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ABSTRACT 
Regularised regression methods have been developed in the past to overcome the 
shortcomings of ordinarily least squares (OLS) regression of not performing well with 
respect to both prediction accuracy and model complexity. OLS method may fail or produce 
regression estimates with high variance in the presence of multi-collinearity or when the 
predictor variables are greater than the number of observations. This study compares the 
predictive performance and additional information gained of Ridge, Lasso and Elastic net 
regularised methods with the classical OLS method using data of breast cancer patients. 
The findings have shown that using all the predictor variables, the OLS method failed 
because of the presence of multiple collinearity, while regularised Ridge, Lasso and Elastic 
net methods produced results that showed the predictor variables mostly significant. Using 
the training data, the Elastic net and Lasso seemed to indicate more significant predictor 
variables than the Ridge method. The result also indicated that breast cancer patients in 
age groups 30-39, those that are married and in stage1 of the disease, have longer survival 
times, while patients that are in stage2 and stage3 have shorter survival times. The OLS 
regression produced results only when four of the predictor variables were excluded; even 
then, the regularised methods still outperformed the OLS regression in terms of prediction 
accuracy. 
Keywords: OLS, Ridge, Lasso, Elastic Net, Breast Cancer Data 
 
INTRODUCTION 
Breast cancer is the most frequent cancer in 

women and is the second most common cancer 
across the globe. In 2018, it was responsible for 

an estimated 2.1 million cancers, accounting for 

the fifth leading cause of cancer deaths 
worldwide (Bray et al 2018, Fitzmaurice, 2018). 

One in every 9 women in developed countries and 
one in every 20 women in less developed nations 

may have the risk of breast cancer (Fitzmaurice, 

2018).  
Massive amount of data with increasing 

dimensions are being generated in many areas of 
life, such as medicine, economics, social sciences 

etc. The massive amount of data is in two 
dimensions which include the dependent and 

predictor variables and the number of 

observations.  
In biological data there are often fewer 

observations available than predictor variables. 
For instance, gene expression data include more 

than ten thousand gene profiles from hundreds of  

patients (see Shen et al, 2011). Variables and 
features selection methods have become the 

focus of research in areas of application for which 
large datasets with tens or hundreds of thousands 

of variables are available.  These areas include 
text processing of internet documents (see Talib 

et al, 2016), gene expression array analysis and 

combinatorial chemistry (Liv et al, 2017). The 
reasons for variable selection are three-fold: 

improving the prediction performance of the 
exposure variables; providing faster and more 

cost-effective predictors; and providing a better 

understanding of the underlying process that 
generated the data (Guyon & Elisseeff, 2003). 

However, it is undesirable to keep irrelevant 
predictors in the final model since this makes it 

difficult to interpret the resultant model and may 
decrease its predictive ability. In the 

regularization framework, many different types of 

penalties have been introduced to achieve 
variable selection (Yichao & Yufeng, 2009).  

Ordinary least squares (OLS) method is a popular 
procedure in regression methods. It is expected 

not to perform well with respect to both 

prediction accuracy and model complexity. 

http://dx.doi.org/10.4314/bajopas.v14i2.16 
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OLS regression may result in higher estimates of 
the regression coefficients in the presence of 

collinearity or when the number of predictor 

variables ( )P is large relative to the number of 

observation ( )N  (VanderKooij, and Meulman 

2006, Wessel  and VanWieringen, 2020). The 
objective of this paper is to analyze the breast 

cancer data, sourced from Ahmadu Bello 

University Teaching Hospital, Zaria-Nigeria and to 
find out which of the predictor variables exert 

greater influence on the survival of the breast 

cancer patients. Secondly, the exposure variables 
shall be used to predict the breast cancer 

patient’s survival times and compare the 
prediction accuracy of Ridge, Lasso and Elastic 

net as regularised models with the classical linear 

regression model, using matrix algebra. 
 MATERIALS AND METHODS 

Ordinary Least Squares (OLS) 

In multiple linear regression, we consider the following relationship between predictor variables 1,X  

2 ,X  ……. pX and the response variable  Y  i.e  

  Y = 0  + 1 X1 + 2 X2 + …………….+ p Xp    + ξ                         
 (1) 

where  ξ  is the n  column vector of random observation or error term and 0 , 1 ,
 2 ,…………. p  

are the regression coefficients. The objective is to find the estimated regression model 
^

1 1 2 2...........i o i i p ipy b b X b X b X        (2) 

where ijX   is the jth predictor variable observation on the i  th subject   with   i  = 1, 2, ……. n   and 

j  = 0, 1, 2, ……. p .  The procedure and computation involved in the linear multiple regression analysis 

remain the same for any number of predictor variables. Equation (1) can be expressed   in matrix form 
(Melkumova and Shatskikh, 2017). 

