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ABSTRACT 
We present Autoregressive (AR) and autoregressive moving average (ARMA) processes 
with multivariate geometric (MG) distribution. The theory of positive dependence is used 
to show that in many cases, multivariate geometric autoregressive (MGAR) and 
multivariate autoregressive moving average (MGARMA) models consist of associated 
random variables. We also provide a special case of the multivariate geometric 
autoregressive model in which it is stationary and has multivariate geometric 
distribution. 
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INTRODUCTION 
According to Block et al. (1988), a primary 
stationary model in time series analysis is the

1P ×  linear process given by  

���� � � ����	�� 
 ��, � �
�

�	�	�

... (1.1)  
where ����, � � 0,�1,�2… is a sequence of 

P P×  parameter matrices such that 

( )
j

A j
∞

=−∞
∑ is finite and 

	���, � � 0,�1,�2…	is a sequence of 
independently and identically distributed 
random vectors with mean 0 and common 
covariance matrix. It is well known that equation 
(1.1) includes the stationary vector 
autoregressive (AR) process and the stationary 
and invertible vector autoregressive moving 
average (ARMA) process. 
However, according to Lewis and Lawrence
(1985), in some physical situations where the 

random vectors ( )X n  are either positive or 

discrete, the preceding assumptions on the 

( )E n  sequence are inappropriate. 

Langberg and Stoffer (1987) gives detail account 
of univariate geometric autoregressive (AR) and 
autoregressive moving average (ARMA) types 
processes as well as the corresponding point 
processes in each case. Bivariate geometric 
autoregressive and autoregressive moving 
average models were designed by Block 
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It is well known that equation 
(1.1) includes the stationary vector 
autoregressive (AR) process and the stationary 
and invertible vector autoregressive moving 
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discrete, the preceding assumptions on the 

 

(1987) gives detail account 
of univariate geometric autoregressive (AR) and 
autoregressive moving average (ARMA) types of 
processes as well as the corresponding point 
processes in each case. Bivariate geometric 

ssive moving 
average models were designed by Block et al 

(1988). In that paper, they present 
autoregressive and autoregressive moving 
average processes with bivariate geometric (BG) 
distribution. The theory of positive dependence 
is used by Block et al (1988) to show that in 
various cases, the bivariate geometric 
autoregressive (BGAR) and bivariate 
autoregressive moving average (BGARMA) 
models consist of associated random variables. 
Special case of the bivariate geometric 
autoregressive process in which the bivariate 
process is stationary and has well known 
bivariate geometric distribution is also presented 
in Block et al (1988). Recently, Umar and Yusuf 
(2010), give autoregressive and autoregressive 
moving average models using multivariate 
exponential distribution. In that paper, they 
used theory of positive dependence to show that 
both autoregressive and autoregressive moving 
average of exponential distribution consist of 
associated random variables.  
In this paper, we present rather 
autoregressive and autoregressive moving 
average type sequences of multivariate random 
vectors. We use the theory of positive 
dependence to show that in many cases th
classes of sequences are associated 
other. we also present the distribution un
considerations, which is multivariate 
distribution. Furthermore, we define the concept 
of association and present a variety of 
multivariate geometric distributions that are 
associated. Multivariate dependence 
mechanisms which are used in gene
various models are also discussed.
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We give the general multivariate geometric autoregressive ( )MGAR m  model showing that the 

sequences have multivariate geometric distribution. Autocorrelation structure of the variety of 
sequences of the models is discussed. We consider special cases of sequences of the multivariate 

geometric autoregressive of order one, ( )1MGAR where we show that if defined appropriately, the 

multivariate processes are stationeries and hence we obtain well-known multivariate geometric 
distribution. At the end,we provide multivariate geometric autoregressive moving average, 

( )1 2
, ,...,

k
MGARMA m m m model.  

Some Definitions of Terms 

Definition 2.1: Let 
1 2
, , ..., kM M M  berandom variables assuming values in the set { }1,2,3,... .We 

say that ( )1 2
, ,...,

k
M M M has a multivariate geometric distribution if each , 1, 2,..., ,iM i k=  has 

geometric distribution. 

