together with some of their properties. Some distinctive features between α -cuts and inverse α -cuts were established. Some related theorems were formulated and proved. It is further demonstrated that both α -cuts and inverse α -cuts of fuzzy soft sets were useful tools in decision making. Key Words: Fuzzy set, Fuzzy soft set, α -cut, strong α -cut

1 INTRODUCTION

A fuzzy set which is a collection of objects with various degrees of membership was first introduced by (Zadeh, 1965) and later studied by various scholars such as (Goguen, 1967; Wygralak, 1989; Gattwald, 2006) to mention a few. It is often useful to consider those elements that have at least some minimal degree of membership, say $\alpha \in [0,1]$. This is something like asking who has a passing grade in a class or a minimal height to ride on a roller coaster. This process can be better comprehended by using the notion of alpha-cuts introduced in (Zadeh, 1965). Sun and Han (2006) introduced the notion of inverse a-cut to improve the usability of the concept of a-cut to real life problems. For more details on a-cuts and its application refer to (Sun and Han, 2006; Kreinovich, 2013; Singh *et al.*, 2014; Singh *et al.*, 2015).

Soft set was introduced by (Molodtsov, 1999), thereafter many researchers study the theory in various context as in (Maji and Roy, 2002; Majumdar and Samanta, 2008; Isah and Tella, 2018; Isah, 2018). In this paper, the idea of a-cuts and inverse a-cuts in fuzzy soft sets were introduced and their applications were illustrated.

2 PRELIMINARIES

2.1 Fuzzy Sets

In this section, preliminaries for fuzzy set, soft set and fuzzy soft set which were needed for the concept of α – cuts of fuzzy soft sets were presented.

Definition 2.1.1 (Zadeh, 1965) Let *X* be a non-empty universe set, then a fuzzy set *A* over *X* is defined by a membership function

$$\mu_A: X \to [0, 1]$$
, that is, $A = \left\{ \left(x, \mu_A(x)\right) \mid x \in X \right\}.$

Let *A* and *B* be two fuzzy sets, then (i) $A \subseteq B$ if and only if

 $\mu_A(x) \le \mu_B(x), \quad \forall x \in X.$

(ii) $A \cup B = C$, with membership function

$$\mu_C(x) = \max[\mu_A(x), \mu_B(x)],$$

hip function

(iii)
$$A \cup B = D$$
, with membership function

$$\mu_D(x) = \min[\mu_A(x), \mu_B(x)], \qquad \forall x \in X$$

 $\forall x \in X$

Definition 2.1.2 (Zadeh, 1965)

Let *X* be a non-empty set and F(X) the set of all fuzzy sets of *X*. Let $A \in F(X)$ and $\alpha \in [0,1]$. Then the non-fuzzy set (or crisp set)

$${}^{\alpha}A = \{x \in X \mid \mu_A((x) \ge \alpha)\}$$

is called the *a-cut* or *a-level* set of *A*.

BAJOPAS Volume 12 Number 1, June, 2019

If the weak inequality \geq is replaced by the strict inequality >, then it is called the *strong a-cut*, denoted by ${}^{\alpha_+}A$. That is,

$$^{\alpha+}A = \{x \in X \mid \mu_A((x) > \alpha)\}.$$

Definition 2.1.3 (Sun and Han, 2006)

 $A \in F(X)$ and $\alpha \in [0,1]$. Then the non-fuzzy set Let

$${}^{\alpha}A^{-1} = \{ x \in X \mid \mu_A(x) < \alpha \}$$

is called an *inverse* α *-cut* or *inverse* α *-level set* of A.