  Y X                                                        (3) 

where Y is an n  column vector of dependent variable; X is n  x p  matrix of predictor variables and 

  is a p parameter vector. The n  column vector ξ is vector of error terms. Also, b0, b1, b2,……….,bp 

are the estimators of the unknown vector β, The objective of the regression analysis is to estimate the 

vector   based on the X and Y observations: 

𝑋 =

(

 
 
  

1          𝑥11
1          𝑥21

⋯
𝑥1,𝑝−1 𝑥1𝑝
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            ⋮ ⋱ ⋮
1      𝑥𝑛−1,1
1            𝑥𝑛1

⋯
𝑥𝑛−1,𝑝−1 𝑥𝑛−1,𝑝
𝑥𝑛,𝑝−1 𝑥𝑛,𝑝 )
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And  𝜉𝑖 = 𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=0  , i  = 1, 2,…., n .  

The Ordinarily Least Squares (OLS) estimator is used to estimate the parameters where 
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1 0
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i j ij

i j

y x  
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 
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is minimized. Given that det (XTX) > 0, the OLS estimates can be obtained in matrix form as  

   
^

1( )T TX X X Y 
      (4) 

and variance of 

^


 is  

                                     

^
2 1ˆ( ) diag[( ) ]TVar X X       (5) 
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Ridge regression 
In high-dimensional settings when the number of 

covariates p exceeds the number of observations 

( n ), the problem of maximizing the partial log-

likelihood cannot be done uniquely. A way to deal 

with the p >> n situation is to introduce a penalty 
term into the partial log-likelihood l(  ), referred 

to as regularization. This approach is also 

reasonable when covariates are less than the 
observations (p < n) settings since it considers 

collinearity among the predictors and helps to 

prevent over-fitting (Madjar, 2018). Ridge 
regression proposed by Hoerl & Kennard (1970) 

is one of the penalization or regularization 
methods that reduce this variability by shrinking 

the coefficients, resulting in more prediction 
accuracy at the cost of a small increase of bias. 

In Ridge regression, the coefficients are shrunken 

towards zero, but will never become exactly zero. 
So, when the number of predictors is large, Ridge 

regression will not provide a sparse model that is 

easy to interpret. OLS estimate depends on 
(XTX)−1 where if the rank(X) is less than the 

number of predictors ( )P  then (XTX) will not 

have an inverse. In this situation, Ridge 
regression can overcome this problem by 

constraining the coefficient estimates; and thus 

reduce the estimator’s variance and introduce 
some bias.  Rebecca et al. (2015) estimated the 

parameters using Ridge regression method that 
exhibits the least bias on large data sets in their 

study on penalized likelihood methods that 

improve parameter estimates in occupancy 
models. With the problem of multi-collinearity, 

Ridge regression improves the prediction 
performance.

 

 
                      Fig 1: Graphical representation of Ridge Regression and OLS   

                   (see  https://onlinecourses.science.psu. edu/stat857/ node/155/.) 
 

The Ordinarily Least Square Estimates are 

unbiased, but produce large prediction variance.  
Therefore; to improve the accuracy of the 

prediction is to either shrink the values of the 
regression coefficients toward zero or by setting 

some insignificant coefficients to zero. Thus, the 
accuracy of the prediction will be improved. This 

can be done by introducing some estimation bias 

or constraint and the variance can be reduced, 
and this can result in reducing the mean squared 

error of prediction. Ridge regression is a popular 
method in the context of multi-collinearity. 

Therefore, Ridge regression imposes a constraint 

on the coefficients and the coefficients are 
estimated by minimizing the penalized sum of 

squares. 

From Figure 1, the least squares solution is the 

centre of the ellipse i.e OLS estimate. The ellipse 
that is centered around the OLS estimate 

represents the region of constant Residual Sums 
of Squares (RSS). Ridge regression has a blue 

circular constraint with no sharp points, the 
intersection between the red ellipse and the blue 

circle will not generally happen on the x – axis 

and therefore the Ridge regression coefficient 
estimates will be exclusively non-zero. The ellipse 

corresponds to the contours of the RSS; the inner 
ellipse has smaller RSS, and RSS is minimised at 

ordinarily least square estimates. Ridge 

regression minimises the residual sum of squares 
with the sum of square value of the coefficients. 

Ridge regression model can be formulated as 
follows: 

  

2
^

2

1 1 1

arg min
p pn

ridge i j ij j

i j j

y X   
  

  
    
   

  
     

 (6) 

where n  is the number of observations, 

> 0 is a tuning parameter which is the 

amount of shrinkage of the coefficients and p  is 

the number of predictors. When 0  , 

equation (6), corresponds to least squares 
regression. Now for real valued function f, with 

domain S, arg min [f (  )]  Sf(  ) is the set of 

element in S that achieve the global  minimum in 

S. Using matrix algebra, we can write equation 

(5) in matrix form as:
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^
1

( ) ( )T T

ridge X X I X Y             (7) 

where I is the p  x p  identity matrix. Adding    to the diagonal of  XTX makes the problem 
nonsingular even with the multi-collinearity in the data. So, we compute equation (7)  for a range of  λ 

values (λ = 0.01, 0.02, 0.03, ….,1) say and choose the optimal 

^

( )ridge  that minimises the mean 

squared error MSE(λ), 

                                          ( ) ( )( ) ( ) ( ) / nTMSE Y Y Y Y      (8) 

where 

                                            ( ) ( )ridgeY X                              (9) 