Definition 2.2: Let ( )1 2
, ,..., , 1, 2,...,

n
T T T T n= =  be a multivariate random vector. We say that 

random variables 
1 2
, , ..., nT T T  are associated if ( ) ( )( )cov , 0f t g t ≥  for all f  and g monotonically 

non-decreasing in each argument, such that the expectations exist. 
Remark 2.2: Note: From Barlow and Proschan (1981) and Block et al (1988), that independent 
random variables are associated.  

Lemma 2.1: Let ( )1 2
, ,...,

k
M M M  and ( )1 2

, ,...,
k

K K K  be independent geometric random vectors 

such that for ( ) ( ) ( ) 1

1,2,..., 1i i

i i

k
p p

i
k P M k π π

−
= = = −  and 

( ) ( ) 1
1 , 1,2,..., ,

k

i i i
P K k p p i k

−= = − =  with 0 1, .
i

p for all i< <  Let ( )1 2
, ,...,

k
I I I  be a 

multivariate Bernoulli random vector, which is independent of ( )1 2
, ,...,

k
M M M and ( )1 2

, ,...,
k

K K K

. Then a random vector given by 

( ) ( ) ( )1 2 1 1 2 2 1 2
, ,..., , ,..., , ,...,

k k k k
G G G d I K I K I K M M M+                                      …(2.1) 

has the same marginal distribution as ( )1 2
, ,...,

k
K K K . 

The general multivariate geometric autoregressive model 
In this section, we consider the construction of class of autoregressive (AR) sequence of multivariate 
random vector. This class of sequence is denotedby 

( ) ( ) ( ){ }1 2 1 1 2 1 2
, ,..., , ,..., ,..., , ,..., ; 0,1,2,... .

k k k k i
G m m m G m m m G m m m m for all i= = We 

show that the random vector ( )1 2
, ,...,

k
m m m has multivariate geometric distribution with mean 

vector that does not depend on
1 2
, , ...

k
m m or m . Later, we discuss the association property for any 

finite number of random variables belonging to this autoregressive class. Finally, in this section we 
discussed the autocorrelation structure of this class of sequence.  
  For us to construct the class of multivariate geometric autoregressive sequence, some notations are 
needed. 

Notations 3.1: Let ( )1 2 1
, ,..., , ,..., 0,1

k k
p p p α α ∈ such that ( ) ,

i i
p nα≤ let 

( ) ( ) ( ) ( )( )1 2
, ,...,

k
N n N n N n N n′ = be a sequence of independent multivariate geometric random 

vectors with mean vectors ( ) ( ) ( )( )1 1 1

1 1 2 2
, ,..., k kn p n p n pα α α− − −

 respectively, and let 

( ) ( ) ( ) ( )( )1 2
, ,...,

k
M n M n M n M n′ = be a sequence of independent multivariate geometric random 

vectors with common mean vector ( )1 1 1

1 2
, ,..., kp p p

− − −
that are independent of ( ).N n′  Also, let 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 2
,1 , ,2 ,..., , , ,1 ,..., ,

k
J n J n J n J n m J n J n m′ =  be a sequence of km −
dimensional independent random vectors with components assuming the values 1 or 0, independent 

of both ( )N n′ and ( ).M n′  Let ( ),C n q be a k k× random diagonal matrix with 
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( ) ( ) ( ) ( ){ }1 2
, , , , ,..., , , 1,2,..., .

k
C n q diag J n q J n q J n q q m= =  We also assume that for 

1, 2, ..., ,l k=  

( ) ( ) ( )( ){ } ( )1 1 1 1

1

,1 , , 2 ,..., , 1
m

j

j

P J n J n J n m e nα
=

′= = −∑                                             …(3.1) 

and that  

( ) ( ) ( )( ){ } ( ),1 , ,2 ,..., , .l l l j lP J n J n J n m e nα′= =                                                     …(3.2) 

We define the multivariate geometric autoregressive sequences as follows: 

( )
( )

( ) ( ) ( )
1

, 0,1,2,..., 1

, , , 1,... .
m

q

M n n m

G n
C n q G n q N q n m m

=

′ = −
=  ′− + = +

∑

                                         …(3.3)  

 Next, we show that ( )G n  has multivariate geometric distribution. 

