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ABSTRACT 
This paper presents statistical methods for testing the significance of 2D banded data.  A 
2D zero-one dataset is said to be banded when the column (attributes) and rows 
(records) are arranged in such a ways that the nonzero 
leading diagonal. The challenge
bandings are significant or not. To address this issue, this paper propose statistical 
methods; the Student t-Distribution, Chi
significance of bandings in 2D data. This paper also presents a 2D banding algorithm that 
incorporate a score mechanism: the dimension score (DS).We conduct evaluation using 
artificial and UCI data sets. The evaluat
and Chi-square test, the calculated statistic test exceeds the critical value in the table, 
while the normal distribution result shows significance of banding with regards to either 
one or two standard deviation (1SD or 2SD) from the mean.
Keyword: 2Dimension, Banded Data, Significance Test, Statistical Methods

INTRODUCTION 

This paper presents techniques fo

significance of 2D banding using s
methods. Given any 2D datasets, banding

be identified when the columns and rows are 
arranged to obtain a pattern along 

 

  (a) raw data                (b) column reorder         
 

Figure 1: 2D banding: (a) raw data
 

Matrix reordering in 2D dataset has a long 

history. The idea of banding in 2D dataset as 
adopted in this paper was first 

(Makinen et al (2005), Mannila (2007) and 
Gemma et al (2008)), where a binary valued 

data is said to feature banding, if the 
and rows indexes can be rearrange so

one entries are presented about the leading 

diagonal. Natural interpretations of banded 
structures include; patterns of species occurring 

in spatially correlated locations (Mannila et al 
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This paper presents techniques for testing the 

D banding using statistical 
D datasets, bandings can 

be identified when the columns and rows are 
ranged to obtain a pattern along the main 

diagonal. The challenge however is whether 

generated banding is significance or not. An 

example of a 2D banding is presented in Figure 
1, where the columns (dimx) and rows 

are rearranged to form a banding.

 
mn reorder         (c) row reorder 

raw data, (b) column reordered and (c) row reordered 

2D dataset has a long 

2D dataset as 
first proposed by 

Mannila (2007) and 
), where a binary valued 

data is said to feature banding, if the columns 
and rows indexes can be rearrange so that the 

one entries are presented about the leading 

Natural interpretations of banded 
structures include; patterns of species occurring 

in spatially correlated locations (Mannila et al 

(2007)), overlapping roles of genes in various 

diseases (Gemma et al (2008)) and overlapping 
communities in social networks (Puolamki

(2006)). An alternative way of identifying 
banded pattern was later proposed 

et al (2014a),(2014b), (2015a), (2015b), 
(2016a), (2016b)) using the concept of scoring 

mechanism. A number of researchers have 

investigated the zero-one banding problem. 
Notable algorithms include: 
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This paper presents statistical methods for testing the significance of 2D banded data.  A 
one dataset is said to be banded when the column (attributes) and rows 

entries converges along the 
with respect to banding in 2D is whether the identified 

bandings are significant or not. To address this issue, this paper propose statistical 
test and Normal Distribution to test the 

significance of bandings in 2D data. This paper also presents a 2D banding algorithm that 
incorporate a score mechanism: the dimension score (DS).We conduct evaluation using 

ion results shows that in the case of t-distribution 
square test, the calculated statistic test exceeds the critical value in the table, 

while the normal distribution result shows significance of banding with regards to either 

however is whether the 

generated banding is significance or not. An 

D banding is presented in Figure 
and rows (dimy) 

are rearranged to form a banding. 

(2007)), overlapping roles of genes in various 

mma et al (2008)) and overlapping 
communities in social networks (Puolamki et al 

(2006)). An alternative way of identifying 
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using the concept of scoring 
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1) Minimum Banded Augmentation (MBA) by 
Gemma et al (2008): The proposed 

algorithm that consider rows and columns 

permutations for non-zero entries in a given 
2D matrices, where each column 

permutation is considered to be fixed whilst 
row permutations are considered. The 

algorithm commences by flipping zeros 

entries to ones and one entries to zero so 
that the rows feature a Consecutive-Ones 

Property (C1P).  
2) Barycentric (BC), Makinen et al (2005): The 

approach is based on the “Barycentric” 
measure used to identify promising 

rearrangement of rows/columns. BC 

operates by calculating the average of 
location indexesof dots within each row 
(column). 