Our optimal Ridge regularized parameter estimate ( )Ridgeoptimal is then given as, 

                                    
1

( )
ˆ ( )T T

optridge
optimal X X I X Y      (10) 

where opt  is the value of λ in which MSE(λ) attains the global minimum. The variance of the estimate 

is given by 

          𝑉𝑎𝑟(𝛽̂𝑟𝑖𝑑𝑔𝑒) = 𝜎
2𝑑𝑖𝑎𝑔[(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑋(𝑋𝑇𝑋 + 𝜆𝐼)−1]                                (11) 

 

 
Least Absolute Shrinkage and Selection 

Operator (Lasso) 

Tibshirani (1996) proposed a method called Least 
Absolute Shrinkage and Selection Operator 

(Lasso), similar to Ridge regression in dealing 
with many predictor variables. It is a regression 

analysis method that performs both variable 

selection and regularization in order to enhance 
the prediction accuracy and interpretability of the 

statistical regression model (Emmeet-Streib and 
Dehmer, 2019). However, Lasso is different from 

Ridge regression because it deals with variable  
selection and shrinkage of the parameter. Lasso 

minimises the residual sum of squares subject to 

the sum of the absolute values of the coefficients. 
Because of the constraint, Lasso method shrinks 

some regression coefficients toward zero and 
others to exactly zero and hence produces a 

sparse model. Lasso is a method of selecting a 

subset of variables in a model while 
simultaneously shrinking the other regression 

coefficients toward zero, due to some constraints 
in Lasso principles. The popularity of the classical 

Lasso lies in its ability to shrink coefficients to 
zero, thereby automatically performing variable 

selection, and the effect of the penalization is that 

Lasso sets the 

^

j s for some variables to zero. In 

other words, it does the model selection for us 
(Van Erp et al, 2019, Ahrens et al 2018, 

Chaturvedi, 2018). Goeman (2010), efficiently 

computes estimates of parameters in high 

dimensional model using L1 penalized (lasso) 

method. The dimensionality of the collected data 
in clinical studies for complex disease such as 

cancer for example, is growing exceedingly fast. 
It is analytically challenging for researchers to 

elucidate the relationship between the most 

influential factors (variables) and patient survival 
outcomes (Xiao et al., 2016).  Tuji (2010) applied 

L1 regularization form of Lasso to select the most 
significant variables on the survival dataset in 

their cancer study. Lasso sets coefficients to zero 
exactly if the variables are not important when (

 ) is large enough. Ridge regression and Lasso 

minimise the RSS with the penalty term as 

constraints which means that the shrinkage 
problem will find the smallest RSS within a budget 

defined by:  
a) a circle for Ridge regression 

b) a diamond for Lasso (absolute value). 

The absolute values are going to be a 
constraint region that has sharp corners. 

The solution will be, the first place the RSS 
contours hit the constraint region. In high 

dimensions with Lasso, you have edges and 
corners that make the diamond, and along an 

edge or a corner, if you hit there, you get a zero. 

So this is, geometrically, why you get sparsity in 
the Lasso 

(https://datacadamia.com/data_mining/lasso). 
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 Fig 2: Lasso Regression (left) vs. Ridge Regression (right)  
                ( https://datacadamia.com/data_mining/lasso) 

 

The Lasso penalty regularised the linear regression coefficients of penalized least square criterion as: 

        

2
^

(lasso)

1 1 1

arg min | |
p pn

i j ij j

i j j

y X   
  

  
    
   

  
  

 (12) 

where n  is the number of observations, p  is the number of predictors for example, genes.   is the 

tuning parameter which determines the amount of shrinkage of the regression coefficients. The higher 
the value of 𝜆, the greater will be the shrinkage of the   coefficient as seen in equation (8) and this 

in turn, will make the coefficients more robust to collinearity.  

Lasso performed better than Ridge in scenarios with many noise predictors and worse in the presence 
of correlated predictors (Pavlou et al, 2015).  
To obtain the 𝛃𝑙𝑎𝑠𝑠𝑜 in matrix form, we need to minimise equation (13) with respect to β: 

                              
2

1 1 1

( ) | |
p pn

i j ij j

i j j

f y X   
  

  
    
   

  
                         (13) 

This involves differentiating the equation with respect to β and setting the derivative to zero to in order 
to obtain the system of equations: 

  
*( ) 0.5T TX X X Y                        (14) 

       
where 𝛃∗ is defined as, 

𝛃∗   =   

0 0

1 1

/

/

.

.

