

http://dx.doi.org/10.4314/bajopas.v14i1.28 Bayero Journal of Pure and Applied Sciences, 14(1):237 - 250 Received: January, 2021 Accepted: May, 2021 ISSN 2006 – 6996

EVALUATION OF THERMAL-NUCLEAR EFFECTSFROM PAIR-CREATION IN THE FINAL FATE OF VERY-MASSIVE STARS

Garba, L.,¹Chidi, E. A.² and Koki, F. S³.

¹Department of Physics, Faculty of Science, YusufMaitamaSule University, 3220 Kano, Nigeria
² Department of Physics, School of Physical Sciences, Federal University of Technology, Owerri
³Department of Physics, Faculty of Physical Sciences, Bayero University, Kano.
*ridwangv@vahoo.com

ABSTRACT

Thermonuclear conditions found in explosive massive-stars require the use of not only efficient, accurate but thermodynamically consistent stellar equation of state (EoS) routines. The use of tables to describe EoS involved in stellar models is very much needed in understanding the final fate of massive stars.Many massive-low metallicity stars end their life as pair creation supernova (PCSN) through the creation of electron-positron pairs.We used thermodynamically consistentEoS tables to numerically evaluate the thermonuclear effects of the electron-positron pair creation in rotating 150 and 200 Massive starsat SMC and rotating and non-rotating 500 M_☉at LMC.As expected, the effect of rotationofreducing the oxygen core masshad increased the thermal energy within the threshold of the pair-creation instability.Similarly, lower mass loss stars with SMC modelproduced higher thermal energies, which cancompletely explode the stars as PCSNe without remnant. On the other hand, the non-rotating 500 M_{\odot} might have only reached the instability region due to its lower metallicity (compared to solar metallicity) that is capable of suppressing the mass loss such that the thermonuclear energy maintainscertain amount of elements into the pair creation region. At the final explosion of the stars, the helium core mass reduced the thermal energies in trying to avoid the pair-creation region. Many implications of these results for the evolution and explosion of massive stars are discussed.

Keywords:equation of state-instabilities-stars: evolution-stars: massive

INTRODUCTION

In a previous study byYusof et al.(2013), it was pointed out that stellar models for rotating 150 M_{\odot} and 200 M_{\odot} at Small MagellanicCloud (SMC) metallicity and rotating and non-rotating 500 M_☉at Large MagellanicCloud (LMC) metallicity, are expected to explode as pair-creation supernova (PCSN). However, their work did not include, in the equation of state, the effects due to the electron-positron pair-creation. In massive stars, very energetic and pressure-supporting photonsare converted into electron-positron pairs just before ignition of any element heavier than oxygen and subsequently leads to a violent contractionthatactivates nuclear explosion(Barkat, Rakavy, & Sack, 1967; Bond, Arnett, & Carr, 1984; Carr, Bond, & Arnett, 1984; Chatzopoulos & Wheeler, 2012a; El Eid & Hilf, 1977; El Eid, Fricke, & Ober, 1983; Fraley, 1968; Ober, El Eid, &Fricke, 1983; Rakavy & Shaviv, 1967; Stringfellow & Woosley, 1988; Wheeler, 1977). The thermal concentration of

these pairsoccur during the advanced burning of the stars'evolutionand phase causes dynamical instability in the star (Woosley and Heger, 2015). This instability, which leads to anexplosion of massive stars, normally results in the formation of what iscalled Pair- creation supernovae (PCSNe or pair-instability supernovaePISNe). The formation of this PCSNewas first identified by (Barkat et al., 1967), in a detailed analysis of some relevant equation of state for very massive stars at the end of their lifetimes. The pair-creation instabilityisgenerally originated when the central temperature and density of a star are relatively high, (Arnett, 1996; Barkat et al., 1967; Fraley, 1968; Phillips, 2013; Rakavy and Shaviv, 1967) andthen entered anarea (see figure 1) where the energy needed to create the rest mass of the pairs (at high entropy) softens the equation of state and reduce the adiabatic index below 4/3(Fraley, 1968).

It has been predicted, for quite long, that any massive star that entered this region will become dynamically unstable due to the paircreationand eventually disrupt the starand produce the PCSNe. Thepair-instabilityis a vital process in the explosion and collapse of not only the massive stars but many Astrophysical objects.

Figure 1: The electron-positron pair production regime. The adiabatic index is below 4/3 only within the unstable area (red shaded area) at maximum central density and temperature of about 7×10^5 g cm⁻³ and 2.8×10^9 K respectively.