If the strict inequality is replaced by the weak inequality \leq , then it is called a *weak inverse* α *-cut* of A, denoted by $\alpha^{-}A^{-1}$. That is,

$$\alpha^{-1} = \{x \in X \mid \mu_A(x) \le \alpha\}.$$

2.2 Soft Sets

Definition 2.2.1 (Molodtsov, 1999; Sezgin and Atagun, 2011) Let U be a universe set and E a set of parameters or attributes with respect to U. Let P(U) be the

power set of U and $A \subseteq E$. Then, a pair (F, A) is called a soft set over U, where F is a mapping given by $F: A \rightarrow P(U)$. That is,

$$(F,A) = \{ F(e) \in P(U) \mid e \in E, F(e) = \emptyset \text{ if } e \notin A \}.$$

Definition 2.2.2 (Maji et al., 2003)

Let (F, A) and (G, B) be two soft sets over a common universe U, we say that

(i) (F,A) is a soft subset of (G,B), denoted $(F,A) \subseteq (G,B)$, if

$$A \subseteq B$$
, and
 $\forall e \in A, F(e) \subseteq G(e)$.

(ii) (F, A) is soft equal to (G, B), denoted (F, A) = (G, B), if $(F, A) \subseteq (G, B)$ and

$$(G,B) \subseteq (F,A)$$
.

Definitions 2.2.3 (Sezgin and Atagun, 2011; Maji et al., 2003)

Let (F,A) and (G,B) be two soft sets over a common universe U.

The union of (F,A) and (G,B), denoted by $(F,A) \tilde{\cup} (G,B)$, is a soft set (H,C) where (i) ...1

$$C = A \cup B \text{ and } \forall e \in C,$$

$$H(e) = \begin{cases} F(e), & e \in A - B \\ G(e), & e \in B - A \\ F(e) \cup G(e), e \in A \cap B. \end{cases}$$

The extended intersection of (F,A) and (G,B), denoted $(F,A) \cap (G,B)$, is a soft set (ii) (*H*,*C*) where $C = A \cup B$ and $\forall e \in C$,

$$H(e) = \begin{cases} F(e), \text{ if } e \in A - B \\ G(e), \text{ if } e \in B - A \\ F(e) \cap G(e), \text{ if } e \in A \cap B. \end{cases}$$

- (iii) The restricted intersection of (F,A) and (G,B), denoted $(F,A) \cap_{\mathbb{R}} (G,B)$, is a soft set (*H*,*C*) where $C = A \cap B$ and $\forall e \in C$, $H(e) = F(e) \cap G(e)$. If $A \cap B = \phi$ then (*F*,*A*) $\bigcap_{R} (G,B) = \Phi_{\phi}.$
- The restricted union of (F,A) and (G,B), denoted $(F,A) \cup_R (G,B)$, is a soft set (H,C) where (iv) $C = A \cap B$ and $\forall e \in C$, $H(e) = F(e) \cup G(e)$. If $A \cap B = \phi$ then $(F,A) \cup_{P} (G,B) = \tilde{\Phi}$ φ.

BAJOPAS Volume 12 Number 1, June, 2019 2.3 Fuzzy Soft Set

Definition 2.3.1 (Maji *et al.*, 2001)

Let *U* be an initial universal set and *E* be a set of parameters. Suppose I^U denote the power set of all fuzzy subsets of *U*, and $A \subseteq E$. Then, a pair (\mathcal{F}, E) is called a fuzzy soft set over *U*, where \mathcal{F} is a mapping given by $\mathcal{F}: A \to I^U$.

3 α -CUTS AND ITS PROPERTIES IN FUZZY SOFT SETS

In this section, the concepts of α -cuts and strong α -cuts of fuzzy soft sets were introduced together with some of their properties.

Definition 3.1 Let the pair (\mathcal{F}, A) be a fuzzy soft set over U, where \mathcal{F} is a mapping given by $\mathcal{F} : A \to I^U$.

