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ABSTRACT 
Clustering is a useful technique that organizes a large quantity of unordered datasets 
into a small number of meaningful and coherent clusters. Every clustering method is 
based on the index of similarity or dissimilarity between data points. However, the true 
intrinsic structure of the data could be correctly described by the similarity formula 
defined and embedded in the clustering criterion function. This paper uses squared 
Euclidean distance and Manhattan distance to investigates the best method for 
measuring similarity between data objects in sparse and high
is fast, capable of providing high quality clustering result and consistent. The 
performances of these two methods were reported with simulated high dimensional 
datasets. 
Keywords k-means clustering, similarity measures, squared euclidean distance, 
manhattan distance. 
 

INTRODUCTION 

Clustering is a process of grouping a set of 

physical objects into classes of similar 
and is a most interesting concept of data mining 

in which it is defined as a collection of data 

objects that are similar to one another. 
purpose of Clustering is to catch fundamental 

structures in a data and classify them into 

meaningful group. One of the top most popular 

clustering methods is the K-Means algorithm due 

to its simplicity, understand
scalability. Hartigan  and Wang (1979) opined 

that cluster analysis is one tool that is used in 
the exploration of data in which the inte

among patterns are assessed by placing them 
into groups with unique and d

characteristics. Guojun et al. (2007) 

cluster analysis as a technique for creating 
groups of objects such that each cluster contains 

points that are similar and unique. 
The objective is targeted at finding the best 

grouping for which the observations or objects 

found in within each cluster are the same.  
accurately, cluster analysis consists of a series of 

processes that partition a given data set X � 	 �x���, x��
		, … , x���
 	⊂ ��into clusters such that 

the data points in a cluster are more similar to 
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Clustering is a useful technique that organizes a large quantity of unordered datasets 
number of meaningful and coherent clusters. Every clustering method is 

based on the index of similarity or dissimilarity between data points. However, the true 
intrinsic structure of the data could be correctly described by the similarity formula 

nd embedded in the clustering criterion function. This paper uses squared 
Euclidean distance and Manhattan distance to investigates the best method for 
measuring similarity between data objects in sparse and high-dimensional domain which 

f providing high quality clustering result and consistent. The 
performances of these two methods were reported with simulated high dimensional 

means clustering, similarity measures, squared euclidean distance, 

Clustering is a process of grouping a set of 

similar objects 
and is a most interesting concept of data mining 

in which it is defined as a collection of data 

objects that are similar to one another. The 
urpose of Clustering is to catch fundamental 

data and classify them into 

One of the top most popular 

algorithm due 

ability, and 
Hartigan  and Wang (1979) opined 

that cluster analysis is one tool that is used in 
the exploration of data in which the interactions 

among patterns are assessed by placing them 
into groups with unique and distinct 

Guojun et al. (2007) defined 

cluster analysis as a technique for creating 
groups of objects such that each cluster contains 

The objective is targeted at finding the best 

grouping for which the observations or objects 

in each cluster are the same.  More 
accurately, cluster analysis consists of a series of 

processes that partition a given data set 
into clusters such that 

the data points in a cluster are more similar to 

each other than points in different clusters
(Moses et al., 1999). Thus the principal interest 

in the clustering process is the revelation of 
sensible groups or patterns, which allow for the 

discovery of similarities and dissimilarities so 

that useful conclusions can be reached. 
standard K-Means method suffers a few 

drawbacks when clusters are of differing sizes, 

densities and non-globular shape. 