The knowledge of which star may explode as PCSN has been the issue of discussion in many research works. In work by (Stanford et al., 2002), is lamented that electron-positron pair creation causeinstability in massive stars that haveinitial mass from around 120 Moand higher(Stanford et al., 2002; Yusof et al., 2013). On the other hand, many evolutionary calculations found that stars with massive oxygen cores greater than 60M_obecome dynamically unstable due to the pair-creation and the instability set in when the central temperature is high(Barkat et al., 1967). Principally, (Chatzopoulos & Wheeler, 2012b), investigated the minimum mainsequence massof a starcapable of reaching this instability regime and found that star with 65M_☉will encounter full Pair-Instability Supernova(PISN) and that with 40M_☉will encounter Pulsational Pair-Instability supernova (PPISN). The result predicts the criteria for a star to enter the instability areato be controlled by themass of oxygen core; which in turnin mainsequence stars depend on metallicity, mass loss, and rotationally induced mixing as well as convective and semi-convective instability. In the case of metallicity, (Heger, et al., 2003)conclude that there is a threshold of

metallicity below which PCSNe occur on account of the strong metallicity dependence on massive star winds. However, this metallicity threshold was investigated by(Langer et al., 2007). It is also found that the higher metallicity value(where the evolution of very massive stars is dominated by mass-loss) results to lower oxygen coresand therefore try to avoid the instability regime(Chatzopoulos & Wheeler, 2012a; Kozyreva, Yoon, & Langer, 2014; Vink et al., 2011), This condition is the most likely reason why the PCSNe do not exit at solar metallicity(Stanford et al., 2002; Yusof et al., 2013). Whereas, the low metallicity reduce the mass loss (see fig. 2) thereby relatively allow the lower mass main-sequence stars to encounter the instability region(Chatzopoulos & Wheeler, 2012a). However, for mass loss, stars lose mass at all evolutionary phases, and the rate of the mass loss varies depending on the initial mass of the star, thus the evolution of massive stars is strongly affected by mass loss, and there have been various mass loss prescription that is used for better understanding of the different mass loss rate in stellar evolutionary models. The mass loss prescription used in this work is the same as that used by (Yusof et al., 2013).

Figure 2: Mass loss rates for 150(black), 200(red) at SMC and 500 M_{\odot} rotating (magenta) and nonrotating (blue) at LMC models. The maximum mass loss is proportional to an increase in the initial mass of the star, and the rotation reduces the mass loss. High metallicity results to low oxygen core and try to avoid instability, whereas, low metallicity reduce the mass loss.

In the case of rotation, the mass of the helium core for the main-sequence massincreases with respect to the rotation (Figure 3) and this can affect the explosion mechanism of the stars by reducing the threshold of the pair-creation (Woosley, 2017). Another work by (Heger & Woosley, 2002), determined the range for a massive star with a helium core mass that could explode as pair-creation supernovae to beapproximate $\sim~64\text{--}133~M_{\odot}.$ This mass of helium-coresignificantly the affect nucleosynthesis in pair creation supernovae.Meanwhile, stellar evolution models by (Yusof et al., 2013) indicated that massive stars progenitors expected to explode as paircreation supernovae (PCSNe) is between about 100 and 290 M_☉ for small MagellanicCloud(SMC) and above 450 M_{\odot} rotating and non-rotating models for LargeMagellanicCloud(LMC). The advantage in this later discovery is that many effects have been put into consideration before concluding. For instance, the benchmark for helium core mass given by(Heger & Woosley, 2002) has been taken, similarly the metallicity factor, as highlighted by (Vink et al., 2011) and others, was put into consideration and finally the rotation effect which brings chemically homogenous evolution and produces higher oxygen core that is necessary for pair-creation has also been considered and compared with non-rotation. However, the progenitors also need to retain its mass very high enough, to maintain its core helium mass above ~65 M_{\odot} . However, this condition is not guaranteed at high metallicities where the evolution of avery massive star is dominated by stellar wind massloss(Vink et al., 2011).

Figure 3: Plot of the mass of the star (M_{\odot}) with a fraction of critical rotation. The outer is for 200 M_{\odot} while the inner red is for 500 M_{\odot} . The helium core masses rise rapidly proportional to the critical rotation.

At theformation of the pair-creation supernova and after a sufficient portion of the star passed out from the unstable region, the pressure increases faster than the gravitational forces which reverseits collapse. And the energy released in oxygen burning again disrupt the star and eject all materials with high velocity(Fraley, 1968), this energy, which, might have to increase the temperature and provide more pressure, is wholly diverted into thecreation of electron-positron pairs. Similarly, the thermonuclear explosion disrupts the core of helium and other heavier elements, and the energy of this explosion increases with mass(Stanford et al., 2002).

On the other hand, the dynamically unstable stars at a specific temperature near the centeralso have an entropy which significantly affects its explosion(Fraley, 1968). At this extreme conditions found in massive stars; however; atoms are ionized, electrons become degenerate and relativistic (Bludman & Van Riper, 1977). Corollary, the thermonuclearenergy, relativistic electronpositron pairs isvery crucial to massive stellar cores (Blinnikov, et al., 1996) and we can understand many properties of the stellar interior by means of a thermodynamic system of properties, such that various thermodynamic properties at different macroscopic densities, chemical potential, and temperature T are vital modeling stellar events in which are characterized by thermodynamic equilibrium. This thermal equilibrium of a high-temperature plasma contains a minimum number density for electrons and positrons (Bludman & Van Riper,

1977) and therefore can be related by an equation of state (EoS). As the electron-positron pairs are created inside the massive stars at highly relativistic thermal energy (Odrzywolek, Misiaszek, & Kutschera, 2004; Phillips, 2013); some of the significant challenges are posed by the question of how these pairs affect the stability of the stars? What is the energy produced by these pairs and how does it affect the evolution and final explosion of the stars? There has been no literature that attempts to thoroughly investigate these crucial questions, except for the case of entropy production in the sun where the estimate was given by (Aoki, 1983; Kennedy & Bludman, 1997) and that of the main-sequence stars (Martyushev & Zubarev, 2015); however, these estimates were not made due to the electron-positron pairs. It is apparent that such information, when provided, is needed infully understanding the explosion of massive stars, the pair-creationsupernova, and their subsequentcollapse.