Then the *a*-cut or *a*-level soft set of (\mathcal{F}, A) denoted by $^{\alpha}(\mathcal{F}, A)$ is defined as

$$(\mathcal{F},A) = \{(e,\{(x,\mu_{(\mathcal{F},A)}(x))\} | \mu_{(\mathcal{F},A)}(x) \ge \alpha, \forall e \in A\}.$$

The *strong a-cut,* denoted by $^{\alpha+}(\mathcal{F}, A)$ is defined as

$$^{\alpha+}(\mathcal{F},A) = \{ (e, \{ (x, \mu_{(\mathcal{F},A)}(x)) \} | \mu_{(\mathcal{F},A)}(x) > \alpha, \forall e \in A \}.$$

Example 3.2

Let $U = \{x_1, x_2, x_3, x_4\}$, $E = \{e_1, e_2, e_3, e_4, e_5\}$, $A = \{e_1, e_2, e_3\}$ and the fuzzy soft set (\mathcal{F}, A) over U be $\mathcal{F}(e_1) = \{(x_1, 0.9), (x_2, 0.3), (x_3, 0.7), (x_4, 0.5)\}$, $\mathcal{F}(e_2) = \{(x_1, 0.6), (x_2, 0.5), (x_3, 0.8), (x_4, 0.1)\}$, $\mathcal{F}(e_3) = \{(x_1, 0.7), (x_2, 0.8), (x_3, 1.0), (x_4, 0.2)\}$. That is,

$$(\mathcal{F}, A) = \{(e_1, \{(x_1, 0.9), (x_2, 0.3), (x_3, 0.7), (x_4, 0.5)\}),\$$

 $(e_2, \{(x_1, 0.6), (x_2, 0.5), (x_3, 0.8), (x_4, 0.1)\}), (e_3, \{(x_1, 0.7), (x_2, 0.8), (x_3, 1.0), (x_4, 0.2)\})\}$. For instance, if *U* is a set of raw materials needed by a manufacturer and *A* is a set of attributes. This soft set is represented in tabular form as follows:

U	Found within	Nigeria	Found in forest region (e_{2})	Cheap (e_3)
				0.7
X ₁	0.9		0.6	0.7
x_2	0.3		0.5	0.8
<i>x</i> ₃	0.7		0.8	1.0
x_4	0.5		0.1	0.2

Then if $\alpha = 0.7$, we have ${}^{0.7}(\mathcal{F}, A) = \{(e_1, \{x_1, x_3\}), (e_2, \{x_3\}), (e_3, \{x_1, x_2, x_3\})\}$ and ${}^{0.7+}(\mathcal{F}, A) = \{(e_1, \{x_1\}), (e_2, \{x_3\}), (e_3, \{x_2, x_3\})\}$.

If $\alpha = 0.8$, we have ${}^{0.8}(\mathcal{F}, A) = \{(e_1, \{x_1\}), (e_2, \{x_3\}), (e_3, \{x_2, x_3\})\}$ and ${}^{0.8+}(\mathcal{F}, A) = \{(e_1, \{x_1\}), (e_3, \{x_3\})\}.$

Remark 3.3

 α -cut can be use to make a decision. For instance, if a manufacturer stipulates that, the raw material that satisfies all the parameters under the defined α is considered the best then, at $\alpha = 0.8$, there is no best raw material while at $\alpha = 0.7$, x_2 is the best choice.

Proposition 3.4

Let $\alpha \in [0,1]$ and $(\mathcal{F}, A), (\mathcal{M}, B)$ be fuzzy soft sets over U, the following properties hold:

- i. $\alpha^{+}(\mathcal{F},A) \subseteq \alpha(\mathcal{F},A)$
- ii. $\alpha \leq \beta \Rightarrow {}^{\beta}(\mathcal{F}, A) \subseteq {}^{\alpha}(\mathcal{F}, A)$ iii. ${}^{\alpha}[(\mathcal{F}, A) \cup (\mathcal{M}, B)] = {}^{\alpha}(\mathcal{F}, A) \cup {}^{\alpha}(\mathcal{M}, B)$
- iv. ${}^{\alpha}[(\mathcal{F},A) \cap (\mathcal{M},B)] = {}^{\alpha}(\mathcal{F},A) \cap {}^{\alpha}(\mathcal{M},B)$