Lemma 3.1: Given that the variable n  takes on values 0,1,2,…, then ( )G n  has a multivariate 

geometric distribution with mean vector ( )1 1 1

1 2
, ,..., .kp p p

− − −
 

Proof:  This lemma can be proved by an induction on .n  For 0,1, 2,..., 1,n m= −  the result of the 

lemma follow by the definition of ( ).G n  Let us assume that the result of the lemma holds for all 

non-negative integers that are less than or equal to , 1,r r m≥ −  and show that the result of the 

lemma holds for 1.r +  

 Let ( )1 2
, ,...,

k
M M M M′ =  be a multivariate geometric random vector with mean vector 

( )1 1 1

1 2
, ,..., kp p p

− − −
 independent of both ( )N n′  and ( ).M n′ Then, by the induction assumption, we 

have for 1, 2, ...,l k=  that  

( ) ( ) ( )
( ) ( )

1 , 1 1
1 .

1 , 1

l l l

l

l l

M N r with probability r
G r d

N r with probability r

α
α

′ ′+ + − ++  ′ + +
 

It is easy to check that ( )1
l

G r +  has a geometric distribution with mean 
1
.lp

−
 Hence the result of 

the lemma follows. Therefore ( )G n  has multivariate geometric distribution. 

 Next we consider the association of any finite collection of the ( )` .
l

G n s  

Lemma 3.2: Let us assume that for 0,1, 2,..., 1,j m= −  the random variables 

( ) ( ) ( )1 2
, ,...,

k
G j G j G j  in equation (3.3) are associated. Let 

1 2
...

r
n n n< < <  and 

1 2
, , ..., , 1, 2,...,

r
l l l r =  be positive integers. Then, the random variables  ( ) , 1,2,...,

ql q
G n q r=  

are associated. 

Proof: Let ( )2 2
1

j
T M j= −  and let ( )2 1 1

1 , 1,2,... .
j

T M j j− = − = To prove the result of lemma 

(3.2), it suffices, according to Barlow and Proschan (1981) and Jacob and Lewis (1983),   to show 

that the random variables 
1 2
, , ...,

r
T T T are associated for all 1, 2,... .r = ...(3.4) 

We prove equation (3.4) by an induction argument on .r For 2 ,r m≤  equation (3.4) follows by the 

lemma assumption and by Barlow and Proschan (1981). Let us assume that equation (3.4) holds for 

, 2r r m≥  and prove that equation (3.4) holds for 1.r +  

 From equation (3.4), the conditional random variable 1

1 2

,
, ,...,

r

r

T
T T T

+  is stochastically non-

decreasing in 
1 2
, , ...,

r
T T T . Therefore, by Barlow and Proschan (1981), there is an 1r +  argument 

function ,h non-decreasing in each argument, and a random variable U  independent of  

1 2
, , ..., ,

r
T T T  such that ( ) ( )( )1 2 1 1 2 1 2

, ,..., , ,..., , , , ,..., .
r r r

T T T d T T T h U T T T+ HenceU  is associated 

14 
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which implies the random variables
1 2

, , , ...,
r

U T T T  are also associated. Thus, 
1 2 1
, , ...,

r
T T T +  are 

associated. 
Now, for this class of sequences, we proceed to compute the autocorrelation functions in the case 
when the marginal processes are stationary. 

For the geometric models, substitute ( ) , ; 1, 2,..., ,
l l

n for all n l rπ π= =  and let

( ){ } ( ), 1 , 1,2,..., ; 1,2,...,
l l

P I n q q l k q m= = Ψ = =
 

such that

( ) ( ) ( ) ( )
1

0, 1 , 1, 2,..., .
m

l l l

q

i q and ii q l kπ
=

Ψ ≥ Ψ = − =∑ Define 

( ) ( ) ( ){ }, , 1, 2,..., ; , 1,...; 1,2,... .
l l l

M k Corr M n M n k l k n m m kρ = + = = + =  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 ...
l l l l l l l

M k M k M k m M k mρ ρ ρ ρ= Ψ − + Ψ − + + Ψ −    …(3.5) 

with ( ){ } ( ) 2
1 , 1,2,..., .

l l l
Variance G n p p l k

−= − =  

The marginal correlation structure of the multivariate geometric sequences, as given in (3.5) is similar 
to that of the Gaussian autoregressive process. We note that, in general, even when the marginal 
processes are stationary, the joint process is not stationary. This is easily seen,  by letting m=1 in 