In the present study, weadopt the stellar evolution of threemodels reported by (Yusof et 2013) as discussed in section 2 al., below; specifically, we considered 150, 200, and 500 M_O.Themodels were evolved starting fromzero-aged main-sequence through atleast oxygen burning using Geneva evolution code, and then later, followed from the end of core helium burning through to explosions with the KEPLER Code. The KEPLER simulation confirms that indeed the rotating SMC 150 and 200 $M_{\odot} and$ the rotating and non-rotating 500M_oLMC models produce electron-positron pairs and the stars end their life as PCSNe.

We then apply the data into a modelled hydrodynamic Helmholtz equation of state (EOS) table written by (Timmes & Swesty, 2000) which relate pressure, energy, and entropy to temperature, density, and composition -and allows for electrons and positrons be relativistic and arbitrarily degenerate- to evaluate the quantitative values of the thermonuclear energy, pressure and entropy due to the electronpositron pair-creation at the final stellar masses of106.5, 129.2 and 74.8 and 94.7 Moevolving from the threeselected massive starmodelsrespectively. The choice of the HelmholtzEos is due to its accuracy, speedily executable and thermodynamically consistent and it isbuild based on table interpolation of Helmholtz free energy.

STELLAR MODELS AND INPUT PHYSICAL PARAMETERS

The work byYusof et al., 2013 computed stellar modelsfor different massive stars, among which includerotating 150 and 200 Moat Small Magellanic Clouds (SMC) and rotating and nonrotating 500 MoatLarge Magellanic Cloud (LMC)using Geneva stellar evolution code which has been used to solve most massive stars observed today (Crowther et al., 2010). This code in its latest developments has the prescription for both rotating, and magnetic fields included (Eggenberger et al., 2009; Ekström et al., 2012). The latterwork predicted the fate of all the models by simulating the evolution and final explosion of some selected starsusing KEPLER code and concluded that the core mass, or the carbon-oxygen (CO) core mass, is very much suitable to estimate whether the models produce PCSNe or not?(a method that has been used in various studies of very massive stars forasimilar demonstration of the fate of stars with the same CO core(Bond et al., 1984; Chatzopoulos & Wheeler, 2012a; Heger & Woosley, 2002). In another work by Heger & Woosley, 2002computed the grid models for stars with corresponding main-sequence masses of approximately 140-260 M_{\odot} and found that stars having helium cores in the mass rangeM_{He} between 64 and 133 Moproduces electronpositron pairs and explode as PCSN, while more massive helium cores collapse to black hole

(BH). However, the final results from work byYusof et al., 2013 found that; stars whose final mass is within the range $60 \le M_{final} \le$ 130M_owill end as PCSN. This further indicates that, the KEPLER simulations confirm the rotating 150 and 200M_☉at SMC and the rotating and non-rotating 500M_oat LMC indeed produces electron-positron pairs and end as PCSNe.Figure 4 shows the central temperature-density plot for the 150 and 200 M_{\odot} rotating SMC and 500 Morotating and non-rotating LMC, all the models fully entered the pair-creation regime except for the non-rotating 500 M_{\odot} where only small amount of its final mass reach the regime, this might be due to non-rotationeffect which we will explain below.At a high temperature, the thermonuclear reactions began near the centre of the star, and low mass stars stops at a specific nuclear burning phase while the massive stars continue to end at the silicon burning (Arnett, 1996; Odrzywolek et al., 2004). This work adopted the stellar models and the final fate of very massive stars reported byYusof et al., 2013, such that we considerstars (rotating 150, 200 M_{\odot} at SMC and the 500 M_{\odot} rotating and non-rotating at LMC) that explode as PCSNe and encountered the instability regime (Fig. 4) attheirfinal stellar masses of 106.5Moand 129.2M_oand 74.8 M⊙ and 94.7 Morespectively.Radiative line-driven winds from Vink, de Koter, & Lamers, 2001were used for the mass-loss prescription. This radiative mass lossreductionhas greatly influenced he fate of the stars andthemaximum mass-loss rates for the initial masses under considerationwere found to be aroundlog (-2.85) $M_{\odot}yr^{-1}$, log (-3.12) $M_{\odot}yr^{-1}$ ¹, log (-2.32) M_{\odot} yr⁻¹and log (-1.33) M_{\odot} yr⁻¹ ¹for150,200, 500M_orotating and non-rotating models respectively. In Fig. 2 the evolution of the mass loss for the models under consideration is shown, we see that the increase in the initial mass is proportional to the mass loss and the rotation reduced the mass loss.Initial abundances and properties used are given in table 1, the abundances are similar to those adopted byAsplund, et al., 2009, and the isotopic ratios are byLodders, 2003.