/p p

 

 

 

 
 
 
 
 
 
 
 
 

                                                (15)  

Clearly equation (14) is not in closed form, so iterative method has to be used to determine the lasso 

estimate of β. Using the Newton Raphson Algorithm, and for a given λ > 0 and initial value of β0  one 
can run the iteration in equation (11):  
                𝜷𝒕 = 𝜷𝑡−1 − (𝑋

𝑇𝑋 + 0.5𝜆𝑮𝑡−1)
−1 (𝑋𝑇𝑋𝜷𝑡−1 + 0.5𝜆𝜷𝑡−1

∗ − 𝑋𝑇𝑌)                     (16) 

where the p  +1 by p  +1 diagonal matrix G is defined as, 

                            𝑮 = 𝑑𝑖𝑎𝑔 ((
1−𝛽0

−2

|𝛽0|
) , (

1−𝛽1
−2

|𝛽1|
) , (

1−𝛽2
−2

|𝛽2|
) , … . . , (

1−𝛽𝑝
−2

|𝛽𝑝|
))                                  (17) 

and t =1, 2, 3, …. , until convergence is achieved. A possible convergence criterion could be 
to stop the iteration whenever: 
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                                   (𝜷𝑡 − 𝜷𝑡−1)

𝑇(𝜷𝑡 − 𝜷𝑡−1)/(𝜷𝑡−1)
𝑇(𝜷𝑡−1) < 10

−6                     (18) 

and take 𝜷̂𝑙𝑎𝑠𝑠𝑜 = 𝜷𝑡−1  for the given λ. 

To obtain our optimal  𝜷̂𝑙𝑎𝑠𝑠𝑜 , we run equation (16) for a range of λ values (λ=0.01, 0.02, 0.03, ….,1) 

say and choose the optimal 

^

( )lasso  that minimises the mean squared error MSE(λ), while the 

corresponding value of λ  gives the λopt 

              (19) 
    and 

                                                            ( ) ( )lassoY X                  (20) 

where opt  is the value of λ in which MSE(λ) attains the global minimum. Alternatively, re-run the 

iteration in equation (16) with λopt
 to obtain the optimal  𝜷̂𝑙𝑎𝑠𝑠𝑜. The variance of  𝜷̂𝑙𝑎𝑠𝑠𝑜 is given by, 

                            𝑉𝑎𝑟(𝛽̂𝑙𝑎𝑠𝑠𝑜) = 𝜎
2𝑑𝑖𝑎𝑔[(𝑋𝑇𝑋 + 0.5𝜆𝐺)−1𝑋𝑇𝑋(𝑋𝑇𝑋 + 0.5𝜆𝐺)−1]          (21) 

where 
                                                                                                      

          (22) 
 

and n  is the number of subjects and p  is the number of predictor variables.  

 

Elastic net 
Elastic net was introduced by Zou and Hastie 

(2005), to extend the Lasso by improving some 
of its limitations, especially with respect to the 

variable selection. The method produces a 

regression model that is penalized with both the 
Ridge regression penalty term of L1 - norm and 

Lasso regression penalty term of L2 - norm. The 
consequence of this is to effectively shrink 

coefficients just like in Ridge regression and to set 
some coefficients to zero as in Lasso. The L1 - 

norm part of the penalty generates a sparse 

model by shrinking some regression coefficients 
exactly to zero. The L2 - norm part of the penalty 

removes the limitation on the number of selected 
variables, encourages grouping effect, and 

stabilizes the L1 regularization path (Park and 

Konishi, 2015). 
 In this situation, Elastic net not only selects 

variables, but may also perform better than Lasso 

with observations that are collinear. Liu and Li 
(2017) used an efficient Elastic net with 

regression coefficients method to select the 
significant variables of the spectrum data. Steele 

et al, (2018) analyzed the electronic patient 

health records for predicting patient mortality 
with Elastic net method.  In finance, Ho et, al 
(2015) used Elastic net to define portfolios of 
stocks and predict the credit ratings of 

corporations. Furthermore, Elastic net is 
particularly useful in cases where the number of 

predictor variables ( p ) in datasets are much 

larger than the number of observations ( n ). In 

such cases, Lasso is not capable of selecting more 

than ‘ n ’ predictors but the Elastic net has this 

capability (Frank and Matthias, 2019). Elastic net 

minimises the loss function and the estimated 

parameter vector is given by 

2
^

2

1 1 1 1

arg min (1 ) | |
p p pn

Elastic i j ij j j

i j j j

y X      
   

    
        
     

            (23)                     

 

 
where   

   =  tuning parameter  

  =  weight that determines how much should be given to Lasso or Ridge regression,    

        such that  0 ≤    ≤ 1, where    = 0,   
^

E    becomes 
^

 R    and where   = 1 , 
^

E   

         becomes  
^

L  

The matrix form (23) does not have a closed form and its solution can only be obtained iteratively 
using:  

𝜷𝒕 = 𝜷𝑡−1 − (𝑋
𝑇𝑋 + 𝜆{𝛼𝐼 + 0.5(1 − 𝛼)𝑮𝑡−1})