Basically, there is an implicit assumption that the 

true intrinsic structure of data could be correctly 
described by the similarity formula defined and 

embedded in the clustering criterion function. 
Hence, effectiveness of clustering algorithms 

under this approach depends on the 
appropriateness of the similarity measure to the 

data at hand. The work in this paper is 

motivated by investigations from the above and 
similar research findings. It appears to us that 

the nature of similarity measure plays a very 
important role in the success or failure of a 

clustering method. Hence, our objective is to 

check the best method for measuring similarity 
between data objects in sparse and h

dimensional domain which is fast, capable of 
providing high quality clustering result and 

consistent performance. 
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described by the similarity formula defined and 

ring criterion function. 
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MATERIALS AND METHODS 
Before clustering the objects, a 

similarity/distance measure must be determined. 
The measure reflects the degree of closeness or 

separation of the target objects and should 

correspond to the characteristics that are 

believed to distinguish the clusters embedded in 

the data. In many cases, these characteristics 
are dependent on the data or the problem 

context at hand, and there is no measure that is 

universally best for all kinds of clustering 
problems. Moreover, choosing an appropriate 

similarity measure is also crucial for cluster 
analysis, especially for a particular type of 

clustering algorithms. For example, the density-

based clustering algorithms, such as DBScan rely 
heavily on the similarity computation. 

Therefore, understanding the effectiveness of 
different measures is of great importance in 

helping to choose the best one. However, not 
every distance measure is a metric. Also to 

qualify as a metric, a measure d must satisfy the 

following four conditions: Let x and y be any two 
objects in a set and d(x, y) be the distance 

between x and y. 
i. The distance between any two points must 

be nonnegative, that is, d(x, y) ≥ 0. 

ii. The distance between two objects must be 
zero if and only if the two objects are 

identical, that is, d(x, y) = 0 if and only if x 

= y. 
iii. Distance must be symmetric, that is, 

distance from x to y is the same as the 
distance from y to x, ie. d(x, y) = d(y, x). 

iv. The measure must satisfy the triangle 
inequality, which is d(x, z) ≤ d(x, y) + d(y, 

z). 

Similarity Measures 

Similarity measures quantify how “similar” two 
patterns are.  In most cases we have to ensure 

that all selected features contribute equally to a 
similarity measure and there are no features 

that dominate others.  Similarity is fundamental 

to the definition of a cluster; a measure of the 
similarity between two patterns drawn from the 

same feature space is essential to most 
clustering procedures.  It is most common to 

calculate the dissimilarity between two patterns 
using a distance measure defined on the feature 

space. Because of the variety of feature types 

and scales, the distance measures must be 
chosen carefully. 

Distances and similarities play an important role 

in cluster analysis (Jain and Dubes, 1988; 

Anderberg, 1973). In the literature of data 

clustering, similarity measures, similarity 
coefficients, dissimilarity measures, or distances 

are used to describe quantitatively the similarity 

or dissimilarity of two data points or two 
clusters. 

In general, distance and similarity are reciprocal 
concepts. Often, similarity measures and 

similarity coefficients are used to describe 

quantitatively how similar two data points are or 

how similar two clusters are: the greater the 

similarity coefficient, the more similar are the 
two data points.  Dissimilarity measure and 

distance are the other way around: the greater 

the dissimilarity measure or distance, the more 
dissimilar are the two data points or the two 

clusters. 
Every clustering algorithm is based on the index 

of similarity or dissimilarity between data points 

Jain and Dubes (1988). If there is no measure of 
similarity or dissimilarity between pairs of data 

points, then no meaningful cluster analysis is 
possible. A distance metric is a real-valued 

function d, such that for any points x, y and z: 
 d�x, y� ≥ 0, and �x, y� � 0 if and only if x � y     

 (2.1) 
 d�x, y� � d�y, x�  (2.2) 

 d�x, z� ≤ d�x, y� + d�y, z�   (2.3) 

First property, positive definiteness, assures that 

distance is always a nonnegative quantity, so 

the only way distance can be zero is for the 
points to be the same.  The second property 

indicates the symmetry nature of distance.  The 
third property is the triangle inequality, 

according to which introducing a third point can 
never shorten the distance between two points 

(Larose, 2005). There are several measures of 

distance which satisfy the metric properties, 
some of which are: 