Elements Isotope		Mass fraction			
Н	Н	7.200e-01			
Не	³ He	2.659e-01			
	⁴He	4.415e-05			
С	¹² C	2.283e-03			
	¹³ C	2.771e-05			
Ν	¹⁴ N	6.588e-04			
	¹⁵ N	2.595e-06			
0	¹⁶ O	5.718e-03			
	¹⁷ O	2.266e-06			
	¹⁸ O	1.290e-05			
Ne	²⁰ Ne	1.877e-03			
	²² Ne	1.518e-04			

BAJOPAS Volume 14 Number 1, June, 2021 Table 1. Initial chemical abundances of the models, isotopes, and mass fraction

Summary of the model'sfundamental properties are given in table 2, and we compare the adopted models byYusof et al., 2013with those reported by Kozyreva et al., 2014,Heger & Woosley, 2002and byLanger et al., 2007. The nuclear reaction rates are taken from the Nuclear Astrophysics Compilation of Reaction Rates (NACRE) database (Angulo et al., 1999), and the effect of these rates in stellar evolution are well explained, see Ekström et al., 2012. The models evolved with different degrees of rotation (having fraction of critical rotation to be $\Omega/\Omega_{crit} = 0.002$ and 0.006) and a non-rotating degree (0%) for the ZAMS.

Figure 4: The central temperature T_c against the central density evolution, for the rotating 150 M_{\odot} (black), 200 M_{\odot} (blue) and 500 M_{\odot} (green) and the non-rotating 500 M_{\odot} (red) showing the electron-positron pair creation regime. Taken from Yusof et al., 2013.

In all the induced rotating models, the mass of the oxygen core is shrinking by the degrees of rotation, and we can see from Fig. 5 how the rotation significantly affects the evolution of the stars. The rotating models are more luminous than the non-rotating, and therefore, the nucleosynthesis might have altered rotation occurring in the stars. This might be due to the reduction in the effective gravity by the centrifugal force during the rotation and also the hydrogen-burning core when the main sequence becomes enlarged due to rotationally-induced chemical mixing. The increase in rotation brings about chemically homogeneous evolution and produce higher oxygen core mass which is necessary for the pair-creation in the core of the stars, thus higher degrees of rotation brings the star much closer to the density-temperature regime where the adiabatic index is below 4/3, this trend was also noted by Chatzopoulos & Wheeler, 2012a.

In table 2 we summarize the fundamental properties of the models under consideration and give other works for comparison. The first two columns are the initial masses ZAMS and final masses (in M_{\odot}), the third, fourth, fifth and sixth columns are the initial metallicity, the critical rotation, the log of maximum central density (g cm⁻³) and the maximum central temperature (K) encountered due to the pair-creation instability respectively. The remaining columns seventh, eighth and ninth represents the helium core mass (M_{\odot}), the mass of the oxygen core (M_{\odot}) and finally, the fate of the models observed by various hydrodynamic codes.

MODELING OF ELECTRON-POSITRON EQUATION OF STATE TABLE

Numerical hydrodynamic and hydrostatic modeling of many astrophysical phenomena

requires the use of appropriate tabular equations of state. This is essential due to the time consuming, instability, and lack of suitability for many computer codes that are commonly used in the direct numerical evaluation of the EOS involved (Swesty, 1996). One particular difficulty is the complexity that often arise when solving the many-body problems which describe the interactions between the constituents of the gas or liquid and secondly, the behavior of a particular EoS, one is interested, with respect to the range of temperature and density, which evidently shows discontinuities in thermodynamic variables at the phase transitions and coexistence boundaries (Swesty, 1996).

Figure 5. H-R diagram for 150 M_{\odot} (black), 200 M_{\odot} (red) at SMC and 500 M_{\odot} for rotating(green) and non-rotating (blue) at LMC models respectively.

The equation of state (EoS) is used to describe pressure, energy, and entropy as functions of composition, and temperature, density applicable incalculating thermodynamic quantities. In particular, thestellar equation of state determines many aspects of stellar physics, like the electron degeneracy and electronpositron pair production (Arnett, 1996), which is subject this work. the of Many researchersrevealed that proper equation of state for different nuclear densities is crucial in the studies of the explosion mechanisms of corecollapse supernovae (Bethe, 1990; Blinnikov et al., 2011; Janka, et. al., 2007; Suzuki & Totsuka, 1999). In Practical terms, to construct an equation of state table, we need a threedimensional table of the related thermodynamic quantities as functions of the inputs variables(Lattimer & Swesty, 1991), which are temperature, density, and composition in our case. In massive stars, however, many EoS relating the energy and pressure to temperature, density, and composition have been developed and used, but the difficulties in the computer codes that used them, as we rightly explained above, has been bedevilingprevious calculations. electron-positron subroutines Similarly, many have been developed for massive stellar EoS at high temperatures (Timmes & Swesty, 2000; Stanford et al., 2002), which may be used to overcome the challenges faced byEoS in the stellar evolutioncomputer codes.

electron-positron equation of The state subroutines used in this work is HELM-EoS which isbased on the tabular interpolation of Helmholtz free energy. ThisEoS calculates among others, thermodynamic quantities for electron-positron pair formation (that drives the adiabatic index to Γ <4/3) as described in details by (Timmes & Arnett, 1999; Timmes & Swesty, 2000), and it is developed such that for an isotope i with Z_i and A_i as its protons and nucleon number respectively, the total isotope i has a mass and number densities to be ρ_c (g cm⁻³) and n_i (cm⁻³) and a temperature T (K). For this, the dimensionless mass fraction for individual isotope *i* is $X_i = \frac{A_i n_i}{\rho N_A}$ and the dimensionless number density is $Y_i = \frac{X_i}{\rho N_A} = \frac{n_i}{\rho N_A}$ where N_A is the Avogadro's number (Timmes & Swesty, 2000; Stanford et al., 2002).