Proof

i. Let $(e, x) \in {}^{\alpha+}(\mathcal{F}, A)$ $\Rightarrow \mu_{(\mathcal{F}, A)}(x) > \alpha, \forall e \in A$ $\Rightarrow \mu_{(\mathcal{F}, A)}(x) \ge \alpha, \forall e \in A$ $\Rightarrow (e, x) \in {}^{\alpha}(\mathcal{F}, A)$ Therefore, ${}^{\alpha+}(\mathcal{F}, A) \subseteq {}^{\alpha}(\mathcal{F}, A)$ ii. The proof follows from definition. iii. Let $(e, x) \in {}^{\alpha}[(\mathcal{F}, A) \cup (\mathcal{M}, B)]$ $\Rightarrow \mu_{[(\mathcal{F}, A) \cup (\mathcal{M}, B)]}(x) \ge \alpha, \forall e \in A \cup B$ $\Rightarrow \mu_{(\mathcal{F}, A)}(x) \ge \alpha, \forall e \in A \text{ or } \mu_{(\mathcal{M}, B)}(x) \ge \alpha, \forall e \in B$ $\Rightarrow (e, x) \in {}^{\alpha}(\mathcal{F}, A) \text{ or } (e, x) \in {}^{\alpha}(\mathcal{M}, B)$ $\Rightarrow (e, x) \in {}^{\alpha}(\mathcal{F}, A) \cup {}^{\alpha}(\mathcal{M}, B)$

Therefore, ${}^{\alpha}[(\mathcal{F},A) \cup (\mathcal{M},B)] \subseteq {}^{\alpha}(\mathcal{F},A) \cup {}^{\alpha}(\mathcal{M},B)$

Conversely, suppose $(e, x) \in {}^{\alpha}(\mathcal{F}, A) \cup {}^{\alpha}(M, B)$ \Rightarrow (e, x) $\in {}^{\alpha}(\mathcal{F}, A)$ or (e, x) $\in {}^{\alpha}(\mathcal{M}, B)$ $\Rightarrow \mu_{(\mathcal{F},A)}(x) \ge \alpha, \forall e \in A \text{ or } \mu_{(M,B)}(x) \ge \alpha, \forall e \in B$ $\Rightarrow \mu_{(P,C)}(x) \ge \alpha, \forall e \in C$, where $C = A \cup B$ and $(P,C) = (\mathcal{F},A) \cup (\mathcal{M},B)$ $\Rightarrow \mu_{[(\mathcal{F},A)\cup(\mathcal{M},B)]}(x) \ge \alpha, \forall e \in A \cup B$ $\Rightarrow (e, x) \in {}^{\alpha}[(\mathcal{F}, A) \cup (\mathcal{M}, B)]$ Therefore, ${}^{\alpha}(\mathcal{F},A) \cup {}^{\alpha}(M,B) \subseteq {}^{\alpha}[(\mathcal{F},A) \cup (M,B)]$ Hence, $\alpha[(\mathcal{F}, A) \cup (\mathcal{M}, B)] = \alpha(\mathcal{F}, A) \cup \alpha(\mathcal{M}, B)$ iv. Let $(e, x) \in {}^{\alpha}(\mathcal{F}, A) \cap {}^{\alpha}(\mathcal{M}, B)$ \Rightarrow (e, x) $\in {}^{\alpha}(\mathcal{F}, A)$ and (e, x) $\in {}^{\alpha}(\mathcal{M}, B)$ $\Rightarrow \mu_{(\mathcal{F},A)}(x) \geq \alpha, \forall e \in A \text{ and } \mu_{(\mathcal{M},B)}(x) \geq \alpha, \forall e \in B$ $\Rightarrow \mu_{[(\mathcal{F},A) \cap (\mathcal{M},B)]}(x) \ge \alpha, \forall e \in A \cap B$ $\Rightarrow (e, x) \in {}^{\alpha}[(\mathcal{F}, A) \cap (\mathcal{M}, B)]$ Therefore, ${}^{\alpha}(\mathcal{F},A) \cup {}^{\alpha}(M,B) \subseteq {}^{\alpha}[(\mathcal{F},A) \cap (\mathcal{M},B)]$ Conversely, let $(e, x) \in {}^{\alpha}[(\mathcal{F}, A) \cap (\mathcal{M}, B)]$ $\Rightarrow \mu_{[(\mathcal{F},A)\cap(\mathcal{M},B)]}(x) \ge \alpha, \forall e \in A \cap B$