(3.3) with ( ) , ; 1, 2,..., ;
l l

n for all n l kπ π= = choosing ( )G n  to be an independently and 

identically distributed sequence of random vectors where ( ) ( ) ( )1 2
, ,...,

k
G n G n G n are independently 

and identically distributed geometric random variables for all ,n and letting ( )I n to be an 

independently and identically distributed sequence of random vectors for which

( ) ( ){ } ( ) ( ) ( )1 1 2
1,..., 1 1 1 ... 1 .

k k
P I n I n π π π= = ≠ − × − × − A simple manipulation shows that 

( ) ( ){ } ( ) ( ){ }1 1
1 ,..., 1 v 2 ,..., 2

k k
Cov M M Co M M≠ in this example. 

In the next section, we develop models in which joint processes are also stationary.      
 

Stationary multivariate geometric autoregressive model of order one [MGAR (1)] 

Here, we introduce special case of the multivariate geometric autoregressive of order ,m  in which the 

join processes are stationary. We consider the special case when 1,m = assuming that ( )i
nα does not 

vary with n and put more structure on the ( )M n and ( )N n sequences. We show that for this model, 

the multivariate distribution of  ( )G n  has a form of the type studied by Arnold (1975), Block et al 

(1988) as well as Umar and Yusuf (2010). By selecting the ( )M n and ( )N n  sequences as earlier 

defined, we can obtain well-known multivariate distributions. For a stationary MGAR(1) model, we 
obtain the: (i) Hawkes (1972) and (ii) Paulson-Uppuluri (1973) multivariate geometric distributions. 
We conclude this section by computing the auto covariance matrices for this model. 
To develop stationary MGAR(1) model, we need to consider the following notations and assumptions. 

Let 1m =  and let us assume that ( ) ( )( )1
,1 ,..., ,1 ,

k
J n J n  given in notation 3.1, is an independently 

and identically distributed sequence of multivariate random vectors. Let us denote ( )l
nα by 

, 1, 2,..., ,
l

l kα = and ( ) ( ){ }1
,1 ,..., ,1 .

k
P P J n J n′ =  Note that from equations (3.1) and (3.2), we 

have  

10 11 1 01 11 2
1 , 1 .P P P Pα α+ = − + = −                                                                               …(4.1)  

Additionally, let ( )1
,...,

k
Q Q be a multivariate geometric random vector with parameters P ′ as given 

in equation (2.1). Let ( )0,1 , ,
i

p for all i∈ such that ,
l l

p α≤ and let ( ) , 1, 2,...,N r r = ± ± be 

an independently and identically distributed sequence of multivariate geometric random vectors with 

mean vector ( )1 1

1 1
,...,

k k
p pα α− −

independent of ( )1
,...,

k
Q Q and all ( ) ( ){ }1

,1 ,..., ,1 .
k

J n J n  Note that 

15 
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by lemma (2.2), ( ) ( )
1

1

1 1

,...,
kQQ

k

j j

N j N j
= =

 
− − 

 
∑ ∑  is a multivariate geometric random vector with mean 

vector ( )1 1

1
,..., .kp p

− −
Now, let us assume  

( ) ( ) ( )
1

1

1 1

0 ,..., .
kQQ

k

j j

M N j N j
= =

 
= − − 
 
∑ ∑                                                       …(4.2) 

Define ( )C n to be the k k×  diagonal random matrix ( ) ( ) ( ){ }1
,1 ,..., ,1 .

k
C n diag J n J n=  The 

stationary MGAR(1) model is defined as follows: 

( ) ( )
( ) ( ) ( )

0 , 0

1 , 1,2,... .

M n
G n

C n G n N n n

==  − + =
                                             …(4.3) 

 Now, let us state and prove a characterization property of ( ).G n  

Lemma 4.1: Let ( )G n  be defined as in equation (4.3) above. Then, for 0,1, ...,n = ( ) ( )0 ,G n dM

where ( )0M  is as given in equation (4.2). 