We modeled these subroutines to include14 input variables as some isotopes for 150, 200 and 500 M_o stellar models calculated by Yusof et al., 2013. We set the individual mass fractions of the compositions, and their proton and nucleon numbers in the model. Similarly, the average atomic weight per isotope is first calculated in the model after inputting the proton and nucleon numbersper isotope. The respective temperature and density values are then read by the model, such that for each isotope there is a particular temperature, density, average number of thenucleon and theaverage number of protons respectively. The subroutine then proceeds to read the Helmholtz free energy data table only once and then call the EoS.In the EoS the electrons and electronpositron pairs at high temperature are described as perfect thermal gas with arbitrary relativity and degeneracy. And the number density of these electrons -positrons is given, and the single number density for thefree electron as prescribed by Arnett, 1996; Fowler & Hoyle, 1964; Timmes & Arnett, 1999 is given. For positron, the chemical potential must have the rest mass terms which was subtracted in Eq. (2) and is provided by Eq.(3). The chemical potential μ (which is the only unknown in Eqs. (2) & (3)) can be found by applying boundary condition for complete ionization of the matter present (Svensson, 1982) such that; $n_0 = n_{e^-}$ $n_{e^+} = N_a \frac{\rho z}{A} = Z n_{ion};$ N_a is Avogadro's number and r, Z and A are the mass density, atomic number and atomic weight of the matter excluding electron-positron pairs. However, many methods can be used for the onedimensional root finding, but since absolute accuracy and thermodynamic consistency are primarily the major concern, TimmesEoSevaluated the Fermi-Dirac integrals 244

and their derivatives with respect to the chemical potential and relativity parameter (Timmes & Swesty, 2000), whereas, the chemical potential was computed using Newton-Raphson scheme to at least 15 significant figures (Timmes & Arnett, 1999). After finding the value for the chemical potential by the use of Newton-Raphson iteration method, and aiven temperature [K], density [gcm⁻³] and a particular isotope characterized by its average nucleon and average proton numbers, the EoSroutine produces many electron-positron thermodynamic quantities. Of prime interest in this work are the pressure [erg cm⁻³], specific thermal energy [erg g^{-1}] and entropy [erg $g^{-1} K^{-1}$] along with (what to be the subject of our next paper Garba et al.....in preparation) the derivatives of the pressure, energy and entropy, adiabatic indices, specific heats and many more. In the next section, we report the numerical result of these calculations and analyzed them.

Table 2. Characteristic properties of thestellar models used in this work and others	The initial mass, fir	inal mass, initia	al metallicity, the rotation rate	, the maximum
central density and temperature of He-core and O-core mass				

Mi	M _f [M₀]	Z _{ini}	$\Omega_{critrot}$	$\log \rho_c^{\max}$	log T _c ^{max}	He-core [M _o]	CO-core [M _o]	Fate	
[M₀]				[g cm ⁻³]	[K]				
150	107	0.002	0.4	5.53	9.29	106.5	93	PCSN	
200	129	0.002	0.4	5.48	9.30	129.2	124	PCSN	
500	75	0.006	0.4	5.92	9.35	74.8	73	PCSN	
500	95	0.006	00	4.51	9.01	94.7	93	PCSN	
Ref. (Kozyreva et al., 2014)									
150	94	0.001	00	6.25	9.54	72	64	PCSN	
250	169	0.001	00	6.69	9.71	121	110	PCSN	
Ref. (Chatzopoulos & Wheeler, 2012a)									
200	-	0.014	00	6.54	9.70	-	120	PCSN	
Ref. (Langer et al., 2007)									
150	93	0.050	10	-	9.36	71	64	PCSN	
250	169	0.050	10	-	9.15	121	109	PCSN	
Ref. (Heger & Woosley, 2002)									
70 M _o He	70	0.002	00	6.30	9.55	70	60	-	
115 M _o He	115	0.002	00	6.67	9.71	115	90	PCSN	

RESULTSAND DISCUSSION

The thermonuclear reactions began at the core of the star with hydrogen and helium burningswhich requires only lower energy for nuclear fusion. We focus on the evolution stages where the electron-positron pairs are produced at high temperature especially in the late burning stages. As stated in § 1, the electron-positron pairs are created only in the plane where the adiabatic index is below 4/3 and before the formation of any element heavier than oxygen. On this, our calculation showed thatthere are 14 isotopes in the composition and only during 6 burning stages the stars meet the region for the pair-creation instability. Table 3 summarizes pair creationfinal output from theEoS for all the models under consideration. The first column is the initial metallicity, the critical rotational ratio, the maximum central density (in 10^5 g cm-3) and temperature (in 10^9 K) respectively, while the last three columns are the isotopes(for which the stars encountered the instability regime), themaximum e⁺e⁻energy (in 10^{17} erg g⁻¹), the maximume⁺e⁻pressure (in 10^{22} erg cm⁻³) and the maximume⁺e⁻entropy (in

 $10^8 erg \ g^{-1} \ K^{-1}$) at the respective massive stars. The values are almost similar for all the isotopes. The rotating $200 M_{\odot}$ model indicatehighere⁺e⁻thermonuclear energy of about $3.29 \times 10^{17} \ erg \ g^{-1}$ while the non-rotating $500 M_{\odot}$ models, although explode as PCSN, but almost lost its e⁺e⁻ energy and about to collapse before reaching the pair-creation region, this trend is also depicted in Figure4 where the non-rotating $500 M_{\odot}$ model was almost unable to enter the instability region which is most likely due to, in addition to non-rotation factor, the small amount of the thermonucleare⁺e⁻ energy that will help the burning process to reach the region.