Euclidean Distance 

The Euclidean distance is the most common 

distance metric used in low dimensional data 
sets.  It is also known as L
norm.  The Euclidean 

distance is the usual manner in which distance is 

measured in real world.  In this sense, 

Manhattan distance tends to be more robust to 
noisy data. 

  d� !"#$�%��X, Y� � '∑ �x# − y#�# 

 

     (2.4) 

 
where X and Y are m-dimensional vectors and 

denoted by X � �x�, x
, x*, ⋯ , x,� and Y ��y�, y
, y*, ⋯ , y,� represent the m attribute 

values of two records (Larose, 2005).  While 

Euclidean metric is useful in low dimensions, it 
doesn’t work well in high dimensions.  The 

drawback of Euclidean distance is that it ignores 

the similarity between attributes.  Each attribute 

is treated as totally different from all of the 

attributes Ertoz et al. (2003). 
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Manhattan Distance 

This metric is also known as L�norm	or	the	rectilinear	distance.  This is also a 

common distance metric and gets its name from 
the rectangular grid patterns of streets in 

midtown Manhattan. Hence, another name for 

the distance metric is also city block distance.  It 
is defined as the sum of distances travelled 

along each axis. 

The Manhattan distance looks at the absolute 

differences between the coordinates.  In some 
situations, this metric is more preferable to 

Euclidean distance, because the distance along 

each axis is not squared so a large difference in 
one dimension will not dominate the total 

distance Berry and Linoff (1997). 
 d,%�5%66%��X, Y� � ∑ |x# − y#|,#   

     

 (2.5) 
Experimental Results and Discussion 

It is very difficult to conduct a systematic study 
comparing the impact of similarity metrics on 

cluster quality, because objectively evaluating 

cluster quality is difficult in itself. In practice, 
manually assigned category labels are usually 

used as baseline criteria for evaluating clusters. 
As a result, the clusters, which are generated in 

an unsupervised way, are compared to the pre-

defined category structure, which is normally 
created by human experts. This kind of 

evaluation assumes that the objective of 
clustering is to replicate human thinking, so a 

clustering solution is good if the clusters are 

consistent with the manually created categories.  

However, in practice datasets often come 

without any manually created categories and 
this is the exact point where clustering can help. 

Therefore, measures like cluster coherence in 
terms of the within-cluster distances and the 

well-separateness between clusters in terms of 

between-cluster distances were used for 

evaluation in this paper. 
The two metric distance functions discussed in 

section 2 are analysed and compared. The K-

Mean clustering algorithm was implemented 
using each of the metric distance functions: 

Squared Euclidian and Manhattan distance 

measures. The cluster formations, error sum of 

squares, as the smaller the error sum of squares 

the better cluster formation and the running 
time required for the two approaches were used 

to measure the clustering quality among the two 
approaches. A simulation experiment is 
conducted with the pairs �8, 9� = (20, 500), (50, 

500), where 8 refers to the number of variables 

and 9 is the sample size. The data was 

generated from multivariate normal distribution :;�0, 	<;� with covariance matrix = � >?, > @ 0, 

and ? is a symmetric matrix of size �8 A 8� with 

all diagonal elements equal 1 and all off diagonal 
elements equal B where B � 0 and C � 1.2 as in 

Mason et al. (2009).  The B � 0 values is a 

representative of no correlation.  For C � 1.2 the 

covariance matrix for the B � 0 value is: 

 

   = � G1.2						0					 ⋯ 						00								1.2				 … 						0⋮											⋮								⋮								⋮0									0						 … 			1.2I;  B � 0 

In order to make the advantage of the two 

approaches very clear, show its separation and 
compactness the paper consider three and five 

centroids. The running time required by each 
experiment and their error sum of squares for 

the two approaches are presented in Table 1. 
The cluster formations are also shown in Figure 

1 to 8 respectively. 

 

 

 

Figure 1: K-Means clustering with SED   Figure 2: K-Means clustering with MD 
 

Figure 1 and 2 gives the results of the K-Means clustering using Squared Euclidean distance (SED) 
and Manhattan distance (MD) with simulated dataset containing 500 sample size and 20 variables. 