3) Nestedness and Segmented Nestedness 

proposed by Mannila et al (2007): They 

introduced the concept of nestedness, 
where each row of a given 0-1 dataset is a 

subset of the column where the row has a 
one. A nested dataset is a dataset where all 

pairs of rows is either a superset or subset 
of the other. Similarly, the concept of k-

nestedness dataset state that the set of 

columns can be partition into k parts so that 
each part is almost nested. 

The contribution of this paper are (i) mechanism 
for detecting bandings in 2D datasets, (ii) 

techniques for determining the significance of 

2D datasets using statistical methods, (iii) 
application of the techniques to artificially 

generated and real datasets.  
 

 

 
 

 
MATERIALS AND METHODS 

The 2D Banding algorithm iteratively rearranges 
the columns and rows for a 2D data with respect 

to their banding score until no more (positive) 

changes can be made (Abdullahi (2016b), 
Abdullahi and Coenen (2018a) and Abdullahi and 

Coenen (2018b)) . 
A Dimension Scores (DS) for an individual 

column (dimx) and rows (dimy) is calculated 

using Equation 1: 
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Where Dim is the size of columns (rows), Cj the 

Transaction ID list for the column (row) and Ci 
the column (row) index at position k in Cj 

Equation 2 calculates the Global Score (GS) for 
the entire data configuration, by adding up all 

the dimension scores and dividing by the size of 

the dimension. 
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The 2D Banding pseudo code is shown in 

Algorithm 1. The algorithm takes binary matrix 
M as input (Line1 and 2) and DIM (Dim and 

Dim). The output is datasets M rearrange to 

maximise GS. On each iteration, algorithm 1 
loops over M to calculate Dimension score (DS) 

for columns (rows) (Line 6 to 8) using Equation 
1. The indexes in the dimension are arrange in 

descending of BS (Line 7). The score for the 

entire configuration GS is then calculated (Line 
10) using Equation 2. If the new GS is worse 

than the current GS, the algorithm exit 
otherwise M, DIM and GS are updated (Line 14). 

Also if no changes the algorithm exit (Line 17). 

Algorithm 1: The 2D Banding Algorithm 
1. Input: Binary matrix M 

2. DIM = (dim1 x dim2) 

3. Output: M arrange to maximise GS 
4. GS = 0 
5. Loop 
6. For all index in DIM do 

7. BS = calculate column (row) scores in DIM using Equation 1 

8. End For 
9. M′= M arranged in descending order according BS 

10. GS′ = Overall GS using Equation 2 
11. If(GS′ < GS) Then 

12. break 
13. Else 

14. M=M′, GS = GS′ 

15. End If 
16. End loop 

17. Exit with M and GS 
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Overview of Statistical Methods 
The student’s t-distribution test is a parametric 

statistics, which is equivalent to Mann Whitney 

U-test in a non-parametric statistics. T-
distribution used is to test the significance of the 

mean of a random sample in order to determine 
whether the sample mean from the normal 

distribution move away from value of the 

population mean. The t-distribution works with 
the small sample size and with unknown 

population standard deviation.  The t-distribution 
test the significance sample drawn from a 

normal distribution deviates from the stated 
value of the population mean (Grupta, 2013). 

When using t-distribution, if the calculated, |t| 

value is more than the table value at any given 
level of significant then there is significance 

difference between x and μ, otherwise, there is 

no significant difference between x and μ. The t-

Distribution is defined in Equation 3. 
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Where:  x = sample mean 

μ = population mean 

n = sample size 
s = sample standard deviation and t(n-1) the 

degree of freedom of student t-distribution. The 

null hypothesis is defined as H0: μ = μ0against 
any possible alternatives 

(a) H1: μ ≠ μ0 

(b) H1: μ ˃μ0 

(c) H1: μ ˂ μ0 

Whereμ0is the some hypothesis value forμ. 
Chi-square test is a statistical method used to 

test hypothesis. In chi- square test (χ2-test), 
sometimes we need to consider data from 

population that are classified with respect to two 
or more different attributes. Our interest may be 

in the number of outputs, objects or responses 

which fall in various categories, The chi-square 
test is also called “Goodness of fit test“, since it 

is used to test whether a significant difference 
exist between an observed number of subject or 

responses in each category and the expected 

number obtained under the null hypothesis. 
They show relationship between categorical 
variables. In addition, chi-square test use a 
single number to represent the difference 

between the observed values and the expected 
values (Grupta,2013). After calculating the chi-

square values, then they are compare with the 

table/critical value on the chi-square table. If the 
calculated chi-square value is greater than the 

tabulated value, then there is significance 
difference, otherwise no difference exist. 