In Figure 6 we can see the rise in the $e^+e^$ energy for centraltemperature and density(we choose onlyone isotope since it is almost equal for all the isotopes) for all the massive stars. The rotating models at SMC showed higher energies due to their ability to reach the instability region as a result of low mass loss and higher oxygen core that is contrary to their LMC counterparts which experienced more mass loss than them. This affects the fate of the stars, such that the SMC stars will fully explode as PCSNe without any remnant.

Figure 6: Electron-positron thermonuclear energy for 150M_o (black), 200M_o (magenta) and 500M_o rotating (blue) and non-rotating (red) models with respect to temperature (left) and density (right).

As strong mass loss distance the stars further away from the pair-creation region, so also, the thermonuclear energy of these pairs is reduced due to this mass loss and low oxygen core as can be seen in Fig. 7. However, the metallicity also affects the thermal energy in the way that the SMC having lower metallicity than the LMC suppresses the mass loss with agreateramount of energy and since the 200 M_{\odot} has greater oxygen core mass it must, therefore, has greater thermal energy in the region to correspond its low metallicity and mass loss. On the other hand, the non-rotating 500 M_o might have only reached the instability region due to its lower metallicity (comparing with solar metallicity) which is capable of suppressing the mass loss such that the thermonuclear energy would maintaincertain amount of elements into the pair production region. The graph in Figure 6 indicate that the instability is set in at a temperature of around 1.01x10⁹ K, 1.02x10⁹, 1.02x10⁹ K and 1.00×10^9 K corresponding to density 4.56×10^4 g cm⁻³, 2.44×10^4 g cm⁻³, 3.99×10^4 g cm⁻³ and 3.06×10^4 g cm⁻³ respectively for 150, 200 and 500 M_{\odot} rotating and non-rotating models. Inside the pair-creation region, however, the nuclear reaction rates increased by a certain amount such that energy is released due to the production of higher oxygen core mass that is necessary for the pair-creation.

In figure 8, we examined the effect of the helium core mass on the e^+e^- energy. Remembering that, the helium mass directly affects the explosion mechanism such that higher helium core mass reduced the pair-creation threshold. In this figure, the thermal energy slides down when the star approaches its final explosive mass (helium core mass), and it is interesting to note that, all the three rotating models showed similar dynamic, differing only with the non-rotating counterpart.

BAJOPAS Volume 14 Number 1, June, 2021

Figure 7: Electron-positron thermal energy [in erg g⁻¹] for mass loss (in M_{\circ} yr⁻¹]. The left outer graph is for the rotating 500 M_{\circ} models which showalow mass loss due totherotation and its thermonuclear energy of the e⁺e⁻ pairs is greater than the non-rotating 500 M_{\circ} (inner graph) that showsahigher mass losswhile the right outer and inner graph are for rotating 200 and 150 models respectively.

This situation is also noted whenfraction of critical rotation is put into consideration, figure 9. The higher helium mass (200 M_o), which is a resultof this rotation maintained higher continues thermal energyfor thethermonuclearprocess in the region. In the low helium core mass (500 $M_{\odot})$ the thermal energy is steady and suddenly decay with respect fractional rotation.Thee⁺e⁻ to

thermonuclear energy, produced vibrational instability in temperature density region and is large enough to expand the star further. Thisvibrationdies very quickly, and the star evolves backto enter the instability region. The process continues until all the oxygen is completely exhausted from the center of the star and completely explode without any remnant.

Figure 8: Thermal energies due to e^+e^- pair-creation w.r.t. Helium core mass of the star. $150M_{\circ}$ (inner left) and $200M_{\circ}$ (outer left), and rotating 500 M_{\circ} (outer right) and non-rotating 500 M_{\circ} (inner right). The rotating models almost show similar dynamic w.r.t. the mass.

Figure 9: electron-positron thermal energy in the instability region plotted against the fraction of critical rotation for higher helium core mass star (200 M_{\odot}) and lowest helium core mass (500 M_{\odot})

Table 3: Initial mass, isotopes for which pair-instabilityiscreated. E^{max} , $P^{max} \& S^{max}$ are maximum electron-positron energy in [ergs g⁻¹], the pressure in [ergs cm⁻³], and entropy in [ergs g⁻¹K⁻¹] respectively.