Proof: This lemma can be proved by an induction argument on .n  By the definition ( )G n , the result 

of this lemma holds for 0.n = Let us assume that the result of this lemma holds for , 0n n > and 

show that it also holds for 1.n+  Note that    

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

1

1

1

1 1

1 1 1

1 1

0 ,...,

1 ,..., 1 1 ,..., 1 ,

k

k

QQ

k

j j

QQ

k k k

j j

M N j N j

d N M j N M j N Nχ χ

= =

= =

 
= − − 
 

 
> − > − + − − 

 

∑ ∑

∑ ∑

 

where ( )χ • is the indicator function, and that k- summands are independent random vectors. By 

induction assumption,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1

1

1 1

1 1

1 1 1 1

1 1

1 ,..., 1

,1 ,..., ,1 ,1 ,..., ,1 .

k

k

QQ

k k

j j

QQ

k k k k

j j

N M j N M j

d J n M j J n M j d J n G n J n G n

χ χ
= =

= =

 
> − > − 

 

 
− − 

 

∑ ∑

∑ ∑

` 

Furthermore, by the definition of ( ) ,M r ( ) ( )( ) ( ) ( )( )1 1
1 ,..., 1 ,..., .

k k
M M d M n M n− −  

Sincethe random vectors ( ) ( )( )1
,...,

k
M n M n  and ( ) ( ) ( )( )1 1

,1 ,...,
k k

J n G n J G n  are independent, 

we  have 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ){ }
1

1 1 1 1

1 1

,..., ,..., ,1 ,..., ,1 1 .
kQQ

k k k k

j j

M j M j d M n M n J n G n J n G n G n
= =

 
′− − + = + 

 
∑ ∑

Hence, the result of the lemma follows.  
Finally in this section, we give the auto covariance matrix for the stationary MGAR(1) model. Let 

( ){ }G
Var G nΣ = be the variance-covariance matrix of ( ).G n Note that 

G
Σ  is independent of n  by 

lemma 4.1. Define ( ) ( ) ( ){ }, , 0,1,2,...,
G

k Cov G n k G n kΓ = + =  and note that ( )0 .
G G

Γ = Σ  

From equation (4.3), it is easy to see that ( ) ( )1 , 1,2,...,
G G

k C k kΓ = Γ − = where C is the k k×
diagonal matrix defined by ( )1 2

1 ,1 ,...,1 .
k

C diag α α α= − − − Hence, for stationary MGAR(1) model, 

we have 

Γ���� � 	��Σ� , Γ��
�� � Γ�� ���,				� � 0,1,2… �4.4�	 
  

16 
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Multivariate geometric autoregressive moving average model 
From the results obtained earlier and the one from Langberg and Stoffer (1987) for moving average 
sequences, we construct two classes of autoregressive moving average (ARMA) sequences of 
multivariate random vectors. In each class the sequences are labelled by the parameters

1 2
, , ...,

k
m m m . We denote these classes of sequences by 

( ) ( ) ( ){ }1 1 1 1
, ,..., , , ,..., , ,..., , ,..., , , 0,1,..., 1, 2,....

k k k k
L j m m n L j m m n L j m m n n and j′ = = = We 

show that the random vector ( )1
, ,..., ,

k
L j m m n′ has a multivariate geometric distribution with a mean 

vector that does not depend on 
1

, , ..., .
k

j m m or n Then, we discuss the association property of any 

finite number of random variables belonging to one of the two ARMA classes. Note that the 

parameters 
1 2
, , ...

k
m m and m are fixed throughout this section. 

Before the construction of the two classes of multivariate geometric autoregressive moving average 
(MGARMA) sequences, the following notations are needed.     

Notation 5.1: Let ( )1 1
,..., , ,..., 0,1

k k
δ δ β β ∈ such that , 1, 2,..., ,

l l
l kδ β≤ = and let 

( ) ( )1, ,..., ,G n G k n be a MGAR sequence with mean vector ( )1 1

1 1
,..., k kβ δ β δ− −

. Also let 

( ) ( ) ( )1, , 2, ,..., ,H n H n H k n  be a dependent MGARMA sequence with mean vector ( )1 1

1
,...,

k
δ δ− −

as given by Langberg and Stoffer (1987), be independent of all ( ) ( )1, ,..., ,G n G k n . Finally, let 

( ) ( ) ( )( )1
,...,

k
U n U n U n′ = be an independently and identically distributed sequence of multivariate 

random vectors with components assuming the values 0or 1 independent of all the previous random 

vectors such that ( ){ }1 1 , 1,2,..., .
l l

P U n l kβ= = − =  We define the two classes MGARMA 

sequences as follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1
1, ,..., 1, 1, ,..., 1, 1, ,..., 1, ,

k k k k
L n L n G n G n U n H n U n H n= +  …(5.1) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1
2, ,..., 2, 2, ,..., 2, 2, ,..., 2, .

k k k k
L n L n H n H n U n G n U n G n= +  …(5.2) 

  Next, we show that ( ),L j n′ has multivariate geometric distribution.  