−1 (𝑋𝑇𝑋𝜷𝑡−1 
                                                                      +𝜆{𝛼𝜷𝑡−1 + 0.5(1 − 𝛼)𝜷𝑡−1

∗ } − 𝑋𝑇𝑌)                    (24)  

 

 

( ) ( )( ) ( ) ( ) / nTMSE Y Y Y Y    

2

( ) ( )( ) ( ) / (n p)TY Y Y Y     
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where t = 1, 2, …… and the diagonal matrix G, β 
and β*   are as defined in equation (16).  For a 

given     such that  0 <   <1 and a given initial 

value β0, one runs equation (24) for each value 

of   ( =0.01, 0.02, …..,1) say, until 

convergence is achieved based on the 
convergence criterion defined in equation (18), 

and then compute the MSE(  ). The  opt is 

obtained as that value of   that returns the 

minimum MSE( ).  Having obtained  opt  we can 

use it to re-run equation (24) with values of   

say ( =0.01, 0.02,……..0.99) and for each 
we estimate MSE( ).  

The optimal    is   determined as that   that 

returns the smallest MSE( ). Both the optimal 

 and    are then used in equation (24) to re-

run the iteration until convergence. The 

converged   𝜷̂   is the elastic net estimate   

𝜷̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 of β. The variance of the estimate is then 

computed as, 

 

𝑉𝑎𝑟(𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐) = 𝜎
2 𝑑𝑖𝑎𝑔[(𝑋𝑇𝑋 + 𝜆{𝛼𝐼 + 0.5(1 − 𝛼)𝑮𝑡−1})

−1𝑋𝑇𝑋(𝑋𝑇𝑋 + 𝜆{𝛼𝐼 +

                                                                                                                 0.5(1 − 𝛼)𝑮𝑡−1})
−1]             (25)                                                                           

where 𝜎
2 is defined as  

     
2

( ) ( )( ) ( ) / (n p)TY Y Y Y                                                (26)                                                  

and 

( ) ( )ElasticY X                                                                            (27) 

 

 

    
Fig 3: Elastic net vs. Lasso vs. Ridge regression  (Sosnovshchenko, nd). 

 

The Elastic net penalty is a convex combination 
of the Lasso and the Ridge constraint functions. 

Figure 3 shows the effect of weight   on the 

regularization. From Fig 3, the Elastic net penalty 

(in red color or solid line) is located between the 
Lasso and the Ridge penalties. In this paper, the  

training dataset is used in building the classical 
OLS, regularized Ridge, Lasso and Elastic net 

models. 

 
Estimating the Models Using Breast Cancer 

Data 
The Breast Cancer Data 

In this study, observations of breast cancer data 
are used and were sourced from Ahmadu Bello 

University, Teaching Hospital (ABUTH) Zaria, with 

the following exposure (or predictor) variables. 
Apart from the intercept, the other variables used 

in the analysis are age (Age20-29, Age30-39, 
Age40-49, Age50-59, Age60-69, Age70+), sex 

(male, female), marital status (married, single) 

and stage of the disease (stage1, stage2, stage3). 
For the purpose of analysis, all the 13 predictor 

variables are coded 1 for the presence of the 
event and zero otherwise, except for the 

dependent variable where its natural log is used. 
The intercept is coded 1. The study duration was 

for 60 months after having been diagnosed with 

breast cancer and the survival times in months of 
the patients is considered as the response 

variable. The object of the cancer study is to find 
out which of the predictor variables exert greater 

influence on the survival of the breast cancer 

patients, and using the exposure variables to 
predict the breast cancer patient’s survival time. 

The sample collected consist of 312 breast cancer 
patients, and the study subject included 299 

females (95.8%) and 13 males (4.2%) with an 
average age of 43.1 (with standard deviation of 

11.7) for females and average age of 48.5 (with 

standard deviation of 12.0) for males. All the ages 
range between 20 and 75 years. The 5-year 
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average survival time in months for females and 
males after being diagnosed with breast cancer 

were found to be 52.5 and 38.5 respectively. The 

data is divided into two subsets. The first subset 
is the training set (𝑛𝑡𝑟𝑎𝑖𝑛 =200 subjects) that will 

be used in estimating the models, while the 
second subset is the testing set (𝑛𝑡𝑒𝑠𝑡= 112 

subjects), which will be used for assessing the 
prediction accuracy of the estimated models.  

 
 

 

Estimating the Regression Models  
The regression models estimated parameters 

were obtained from the training data. Using all 

the predictors and the intercept, the p  x p  

matrix XTX is singular and so does not have an 
inverse. As a result, we cannot estimate β of 

equation (4) and the OLS model. The Ridge 
regularised estimate of β of equation (7), with the 

determined optimal value of λopt = 0.01 as shown 

in Fig 4(a), its standard error, the t-values and 
the p -values are presented in Table 1(a). 