Massive stars	Z _{in}	$\Omega_{critrot}$	ρ_c^{\max} x10⁵	T _c ^{max} x10 ⁹	Isotope	E ^{max} e+e- x10 ¹⁷	P ^{max} e+e- x10 ²²	S ^{max} e+e- x10 ⁸
					He3	2.57	1.76	1.59
150	0.002	0.4	3.42	1.94	C13	2.54	1.76	1.59
					017	2.57	1.76	1.59
					018	2.55	1.76	1.59
					Be7	2.57	1.76	1.59
					B8	2.57	1.76	1.59
					He3	3.29	2.02	1.99
200	0.002	0.4	3.02	1.99	C13	3.26	2.02	1.99
					017	3.29	2.02	1.99
					018	2.83	1.20	1.87
					Be7	3.29	2.02	1.99
					B8	3.29	2.02	1.99
					He3	2.31	4.14	1.25
500	0.006	0.4	8.25	2.25	C13	2.21	4.15	1.25
					017	2.31	4.14	1.25
					018	2.25	4.14	1.25
					Be/	2.32	4.14	1.25
					B8	2.31	4.14	1.25
500	0.000	0.0	0.00	1 00	He3	0.40	0.02	0.45
500	0.006	0.0	0.33	1.02	C13	0.38	0.02	0.45
					017	0.40	0.02	0.45
						0.28	0.03	0.51
					Be/	0.40	0.02	0.45
					88	0.40	0.02	0.45

CONCLUSION

Hydrodynamic simulation using KEPLER code, predicts that rotating150 and 200 M_omassive stars at SMC and LMC 500 M_orotating and nonrotating models could end as PCSN. Theelectronpositron pairs that are created in these massive stars have thermal energies that greatly affect their evolution and final fate. We used thethermodynamically consistent equation of state tables to calculate this energy and analyzedits effect onthe evolution and explosion of the massive stars. The mass of the oxygen core playedagreat role in the dynamic of the region, stars with higher oxygen core massproduced greater thermal energy necessary to keep thermonuclear reaction in the region.

REFERENCES

- Angulo, C., Arnould, M., Rayet, M., Descouvemont, P., Baye, D., Leclercq-Willain, C., . . . Rolfs, C. (1999). A compilation of charged-particle induced thermonuclear reaction rates. *Nuclear Physics A*, 656(1), 3-183.
- Aoki, I. (1983). Entropy productions on the Earth and other planets of the solar system. *Journal of the Physical Society* of Japan, 52(3), 1075-1078.
- Arnett, D. (1996). Supernovae and nucleosynthesis : an investigation of the history of matter, from the big bang to

Similarly, rotation which decreased the oxygen core mass also showed increasing dynamic with the e^+e^- thermal energies in the region. Although the non-rotating model entered the $\rho_c - T_c$ pair-instability region and explode as PCSN, itlacksthe much electron-positron energy threshold to deliver its mass loss fully into the region, just as the high rotation brings the stars much closer the regime. Many thermonuclear processes involved in PCSN can be understood by using appropriate EoS tables. An adiabaticprocess involved in the evolution and explosion of massive stars is one example to be calculated and analyzed for abetter understanding of their final fate.

the present: Princeton, N.J. : Princeton University Press, 1996.

- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The chemical composition of the Sun. *Annual Review of Astronomy* and Astrophysics, 47, 481-522.
- Barkat, Z., Rakavy, G., & Sack, N. (1967). Dynamics of supernova explosion resulting from pair formation. *Physical Review Letters, 18*(10), 379.
- Bethe, H. A. (1990). Supernova mechanisms. *Reviews of Modern Physics, 62*(4), 801.
- Blinnikov, S., Panov, I., Rudzsky, M., & Sumiyoshi, K. (2011). The equation of

- BAJOPAS Volume 14 Number 1, June, 2021 state and composition of hot, dense matter in core-collapse supernovae. Astronomy & Astrophysics, 535, A37.
- Blinnikov, S. I., Dunina-Barkovskaya, N., & Nadyozhin, D. (1996). Equation of state of a Fermi gas: approximations for various degrees of relativism and degeneracy. *The Astrophysical Journal Supplement Series, 106*, 171.
- Bludman, S., & Van Riper, K. (1977). Equation of state of an ideal Fermi gas. *The Astrophysical Journal, 212*, 859-872.
- Bond, J., Arnett, W., & Carr, B. (1984). The evolution and fate of very massive objects. *The Astrophysical Journal, 280*, 825-847.
- Carr, B., Bond, J., & Arnett, W. (1984). Cosmological consequences of Population III stars. *The Astrophysical Journal, 277*, 445-469.
- Chatzopoulos, E., & Wheeler, J. C. (2012a). Effects of Rotation on the Minimum Mass of Primordial Progenitors of Pairinstability Supernovae. *The Astrophysical Journal, 748*(1), 42.
- Chatzopoulos, E., & Wheeler, J. C. (2012b). Hydrogen-Poor Circumstellar Shells from Pulsational Pair-Instability Supernovae with Rapidly Rotating Progenitors. *Astrophysical Journal, 760*(2).
- Crowther, P. A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P., & Kassim, H. A. (2010). The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M^o stellar mass limit. *Monthly Notices of the Royal Astronomical Society, 408*(2), 731-751.
- Eggenberger, P., Meynet, G., Maeder, A., Hirschi, R., Charbonnel, C., Talon, S., & Ekström, S. (2009). The Geneva stellar evolution code. *Evolution and Seismic Tools for Stellar Astrophysics*, 43-54.
- Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., . . . Frischknecht, U. (2012). Grids of stellar models with rotation-I. Models from 0.8 to 120 M^o at solar metallicity (Z= 0.014). Astronomy & Astrophysics, 537, A146.
- El Eid, M., & Hilf, E. (1977). Equation of state for hot and dense n, p, e-mixture with zero charge density. *Astronomy and Astrophysics, 57*, 243-249.
- El Eid, M. F., Fricke, K. J., & Ober, W. (1983). Evolution of massive pregalactic stars. I-Hydrogen and helium burning. II-Nucleosynthesis in pair creation supernovae and pregalactic enrichment.