 $\begin{array}{l} \Rightarrow \mu_{(\mathcal{F},A)}(x) \geq \alpha, \forall e \in A \text{ and } \mu_{(\mathcal{M},B)}(x) \geq \alpha, \forall e \in B \\ \Rightarrow (e,x) \in {}^{\alpha}(\mathcal{F},A) \text{ and } (e,x) \in {}^{\alpha}(\mathcal{M},B) \\ \Rightarrow (e,x) \in {}^{\alpha}(\mathcal{F},A) \cap {}^{\alpha}(\mathcal{M},B) \end{array} \\ \end{array}$ Therefore, ${}^{\alpha}[(\mathcal{F},A) \cap (\mathcal{M},B)] \subseteq {}^{\alpha}(\mathcal{F},A) \cap {}^{\alpha}(\mathcal{M},B)$

Thus, $\alpha[(\mathcal{F}, A) \cap (\mathcal{M}, B)] = \alpha(\mathcal{F}, A) \cap \alpha(\mathcal{M}, B)$

4. INVERSE A-CUTS AND ITS PROPERTIES IN FUZZY SOFT SETS

In this section, the concepts of inverse α -cuts and weak inverse α -cuts of fuzzy soft sets together with some of their properties were introduced.

Definition 4.1 Let the pair (\mathcal{F}, A) be a fuzzy soft set over U, where \mathcal{F} is a mapping given by $\mathcal{F} : A \to I^U$. Then the inverse *a*-*cut* or inverse *a*-*level* soft set of (\mathcal{F}, A) , denoted by ${}^{\alpha}(\mathcal{F}, A)^{-1}$ is defined as

$${}^{\alpha}(\mathcal{F},A)^{-1} = \{(e,\{(x,\mu_{(\mathcal{F},A)}(x))\} | \mu_{(\mathcal{F},A)}(x) < \alpha, \forall e \in A\}.$$

The *weak inverse a-cut* of (\mathcal{F}, A) , denoted by $\alpha^{-}(\mathcal{F}, A)^{-1}$ is defined as

$${}^{\alpha-}(\mathcal{F},A)^{-1}=\{(e,\{(x,\mu_{(\mathcal{F},A)}(x))\}|\mu_{(\mathcal{F},A)}(x)\leq\alpha,\forall e\in A\}.$$

Example 4.2

Let $(\mathcal{F}, A) = \{(e_1, \{(x_1, 0.9), (x_2, 0.3), (x_3, 0.7), (x_4, 0.5)\}), (e_2, \{(x_1, 0.6), (x_2, 0.5), (x_3, 0.8), (x_4, 0.1)\}), (e_3, \{(x_1, 0.7), (x_2, 0.8), (x_3, 1.0), (x_4, 0.2)\})\},$ we have ${}^{o.7}(\mathcal{F}, A)^{-1} = \{(e_1, \{x_2, x_4\}), (e_2, \{x_1, x_2, x_4\}), (e_3, \{x_4\})\}$ and ${}^{o.7-}(\mathcal{F}, A)^{-1} = \{(e_1, \{x_2, x_3, x_4\}), (e_2, \{x_1, x_2, x_4\}), (e_3, \{x_1, x_4\})\}.$

Remark 4.3

Inverse α -cut can be use to know the most unfavorable selection. For instance, if the manufacturer intends to know the most unsuitable raw material at $\alpha = 0.7$, then x_4 is the most unfavorable choice. **Remark 4.4**

Proposition 3.4 (iii) and (iv) fails.