 

 
 

  
From Fig. 4(a) the different values of lambda ( )  are on the x-axis, the least value of lambda  

( ) is the optimal and is obtained at the beginning of the curve shown by the arrow i.e between 0.0 

to 0.05, and λopt = 0.01 
  

Variable Estimate SE t-value P-value

Intercept 0.9024 0.3387 2.6644 0.0084

Age20-29 0.0701 0.1987 0.3529 0.7245

Age30-39 0.1789 0.1430 1.2511 0.2125

Age40-49 0.1432 0.1413 1.0131 0.3123

Age50-59 -0.0336 0.1659 -0.2023 0.8399

Age60-69 0.1316 0.2141 0.6146 0.5396

Age70-79 0.4121 0.3134 1.3150 0.1901

Male 0.6327 0.6712 0.9426 0.3471

Female 0.4357 0.6673 0.6530 0.5146

Single 0.3761 0.1769 2.1263 0.0348

Married 0.5263 0.1928 2.7291 0.0070

Stage 1 1.3566 0.2388 5.6808 0.0000

Stage 2 0.2614 0.1592 1.6414 0.1024

Stage 3 -0.7156 0.1549 -4.6202 0.0000

Mean Squared Error 0.8239

R Squared 0.3227

Lamda opt 0.0100

Residual Standard error 0.9412

Table 1(a) : Ridge Regression of Breast Cancer Data
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Fig 4 (a) : Optimal Lambda Determination for Ridge Regularization
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The Lasso regularized estimate of β of equation (16), with the determined optimal value of  
λopt = 0.04 as shown in Fig 4(b), its standard error, the t-values and the p -values are presented in 

Table 1(b). 

 

 
From Fig.4(b) the different values of lambda ( )  are on the x-axis, the least value of lambda  

( ) is the optimal and is obtained at the lowest part of the curve shown by the arrow i.e. between 0.0 

to 0.05, and λopt = 0.04 
The elastic net regularized estimate of β of equation (24), with the determined optimal value of λopt = 

0.02 and αopt =0.01 as shown in Figs 4(c) and 4(d), its standard error, the t-values and the  
p -values are presented in Table 1(c). 

 
  

Table 1 (b): Lasso Regression of Breast Cancer Data

Variable Estimate SE t-value P-value Variable Estimate SE t-value P-value

Intercept 0.2406 0.0088 27.3912 0.0000 Intercept 0.3207 0.0142 22.5253 0.0000

Age20-29 -0.0605 0.0571 -1.0591 0.2909 Age20-29 0.2450 0.2236 1.0955 0.2747

Age30-39 0.0538 0.0631 0.8514 0.3957 Age30-39 0.3538 0.1695 2.0874 0.0382

Age40-49 0.0095 0.0003 32.7941 0.0000 Age40-49 0.3181 0.1649 1.9288 0.0553

Age50-59 -0.1646 0.2085 -0.7891 0.4311 Age50-59 0.1420 0.0603 2.3543 0.0196

Age60-69 -0.0187 0.0012 -15.0659 0.0000 Age60-69 0.3063 0.2500 1.2250 0.2221

Age70-79 0.2783 0.4195 0.6632 0.5080 Age70-79 0.5864 0.3763 1.5583 0.1209

Male 0.6340 0.7643 0.8296 0.4079 Male 0.6342 0.7197 0.8811 0.3794

Female 0.4369 0.7635 0.5722 0.5679 Female 0.4373 0.7172 0.6097 0.5428

Single 1.5169 0.7801 1.9446 0.0533 Single 1.1155 0.7466 1.4942 0.1368

Married 1.6669 0.7964 2.0932 0.0377 Married 1.2657 0.7637 1.6574 0.0991

Stage 1 1.0066 0.3014 3.3397 0.0010 Stage 1 1.0226 0.3025 3.3807 0.0009

Stage 2 -0.0872 0.0004 -218.5425 0.0000 Stage 2 -0.0731 0.0002 -475.6012 0.0000

Stage 3 -1.0638 0.1411 -7.5380 0.0000 Stage 3 -1.0499 0.1414 -7.4229 0.0000

Mean Squared Error 0.8240 Mean Squared Error 0.8239

R Squared 0.3226 R Squared 0.3227

Lamda opt 0.0400 Lamda opt, alpha opt 0.02 0.0100

Residual Standard error 0.9413 Residual Standard error 0.9412

Table 1 (c): Elastic net Regularised Regression of Breast 

Cancer Data
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Fig 4 (b) : Optimal Lambda Determination for Lasso Regularization
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Fig 4 (c) : Optimal Lambda Determination for Elastic net Regularization
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From Fig.4(c) the different values of lambda ( )  are on the x-axis, the least value of lambda  

( ) is the optimal and is obtained at the lowest part of the curve shown by the arrow i.e between 0.0 

to 0.05, and λopt = 0.02 

 
From Fig.4(d) the different values of alpha ( )  are on the x-axis, the least value of alpha ( )   is the 

optimal and is obtained at the beginning of the curve shown by the arrow i.e between 0.0 to 0.05, and 
 opt = 0.01 

 
While the Ridge regression results presented in 

Table 1(a) indicate five variables as statistically 

significant determinants of survival time of cancer 
patients, the Lasso results show seven significant 

variables. The elastic net model indicates that 
eight variables are significant in determining the 

survival times of the breast cancer patients. The 
results indicate that Age60-69, stages 2 and 3 of 

the disease tend to shorten the survival times of 

the patients. In contrast, Age30-39, Age40-49, 
Age50-59, married and stage 1 of the disease 

tend to increase the patient survival time. Based 
on the R2 value, the Lasso model appears 

somewhat superior to the other two models. 