Astronomy and Astrophysics, 119, 54-68.

- Fowler, W. A., & Hoyle, F. (1964). Neutrino Processes and Pair Formation in Massive Stars and Supernovae. *The Astrophysical Journal Supplement Series*, *9*, 201.
- Fraley, G. S. (1968). Supernovae explosions induced by pair-production instability. *Astrophysics and Space Science, 2*(1), 96-114.
- Heger, A., Fryer, C., Woosley, S., Langer, N., & Hartmann, D. H. (2003). How massive single stars end their life. *The Astrophysical Journal*, *591*(1), 288.
- Heger, A., & Woosley, S. E. (2002). The nucleosynthetic signature of population III. *The Astrophysical Journal, 567*(1), 532.
- Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., & Müller, B. (2007). Theory of core-collapse supernovae. *Physics Reports, 442*(1), 38-74.
- Kennedy, D. C., & Bludman, S. A. (1997). Variational principles for stellar structure. *The Astrophysical Journal*, 484(1), 329.
- Kozyreva, A., Yoon, S.-C., & Langer, N. (2014). Explosion and nucleosynthesis of lowredshift pair-instability supernovae. *Astronomy & Astrophysics, 566*, A146.
- Langer, N., Norman, C., de Koter, A., Vink, J., Cantiello, M., & Yoon, S.-C. (2007). Pair creation supernovae at low and high redshift. *Astronomy & Astrophysics*, *475*(2), L19-L23.
- Lattimer, J. M., & Swesty, F. D. (1991). A generalized equation of state for hot, dense matter. *Nuclear Physics A, 535*(2), 331-376.
- Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. *The Astrophysical Journal*, *591*(2), 1220.
- Martyushev, L. M., & Zubarev, S. N. (2015). Entropy Production of Main-Sequence Stars. *Entropy*, *17*(2), 658-668.
- Ober, W., El Eid, M., & Fricke, K. (1983). Evolution of massive pregalactic stars-Part Two-Nucleosynthesis in pair creation supernovae and pregalactic enrichment. *Astronomy and Astrophysics, 119*, 61.
- Odrzywolek, A., Misiaszek, M., & Kutschera, M. (2004). Detection possibility of the pairannihilation neutrinos from the neutrinocooled pre-supernova star. *Astroparticle Physics, 21*(3), 303-313.
- Phillips, A. C. (2013). *The Physics of Stars* (Vol. 2nd ed). Hoboken: Wiley.

- Rakavy, G., & Shaviv, G. (1967). Instabilities in highly evolved stellar models. *The Astrophysical Journal, 148*, 803.
- Stringfellow, G., & Woosley, S. (1988). Origin and Distribution of the Elements, ed. GJ Mathews: Singapore: World Scientific Publishing.
- Suzuki, Y., & Totsuka, Y. (1999). *Neutrino physics and astrophysics* (Vol. 77): Elsevier.
- Svensson, R. (1982). Electron-positron pair equilibria in relativistic plasmas. *The Astrophysical Journal, 258*, 335.
- Swesty, F. D. (1996). Thermodynamically consistent interpolation for equation of state tables. *Journal of Computational Physics*, 127(1), 118-127.
- Timmes, F., & Arnett, D. (1999). The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics. *The Astrophysical Journal Supplement Series, 125*(1), 277.
- Timmes, F. X., & Swesty, F. D. (2000). The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the helmholtz free energy. *The Astrophysical Journal Supplement Series, 126*(2), 501.

- Vink, J. S., de Koter, A., & Lamers, H. (2001). Mass-loss predictions for O and B stars as a function of metallicity. *Astronomy & Astrophysics, 369*(2), 574-588.
- Vink, J. S., Muijres, L., Anthonisse, B., de Koter, A., Gräfener, G., & Langer, N. (2011). Wind modelling of very massive stars up to 300 solar masses. *Astronomy & Astrophysics, 531*, A132.
- Wheeler, J. C. (1977). Final evolution of stars in the range 10 3–10 4 M☉. Astrophysics and Space Science, 50(1), 125-131.
- Woosley, S. (2017). Pulsational Pair-instability Supernovae. *The Astrophysical Journal*, *836*(2), 244.
- Woosley, S. E., & Heger, A. (2015). The Deaths of Very Massive Stars *Very Massive Stars in the Local Universe* (pp. 199-225): Springer.
- Woosley, S. E., Heger, A., & Weaver, T. A. (2002). The evolution and explosion of massive stars. *Reviews of Modern Physics, 74*(4), 1015.
- Yusof, N., Hirschi, R., Meynet, G., Crowther, P. A., Ekström, S., Frischknecht, U., . . . Schnurr, O. (2013). Evolution and fate of very massive stars. *Monthly Notices* of the Royal Astronomical Society, stt794.