Lemma 5.1:For 1, 2,...j = and 0,1, 2, ...,n = ( ),L j n′ has a multivariate geometric distribution with 

mean vector ( )1 1 1

1 2
, ,..., .kδ δ δ− − −

 

Proof: By lemma 3.1, ( ),G j n has a multivariate geometric distribution. Also by Langberg and 

Stoffer (1987), ( ),H j n has a multivariate geometric distribution. Therefore, the result of this lemma 

follows by the two above definitions as well as lemma 2.1. 
 Now, we consider the association property of any finite number of random variables belonging to 
one of the two ARMA classes. We assume that the assumptions of Umar  and Yusuf (2010) are true 
and lemma 3.2 is satisfied. We need to state and prove the following lemma. 

Lemma 5.2: Let 
1 1
, ..., , , ...,

r r
S S T T be non-negative random variables. Let us assume that 

1
, ...,

r
S S

and 
1
, ...,

r
T T  are associated, and that the random vectors ( )1

,...,
r

S S and ( )1
,...,

r
T T are 

independent. Then, the random variables 
1 1

, ...,
r r

S T S T are associated. 

Proof: Let ( )1
,...,

r
T T T′ = , let ( )1 1

,...,
r r

W S T S T= and let f and g be two non-negative functions 

each with r arguments, non-decreasing in each argument.  

 The components of the conditional random vector W
T ′  are non-decreasing functions of the 

associated random variables
1
, ...,

r
S S . Therefore, by Barlow and Proschan (1981), the components of  

W
T ′are associated. Hence,  

( ) ( )( ),
0.

Cov f W g W
E

T

 
≥ ′
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( )f W
E

T
 
 ′ 

 and 
( )g W

E
T

 
 ′ 

are two non-decreasing functions of the associated random 

variables 
1
, ...,

r
T T . Thus, by Barlow and Proschan (1981), the two random variables

( )f W
E

T
 
 ′ 

 

and 
( )g W

E
T

 
 ′ 

are associated. Thus,  
( ) ( )

, 0.
f W g W

Cov E E
T T

     ≥    ′ ′    
 

 Note that

( ) ( ) ( ) ( )( ) ( ) ( ),
, , .

Cov f W g W f W g W
Cov f W g W E Cov E E

T T T

      = +          ′ ′ ′     
 

Therefore, this lemma follows. From this lemma, we can see the following result.  

Lemma 5.3: Let us assume that ( ) ( )1
0 ,..., 0

r
U U are associated, let 

1 2
...

r
n n n< < < and 

1
, ..., , 1, 2, ...,

r
l l r = be as in lemma (3.2) above. Then,  

( ) ( ) ( )1, , 2, ,..., , , 1, 2,..., ,
q q ql l lL nq L nq L k nq q r= are associated. 

 

From the fore going, we can see that Langberg 
and Stoffer (1987) and section 4 of this work, 
give the inequalities and probability bounds for 
the multivariate point processes related to the 
multivariate geometric moving average 
sequences. We also note that all the results 
given by Block et al (1988) hold for the 
multivariate point processes related to the 
multivariate geometric autoregressive 
sequences, stated in sections 3 and 4, and to 
the autoregressive moving average sequences 
given in this section, provided that they are 
associated.  
 
CONCLUSION 

In this research work, We can conclude that 
Autoregressive (AR) and autoregressive moving 

average (ARMA) processes with multivariate 
geometric (MG) distribution can be derived. The 
theory of positive dependence can be used to 
show that in many cases, multivariate geometric 
autoregressive (MGAR) and multivariate 
autoregressive moving average (MGARMA) 
models consist of associated random variables. 
In similar manner,  a special case of the 
multivariate geometric autoregressive model in 
which it is stationary and has multivariate 
geometric distribution can be obtained.  
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