Counter Example

For (iii)

Let $U = \{x_1, x_2, x_3, x_4\}$, $E = \{e_1, e_2, e_3, e_4, e_5\}$, $A = \{e_1, e_3\}$, $B = \{e_3, e_5\}$ and $(\mathcal{F}, A) = \{(e_1, \{(x_1, 0.7), (x_2, 0.4), (x_3, 0.6)\}), (e_3, \{(x_1, 0.5), (x_3, 0.2), (x_4, 0.1)\})\}$, $(\mathcal{M}, B) = \{(e_3, \{(x_1, 0.9), (x_2, 0.5)\}), (e_5, \{(x_2, 0.6), (x_4, 0.2)\})\}$ be fuzzy soft set over U.

Then ^{0.6}(
$$\mathcal{F}$$
, A)⁻¹ = {(e_1 , { x_2 }), (e_3 , { x_1 , x_3 , x_4 })}, ^{0.6}(\mathcal{M} , B)⁻¹ = {(e_3 , { x_2 }), (e_5 , { x_4 })} and
^{0.6}(\mathcal{F} , A)⁻¹ \cup ^{0.6}(\mathcal{M} , B)⁻¹ = {(e_1 , { x_2 }), (e_3 , { x_1 , x_2 , x_3 , x_4 }), (e_5 , { x_4 })}.

Also,

$$(\mathcal{F}, A) \cup (\mathcal{M}, B) = \begin{cases} (e_1, \{(x_1, 0.7), (x_2, 0.4), (x_3, 0.6)\}), \\ (e_3, \{(x_1, 0.9), (x_2, 0.5), (x_3, 0.2), (x_4, 0.1)\}), (e_5, \{(x_2, 0.6), (x_4, 0.2)\}) \end{cases}$$

and

 $^{0.6}[(\mathcal{F},A)\cup(\mathcal{M},B)]^{-1}=\{(e_1,\{x_2\}),(e_3,\{x_2,x_3,x_4\}),(e_5,\{x_4\})\}.$

BAJOPAS Volume 12 Number 1, June, 2019 Thus, ${}^{0.6}(\mathcal{F},A)^{-1} \cup {}^{0.6}(\mathcal{M},B)^{-1} \neq {}^{0.6}[(\mathcal{F},A) \cup (\mathcal{M},B)]^{-1}$. Counter Example for (iv) ${}^{0.7}(\mathcal{F},A)^{-1} = \{(e_1, \{x_2, x_3\}), (e_3, \{x_1, x_3, x_4\})\}, {}^{0.7}(\mathcal{M},B)^{-1} = \{(e_3, \{x_2\}), (e_5, \{, x_2, x_4\})\}$ and ${}^{0.7}(\mathcal{F},A)^{-1} \cap {}^{0.7}(\mathcal{M},B)^{-1} = \emptyset$.

However, $(\mathcal{F}, A) \cap (\mathcal{M}, B) = \{(e_3, \{(x_1, 0.5)\})\}$ and

$${}^{0.7}[(\mathcal{F},A) \cup (\mathcal{M},B)]^{-1} = \{(e_3,\{x_1\})\}$$

Thus, ${}^{0.7}(\mathcal{F},A)^{-1} \cap {}^{0.7}(\mathcal{M},B)^{-1} \neq {}^{0.7}[(\mathcal{F},A) \cap (\mathcal{M},B)]^{-1}$.

Moreover, the following hold.

Proposition 4.5

Let $(\mathcal{F}, A), (\mathcal{F}, B)$ be fuzzy soft sets over U, and $\alpha, \beta \in [0, 1]$. The following properties hold:

(i) ${}^{\alpha}(\mathcal{F},A)^{-1} \subseteq {}^{\alpha-}(\mathcal{F},A)^{-1}$

- (ii) $\alpha \leq \beta$ implies ${}^{\alpha}(\mathcal{F},A)^{-1} \subseteq {}^{\beta}(\mathcal{F},A)^{-1}$ and ${}^{\alpha-}(\mathcal{F},A)^{-1} \subseteq {}^{\beta-}(\mathcal{F},A)^{-1}$
- (iii) ${}^{\alpha}[(\mathcal{F},A) \cup (\mathcal{M},B)]^{-1} \subseteq {}^{\alpha}(\mathcal{F},A)^{-1} \cup {}^{\alpha}(\mathcal{M},B)^{-1}$
- (iv) ${}^{\alpha}(\mathcal{F},A)^{-1} \cap {}^{\alpha}(\mathcal{M},B)^{-1} \subseteq {}^{\alpha}[(\mathcal{F},A) \cap (\mathcal{M},B)]^{-1}$