When four of the variables namely: Age20-29, 

Male, Single and Stage 2 of the disease, are 

dropped from the analysis, the resulting matrix 
XTX was able to have an inverse, and the resulting 

OLS estimated is shown in Table 2(a). Also, the 
regularized estimates for Ridge, Lasso and Elastic 

net are also given in Tables 2(b), 2(c) and 2(d), 
respectively. Apart from the lack of information 

on the other variables that were dropped from the 

analysis, all the results are very similar, indicating 
that the intercept, Stage 1 and Stage 3 of the 

disease are the only statistically significant 
variables in the determination of survival time of 

the breast cancer patients.
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Fig 4 (d) : Optimal Alpha Determination for Elastic net Regularization

Table 2 (a): OLS Regression of Breast Cancer Data Table 2 (b): Ridge Regression of Breast Cancer Data

Variable Estimate SE t-value P-value Variable Estimate SE t-value P-value

Intercept 2.3842 0.2603 9.1590 0.0000 Intercept 2.3826 0.2597 9.1751 0.0000

Age30-39 0.1163 0.2415 0.4814 0.6308 Age30-39 0.1171 0.2409 0.4863 0.6273

Age40-49 0.0809 0.2399 0.3372 0.7364 Age40-49 0.0817 0.2393 0.3413 0.7332

Age50-59 -0.0964 0.2608 -0.3696 0.7121 Age50-59 -0.0955 0.2602 -0.3671 0.7139

Age60-69 0.0694 0.3076 0.2258 0.8216 Age60-69 0.0703 0.3069 0.2292 0.8190

Age70-79 0.3460 0.4095 0.8449 0.3993 Age70-79 0.3463 0.4084 0.8477 0.3976

Female -0.1736 0.1672 -1.0380 0.3006 Female -0.1729 0.1671 -1.0345 0.3022

Married -0.1659 0.1470 -1.1283 0.2606 Married -0.1657 0.1470 -1.1272 0.2611

Stage 1 1.0876 0.2998 3.6282 0.0004 Stage 1 1.0868 0.2994 3.6292 0.0004

Stage 3 -0.9896 0.1395 -7.0933 0.0000 Stage 3 -0.9894 0.1395 -7.0940 0.0000

Mean Squared Error 0.8278 Mean Squared Error 0.8278

R Squared 0.3195 R Squared 0.3195

Residual Standard error 0.9335 Lamda opt 0.0100

Residual Standard error 0.9335
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The determined optimal λopt = 0.02 and αopt =0.19 as shown in Figs 5(a) and 5(b), for the Elastic net 
regularization that resulted in Table 2(d). 

 

 
From Fig.5(a) the different values of lambda (  ) are on the x-axis, the least value of lambda ( ) is 

the optimal and is obtained at the lowest part of the curve shown by the arrow i.e between 0.0 to 0.1, 

and λopt = 0.02 
 

 
From Fig.5(b) the different values of alpha ( )  are on the x-axis, the least value of alpha ( )   is the 

optimal and is obtained at the lowest part of the curve shown by the arrow i.e between 0.1 to 0.2, and 
 opt = 0.19 

 

 

Table 2 (c): Lasso Regression of Breast Cancer Data Table 2 (d): Elastic net Regression of Breast Cancer Data