Equation 5 defines the chi-square hypothesis. 
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Where: Subscript Oi is the observed frequency, 
Ei the corresponding expected frequency of the 

ith class with v = (k-1) and v = (c-1) x (r-1) 
value of chi square degree of freedom 
(d.f.).Where c and r are the number of columns 

and rows respectively. 
The normal distribution also known as Gaussian 

distribution is a probability function that 
describes how the values of variables are 

distributed (Jagadish (1996), Lukac and Edgar 
(2004), Feller (1971)). It is symmetric in nature 

where most observations are cluster around the 

central peak. The empirical rules in Normal 
distribution shows the percentage of data that 

fall within a certain number of standard 
deviation from the mean. A normal distribution 

represents bell shaped density curve defined as 

the mean and standard deviation. A standard 
normal curve comprise of a mean of zero (0) 

and a standard deviation of one (1). A dataset 
that follow a normal distribution, has 68% 

observations within one standard deviation from 
the mean, 95% observations within two 

standard deviation from the mean and 99.7% 

observations within three standard deviation 
from the mean (Pukelsheim, (1994), Abdullahi 

and Coenen (2018a)). 
Thus, the standard normal distribution is shown 

in Equation 6. 

X
Z

µ
σ
− =  

 
(6) 

Where X is a random variable for normal 
distribution with μ as the sample mean and σ 

standard deviation. 
 

RESULTS AND DISCUSSION 
This section presents the evaluation and 
discussion of results. Two experiments were 

conducted, using artificially generated datasets 
of varying sizes with a 10% density and a real 

data from UCI data repository (Blake and Merz, 
(1998))using t-Distribution, Chi-square test and 

normal distribution. 

All the synthetic data sets were generated using 
the LUCS-KDD generator (Coenen, (2003)). For 

the first experiment ten (10) datasets 
measuring: (i) (10×10), (ii) (15×10), (iii) 

(15×15), (iv) (20×10), (v) (20×15), (vi) 

(20×20), (vii) (25×10), (viii) (25×15), (ix) 
(25×20), (x) (25×25), were used for the t-

Distribution statistic test. Similarly, ten (10) 
datasets measuring (i) (10×10), (ii) (20×20), 

(iii) (30×30), (iv) (40×40), (v) (50×50), (vi) 

(100×100), (vii) (200× 200), (viii) (300×300), 
(ix) (400×400), (x) (500×500), were used for 

Chi-square test. In the case of normal 
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distribution, we generated five (5) datasets 
measuring: (i) (100×100), (ii) (200× 200), (iii) 

(300×300), (iv) (400×400), (v) (500×500), each 

for 50 times. For the second experiment, we 
used ten (10) datasets from UCI data repository. 

In this paper, we test the significance of 2D 
banding using the GS, a value defined between 

0 and 1.However, in significance testing the idea 

was to deem a value significant or a mere 
occurrence of random chance. To determine 

whether a banding (b)from a given 2D 
datasets(d)is significant after a number of 

iterations. We let ten (10)be the expected 
number of iterations from d to b (equivalent to 

the assumed population mean (μ)). We define 

the null hypothesis (H0) by assuming banding 
(b)does not exist in2D datasets (d) after 10 
iterations and the alternative hypothesis (HA) 

that banding (b) exist in 2D datasets (d) after 10 
iterations. To test this assumption, we calculate 

the global scores (GS) values for each datasets 

(d) and recorded their respective iterations 
required to arrive at banding(b). We chose a 

significance level of p = 0.01 and 0.05. Using t-
statistics test, we obtained the following values 

shown in Table1. From the table, our calculated 

t-statistics test result was 4.5927, with a 
degree of freedom(9), and the table value at 

t0.01and t0.05are = 2.821 and 1.833 respectively. 
From the table, since the t-statistics test value 

exceeds the table values, were eject the null 
hypothesis (H0.) and we conclude the hypothesis 

that state banding (b) exist on 2D datasets (d) 

after x iterations is right at 1% and 5% level of 
significance. 