Proof

i. Let
$$(e, x) \in {}^{\alpha}(\mathcal{F}, A)^{-1}$$

 $\Rightarrow \mu_{(\mathcal{F}, A)}(x) < \alpha, \forall e \in A$
 $\Rightarrow (e, x) \in {}^{\alpha-}(\mathcal{F}, A)^{-1}$
Therefore, ${}^{a+}(\mathcal{F}, A) \subseteq {}^{\alpha}(\mathcal{F}, A)$
ii. Let $(e, x) \in {}^{\alpha}(\mathcal{F}, A)^{-1}$
 $\Rightarrow \mu_{(\mathcal{F}, A)}(x) < \alpha, \forall e \in A$
 $\Rightarrow \mu_{(\mathcal{F}, A)}(x) < \beta, \forall e \in A$ Since $\alpha \leq \beta$
 $\Rightarrow (e, x) \in {}^{\beta}(\mathcal{F}, A)^{-1}$
Therefore, ${}^{\alpha}(\mathcal{F}, A)^{-1} \subseteq {}^{\beta}(\mathcal{F}, A)^{-1}$
Also, suppose $(e, x) \in {}^{\alpha-}(\mathcal{F}, A)^{-1}$
 $\Rightarrow \mu_{(\mathcal{F}, A)}(x) \leq \alpha, \forall e \in A$
 $\Rightarrow \mu_{(\mathcal{F}, A)}(x) \leq \beta, \forall e \in A$ Since $\alpha \leq \beta$
 $\Rightarrow (e, x) \in {}^{\beta-}(\mathcal{F}, A)^{-1}$
Therefore, ${}^{\alpha-}(\mathcal{F}, A)^{-1} \subseteq {}^{\beta-}(\mathcal{F}, A)^{-1}$
 $\Rightarrow \mu_{(\mathcal{F}, A)\cup(\mathcal{M}, B)]^{-1}$
 $\Rightarrow \mu_{(\mathcal{F}, A)\cup(\mathcal{M}, B)]^{-1}$
Therefore, ${}^{\alpha}(\mathcal{F}, A) \cup (\mathcal{M}, B)^{-1}$
 $\Rightarrow (e, x) \in {}^{\alpha}(\mathcal{F}, A)^{-1} \cup {}^{\alpha}(\mathcal{M}, B)^{-1}$
Therefore, ${}^{\alpha}(\mathcal{F}, A) \cup (\mathcal{M}, B)^{-1} \subseteq {}^{\alpha}(\mathcal{F}, A)^{-1} \cup {}^{\alpha}(\mathcal{M}, B)^{-1}$
 $\Rightarrow (e, x) \in {}^{\alpha}(\mathcal{F}, A)^{-1} \cup {}^{\alpha}(\mathcal{M}, B)^{-1}$
 $\Rightarrow (e, x) \in {}^{\alpha}(\mathcal{F}, A)^{-1} \cup {}^{\alpha}(\mathcal{M}, B)^{-1}$
 $\Rightarrow \mu_{(\mathcal{F}, A)(x)} < \alpha, \forall e \in A \text{ and } \mu_{(\mathcal{M}, B)}(x) < \alpha, \forall e \in B$
 $\Rightarrow \mu_{(\mathcal{F}, A)\cap(\mathcal{M}, B)](x) < \alpha, \forall e \in A \cap B$
 $\Rightarrow (e, x) \in {}^{\alpha}[(\mathcal{F}, A) \cap (\mathcal{M}, B)]^{-1}$
Therefore, ${}^{\alpha}(\mathcal{F}, A)^{-1} \cap {}^{\alpha}(\mathcal{M}, B)^{-1} \subseteq {}^{\alpha}(\mathcal{F}, A) \cap (\mathcal{M}, B)]^{-1}$

5 CONCLUSION

The concept of α -Cuts, inverse α -Cuts and their properties in fuzzy soft sets were introduced and their applications were highlighted. It is shown that α -Cut of fuzzy soft sets can be used to

determine the best choice while inverse α -Cut of fuzzy soft sets can be used to determine unfavorable alternative. Some related results were presented.