Their error sums of squares are 14567.2, 35928.9 and the time taken for execution equal 9.63 and 

10.45 respectively. 

146 



BAJOPAS Volume 12 Number 2, December, 2019 

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

--C1

--C2

--C3

--C4

--C5

 

 
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Centroids

-15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

--C1

--C2

--C3

--C4

--C5

 

 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Centroids

-8 -6 -4 -2 0 2 4 6 8
-10

-8

-6

-4

-2

0

2

4

6

8

--C1

--C2

--C3

 

 
Cluster 1

Cluster 2

Cluster 3

Centroids

-25 -20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-5

0

5

10

15

20

25

--C1

--C2

--C3

 

 
Cluster 1

Cluster 2

Cluster 3

Centroids

-8 -6 -4 -2 0 2 4 6 8
-10

-8

-6

-4

-2

0

2

4

6

8

--C1

--C2

--C3

--C4

--C5

 

 
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Centroids

-25 -20 -15 -10 -5 0 5 10 15 20 25
-30

-20

-10

0

10

20

30

--C1

--C2 --C3

--C4
--C5

 

 
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Centroids

 

        

 
 

 

 
 

 

 

 

 
 

 
Figure 3: K-Means clustering with SED         Figure 4: K-Means clustering with MD 

 

Figure 3 and 4 gives the results of the K-Means clustering using Squared Euclidean distance (SED) 
and Manhattan distance (MD) with simulated dataset containing 500 sample size and 20 variables. 

Their error sums of squares are 13948.5, 34918.5 and the time taken for execution equal 6.74 and 
7.16 respectively. 

 
         

 

 
 

 

 

 

 
 

 
 

Figure 5: K-Means clustering with SED   Figure 6: K-Means clustering with MD 
 

Figure 5 and 6 gives the results of the K-Means clustering using Squared Euclidean distance (SED) 

and Manhattan distance (MD) with simulated dataset containing 500 sample size and 50 variables. 
Their error sums of squares are 28581.4, 61354.5 and the time taken for execution equal 07.86 and 

09.34 respectively. 
 

        

 
 

Figure 7: K-Means clustering with SED   Figure 8: K-Means clustering with MD 

 

Figure 7 and 8 gives the results of the K-Means clustering using Squared Euclidean distance (SED) 

and Manhattan distance (MD) with simulated dataset containing 500 sample size and 50 variables. 
Their error sums of squares are 27380.2, 60351.4 and the time taken for execution equal 08.11 and 

09.89 respectively. 
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Table 1: Error Sum of Squares and Time Taken 

Method Error Sum of 

Squares (20, 500) 

Time Taken 

(20, 500) 

Error Sum of 

Squares (50, 500) 

Time Taken 

(50, 500) 

SED 3 Centers 14567.2 9.63 28581.4 07.86 
MD 3 Centers 35928.9 10.45 61354.5 09.34 

SED 5 Centers 13948.5 6.74 27380.2 08.11 

MD 5 Centers 34918.5 7.16 60351.4 09.89 

 

CONCLUSION 
A distance measuring function is used to 

measure the similarity among objects, in such a 

way that more similar objects have lower 

dissimilarity value. Several distance measures 

can be employed for clustering tasks. Each 
measure has its own merit and demerits. The 

selection of different measures is a problem 

dependent. Hence, choosing an appropriate 
distance measure for K-Mean clustering 

algorithm can greatly reduce the burden of the 

algorithm. The experimental results implies that 
K-Means method performs very well with 

Squared Euclidian distance providing better error 

sum of squares and reduced time taken for the 

execution as shown in Table 1.  However, it was 

also observed that the clusters are well 
separated and compact as revealed in Figure 1, 

Figure 3, Figure 5 and Figure 7.  This agrees 

with the findings of Berry and Linoff (1997) that 
says, compactness and separation are used to 

measure the significance of clustering results. 
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