 

Table 1:  Mean and Standard deviation calculation in t-Distribution 

Data sets GS x (x - x ) (x - x )2 

1 0.69 3 -3.2 10.24 
2 0.74 2 -4.2 17.64 

3 0.68 9 2.8 7.84 
4 0.76 8 1.8 3.24 

5 0.72 7 0.8 0.64 
6 0.70 4 -2.2 4.84 

7 0.75 9 2.8 7.84 

8 0.74 5 -1.2 1.44 
9 0.73 9  2.8 7.84 

10 0.71 6 -0.2 0.04 
  ∑x= 62  ∑(x - x )2 = 61.6 

 

x
x

n
= ∑ = 

62

10
= 6.2 6 1 . 6

9
s =   = 6.8444 = 2.6162 

6.2 10

2.6162
3.162

t
−

= =  
3.8

0.8274
= 4.5927 

 

Using the chi-square test, we obtained the 
following value as shown in Table 2. From the 

table, the calculated chi-square (χ2
cal) value 

23.30 was obtained and compared with the 
exact critical value for the chi-square degree of 

freedom(9) atχ2
0.01(0.01)= 21.666 and 

χ2
0.05(0.05)= 16.919respectively. Since the 

calculated chi square value is more than the 
exact chi-square critical value in the table, the 

result is highly significant and we reject the null 

hypothesis at 1% and 5% level of significance. 
We now conclude that, banding does exist on 2D 

datasets after a number of iteration.  
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Table 2:  Observed and Expected values calculations in Chi-Square 

Data  
sets 

Observed 
frequency 

(o) 

Expected 
frequency 

(e) 

Global 
Score 

(GS) 

(O-E) (O-E)2 (O-E)2/E 

1 6 10 0.69 -4 16 1.6 

2 5 10 0.68 -5 25 2.5 

3 7 10 0.68 -3 9 0.9 

4 3 10 0.68 -7     49 4.9 

5 2 10 0.67 -8 64 6.4 

6 5 10 0.65 -5 25 2.5 

7 8 10 0.62 -2 4 0.4 

8 8 10 0.60 -2 4 0.4 

9 9 10 0.59 -1 1 0.1 

10 4 10 0.59 -6 36 3.6 

      ∑(O-E)2/E =23.30 

χ2
cal = 23.30and chi-square degree of freedom (d.f.) = (c-1)(r-1) = (2-1)(10-1) = 9. The exact 

critical value from the table at d.f. (9) for the level of significance χ2
0.01(0.01)= 21.666 and 

χ2
0.05(0.05)= 16.919respectively. 

 
Using normal distribution, the idea was to design 

normal distribution curves, from random data to 
which we have not apply bandings and then use 

it to test whether the obtained bandings are 
significant or a mere random occurrence, 

defined as the distance away from the mean. 

The results from Normal distribution is presented 
in Table 3, we define five distributions, for each 
data configuration. Table3, lists the GS 
occurrence counts for each of the data 

configuration without applying banding, Table 2 

presents the mean (µ), standard deviation (σ), 
1SD,and 2SD. Figure 2 presents the distribution 

curves associated with the data distributions. 
From the figure and tables, similar distribution 

curves were obtained regardless of data set size. 
Note that the significance of the distribution 

curves was that will be used to compare with 

the GS values obtained from similar data sets 

after applying banding. We generate 10 
additional random data sets for each data 

configuration used for the distribution curves. 
The GS results produced after banding have 

been applied and compared with the normal 

distributions. The result presented in Table 5, for 
each datasets in the table, the column features 
(i) datasets, (ii) Average GS after banding, (iii) 
Average GS distance from the mean, (vi) 

significant with respect to 1SD and (v) 

significant with respect to 2SD. From the table 
the generated average GS after bandings were 

applied were located at least 1SD or 2SD of the 
mean. Therefore, we can state that the banding 

generated in the 2D datasets are statistically 
significant. 

 
Table 3: Occurrence GS counts for each data configuration 

Data sets 

GS 100x100 200x200 300x300 400x400 500x500 

0.45 1 1 - - - 

0.46 18 - - - - 

0.47 60 10 - - - 

0.48 19 - - - - 

0.49 2 78 3 1 - 

0.50 - - 17 5 3 

0.51 - 10 57 26 18 

0.52 - - 18 46 59 

0.53 - 1 4 21 18 

0.54 - - - 1 2 
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Table 4: Calculation of the mean and standard deviation values from Table 3 

Data sets 

  100x100 200x200 300x300 400x400 500x500 

 μ 0.47 0.49 0.51 0.52 0.52 

 σ 0.01 0.01 0.01 0.02 0.02 

 1SD μ  -  σ 0.46 0.48 0.50 0.50 0.50 

 μ+ σ 0.48 0.50 0.51 0.54 0.54 

2SD μ  -  2σ 0.45 0.47 0.49 - - 

 μ   + 2σ 0.49 0.51 0.52 - - 

 
Table 5:GS Normal Distribution Results 

Rows x 

Columns 

GS 

mean 

SD 1SD 

(yes/no) 

2SD 

(yes/no) 

100 x 100 0.65 0.01 yes yes 
200 x 200 0.62 0.01 yes yes 

300 x 300 0.61 0.01 yes no 
400 x 400 0.60 0.02 yes no 
500 x 500 0.59 0.02 yes no 

 

 
(a) (100x100)(b) (200x200) 

 

 
(c) (300x300) (d) (400x400) 

 

 
(e) (500x500) 

 

Figure 2: Normal distribution curves for Table 3 
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The second set of experiment on UCI datasets
using the chi-square testis presented in Table 6. 