BAJOPAS Volume 12 Number 1, June, 2019 REFERENCES

- Ali, M.I., Feng, F., Lui, X.Y., Min, W.K. and Shabir, M. (2009). On some new operations in soft set theory, Computers and mathematics with applications, 57 (9) 1574-1553.
- Gattwald, S. (2006). *Universes of Fuzzy Sets and Axiomatization (part 1), Studia Logica,* An International J. Symbolic Logic, 82 (2) 211 – 244.
- Goguen, J. A. (1967). *L-fuzzy Sets*, Journal of Mathematical Analysis and Applications, (18) 145 – 174.
- Isah, A. I. and Tella, Y. (2018). Relations and Functions in Soft Multiset Context, *Science World Journal*, *13 (3) 10-14.*
- Isah, A. I. (2018). Some properties of soft multiset, *Science World Journal, 13 (4)* 44-46.
- Klir, G. J. and Yuan, B. (1995). *Fuzzy Sets and Fuzzy Logic: Theory and Applications*, Prentice Hall, Upper Saddle River, NJ.
- Kreinovich, V. (2013). Membership Functions or a-Cuts? Algorithmic (Constructivist) Analysis Justifies an Interval Approach, *Applied Mathematical Sciences, 7 (5)* 217–228.
- Khan, N., Khan, F. H. and Thakur, G. S. (2013). Weighted Fuzzy Soft Matrix Theory and its Decision Making, *International Journal of Advances in Computer Science and Technology, 2 (10) 214-218.*
- Maji, P. K., Biswas, R. and Roy, A. R. (2001). Fuzzy soft sets, *Journal of Fuzzy Mathematics, 9 (3) 589–602.*
- Maji, P. K., Biswas, R. and Roy, A. R. (2003). Soft set theory, *Computers and mathematics with applications, 45 (4-5)* 555-562.

- Maji, P. K and Roy, A. R. (2002). *An application* of Soft sets in a Decision Making *Problem*, Computers and Mathematics with Applications, 44, 1077-1083.
- Majumdar, P. and Samanta, S.K. (2008). Similarity measure of Soft sets, *New math. and Natural Computation, 4 (1) 1-12.*
- Molodtsov, D. (1999). Soft set theory-First results, *Computers and Mathematics with Applications*, *37*, *19-31*.
- Sezgin, A. and Atagun, A.O. (2011). On operations of soft sets, *Computers and mathematics with applications, (60)* 1840-1849.
- Singh, D., Alkali, A. J. and Isah, A. I. (2014). Some Applications of a-Cuts in Fuzzy Multiset Theory, *Journal of Emerging Trends in Computing and Information Sciences, 3 (4) 328-335.*
- Singh, D., Alkali, A. J. and Isah, A. I. (2015). An extension of the properties of inverse a cuts to fuzzy multisets, *Annals of Fuzzy Mathematics and Informatics*, *9 (6) 917-923.*
- Sun, Z. and Han, J. (2006). Inverse alpha-Cuts and Interval [a, b)-Cuts, Proceedings of the International Conference on Innovative Computing, Information and Control (ICICIC2006), 30 August - 1 September, Beijing, IEEE Press, 441-444.
- Wygralak, M. (1989). Rough Sets and Fuzzy Sets – Some Remarks on Interrelations, *Fuzzy Sets and Systems, (29) 241 – 243.*
- Zadeh, L. A. (1965). Fuzzy Sets, *Information Control, (8) 338 – 353.*