The table records the datasets, the number of 

records, number of attributes, the 
frequency, expected frequency. The difference 

between the observed and expect
and the sum of their difference. The calculated 
chi-square (χ2

cal) test =22.90was

with the exact critical value for the
degree of freedom (9) at χ2

21.666and χ2
0.05(0.05)=16.919respectively. 

 

Table 6:  Observed and Expected Frequencies c

Datasets # 
Recs 

# 
Attr. 

Observe
frequency

Heart 302 52 
Annealing 898 73 
Car 1728 25 
Glass 214 48 

Hepatitis 155 56 
Horse Colic 368 85 

Iris 150 19 

Wine 178 68 
Zoo 101 42 

Lymph-
ography 

148 59 

   

χ2
cal = 22.90and chi square degree of freedom (d.f.) = (c

value from the table at d.f. (9) for χ
 

 (a) (100x100) matrix       (b) (100x100
 

Figure 3: 100x100 2D matrix (a) Before banding and (b) after banding
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experiment on UCI datasets 
presented in Table 6. 

The table records the datasets, the number of 

the observed 
The difference 

observed and expected frequency 
The calculated 

was compared 

for the chi square 
2
0.01 (0.01)= 

respectively. The 

result shows that the calculated chi square 
is more than the exact critical value in the table

at 1% and 5% level of significance

result is significant and the difference between 
the observed and expected 

significant and not a mere random chance
therefore we reject the null hypothesis (
1% and 5% level of significance. Figure 3 shows 

a (100x100) datasets before and after 
rearranging the columns (dimx) and rows (dim

Observed and Expected Frequencies calculation of UCI datasets 

Observe 
frequency 

(o) 

Expected 
frequency 

 (e) 

GS 
values 

(O-E) (O-E)2

6 10 0.80 -4 16 
8 10 0.80 -2 4 
5 10 0.83 -5 25 
7 10 0.79 -3 9 

3 10 0.84 -7 49 
7 10 0.81 -3 9 

2 10 0.83 -8 64 

6 10 0.79 -4 16 
9 10 0.86 -1 1 

4 10 0.83 -6 36 

     

and chi square degree of freedom (d.f.) = (c-1)(r-1) = (2-1)(10-1) = 9. The exact critical 

χ2
0.01= 21.666 and χ2

0.05= 16.919respectively. 

 
100x100) banded matrix 

: 100x100 2D matrix (a) Before banding and (b) after banding 

119 

shows that the calculated chi square result 
critical value in the table 

at 1% and 5% level of significance. Thus the 

the difference between 
the observed and expected frequency is 

a mere random chance, 
reject the null hypothesis (H0) at 

Figure 3 shows 

datasets before and after 
) and rows (dimy). 

2 (O-E)2 

/E 

1.6 
0.4 
2.5 
0.9 

4.9 
0.9 

6.4 

1.6 
0.1 

3.6 

∑(O-E)2/E 

=22.90 

1) = 9. The exact critical 
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CONCLUSION 
This paper has presented statistical methods for 

testing the significance of bandings in 2D 

datasets defined by the GS values. Two sets of 
experiments conducted using: (i) Artificially 

generated data sets and (ii) UCI data repository. 
The evaluation results presented shows the 

significance of 2D banding using statistical 

methods. In the case of t-distribution, the 
calculated statistic test exceeds the critical value 

in the table at 1% and 5% level of significance. 
While in the case of Chi-square test, we 

compared the calculated chi square result with 
the exact critical values from the chi square 

table, and the χ2
cal value obtained was more 

than the exact critical value in the table at χ2
0.01 

(1%)andχ2
0.05(5%) level of significance 

respectively. Similarly, in the case of normal 

distribution test, the results show significance of 
banding with respect to either one or two 

standard deviation (1SD or 2SD) from the mean. 
However, the limitation of the normal 

distribution approach was that the normal 

distribution curve for the datasets must have 
been derive in each case. The experiments has 

clearly shown the usefulness of the proposed 
statistical methods in testing the significant of 

2D bandings. For future research, the authors 
intends to investigate the statistical significance 

testing for 3D bandings. 
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