Variable Estimate SE t-value P-value Variable Estimate SE t-value P-value

Intercept 2.3915 0.2882 8.2991 0.0000 Intercept 2.3835 0.3439 6.9310 0.0000

Age30-39 0.1087 0.3137 0.3466 0.7293 Age30-39 0.1166 0.4094 0.2848 0.7761

Age40-49 0.0736 0.3791 0.1941 0.8463 Age40-49 0.0812 0.5122 0.1585 0.8742

Age50-59 -0.1041 0.3592 -0.2898 0.7723 Age50-59 -0.0961 0.5441 -0.1765 0.8601

Age60-69 0.0594 0.2206 0.2693 0.7880 Age60-69 0.0698 0.3982 0.1753 0.8610

Age70-79 0.3378 0.4477 0.7545 0.4515 Age70-79 0.3461 0.5090 0.6799 0.4974

Female -0.1752 0.1712 -1.0232 0.3075 Female -0.1733 0.1747 -0.9920 0.3225

Married -0.1647 0.1536 -1.0721 0.2850 Married -0.1657 0.1607 -1.0309 0.3039

Stage 1 1.0871 0.3017 3.6033 0.0004 Stage 1 1.0873 0.3026 3.5935 0.0004

Stage 3 -0.9892 0.1407 -7.0328 0.0000 Stage 3 -0.9894 0.1424 -6.9490 0.0000

Mean Squared Error 0.8278 Mean Squared Error 0.8278

R Squared 0.3195 R Squared 0.3195

Lamda opt 0.0100 Alpha opt, Lambda opt 0.19 0.0200

Residual Standard error 0.9335 Residual Standard error 0.9335
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Fig 5(a): Optimal Lambda Determination for Elastic Net Regularization
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Fig 5(b): Optimal Alpha Determination for Elastic Net Regularization
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Prediction Accuracy of the Estimated 
Models 

We shall apply the estimated models based on the 

training dataset to assess the prediction accuracy 
of the regularized Ridge, Lasso and Elastic net as 

compared to the OLS model using the testing set 
comprising of   𝑛𝑡𝑒𝑠𝑡= 112 patients. As we have 

seen in Section 3, the OLS model could not be 

estimated if all the variables are included because 
of multi-collinearity. This suggests that when all 

the variables are included, the regularized Ridge, 

Lasso or Elastic net should be used. Based on the 
estimated parameters presented in Tables 1(a), 

1(b) and 1(c), we predict the log of the survival 
times of the 112 patients that are used as testing 

set using the models: 

                                   ( , ) ( )regularisedY X                               (28) 

and the associated MSE values 

   ( , ) ( , ) test( , ) ( ) ( ) / nTMSE Y Y Y Y                                  (29) 

The regularized model can be either Lasso or 
Ridge when α = 0 and λ > 0 and Elastic net when 

both λ and α are greater than zero. The R version 

4.1.1 package was used for all the computations 
and the developed R codes are with the authors 

and available on request. The predicted results 
for Ridge, Lasso and Elastic net when all the 

variables and the constant are included are 

presented in Figs 6(a), 6(b) and 6(c), 
respectively. 

 

 
Fig. 6(a) depict the plot of log of survival times against the breast cancer cases for actual and predicted 

values using Ridge regression model. 
 

 
Fig. 6(b) depict the plot of log of survival times against the breast cancer cases for actual and predicted 

values using Lasso regression model. 
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Fig 6 (a): Predicted and actual log of Survival times  using Ridge Regularization
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Fig 6 (b): Predicted and actual log of Survival times  using Lasso Regularization
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Fig. 6(c) depict the plot of log of survival times against the breast cancer cases for actual and predicted 
values using Elastic net regression model. 

 

 
Fig. 7(a) depict the plot of log of survival times against the breast cancer cases for actual and predicted 
values using OLS regression model after dropping four variables (Age20-29, Male, Single and Stage2). 

 
Using the computed MSE values, the Lasso model 

produced the least MSE of 0.832178, followed by 

Elastic net model with MSE value of 0.83274, with 
the Ridge model reporting the highest MSE value 

of 0.83283. From these results it is clear that the 
Lasso model would be preferable to the other two 

models. However, with the four variables: - 
Age20-29, Male, Single and Stage2, of the 

disease dropped, the predicted and the actual 

values are presented in Figs 7(a), 7(b), 7(c) and 

7(d), respectively for the OLS, Ridge, Lasso and 

Elastic net models.  

The Lasso model maintains its superiority over 
the other three models with computed MSE value 

of 0.833866. This is followed by Ridge with MSE 
value of 0.834409, Elastic net with MSE value of 

0.834471 and the OLS model with MSE value of 
0.834507. Thus, using the reduced model, the 

three regularized models are all superior to the 

OLS model. 
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Fig 6 (c): Predicted and actual log of Survival times  using Elastice net 
Regularization

Actual Elastic_P

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

Lo
g o

f S
ur

viv
al 

Tim
es

 

Breast Cancer Patients

Fig 7(a): Actual and Predicted Log of Survival Times Using OLS  Regression
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Fig. 7(b) depict the plot of log of survival times against the breast cancer cases for actual and predicted 
values using Ridge regression model after dropping four variables (Age20-29, Male, Single and Stage2). 

 
Fig. 7(c) depict the plot of log of survival times against the breast cancer cases for actual and predicted 
values using Lasso regression model after dropping four variables (Age20-29, Male, Single and Stage2). 

 

 
 

Fig. 7(d) depict the plot of log of survival times against the breast cancer cases for actual and predicted 

values using Elastic net regression model after dropping four variables (Age20-29, Male, Single and 
Stage2). 
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Fig 7(b): Actual and Predicted Log of Survival Times Using Ridge  Regression
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Fig 7(c): Actual and Predicted Log of Survival Times Using Lasso  Regression
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CONCLUSION 
The Ridge, Lasso and Elastic net regularized 

models outperform the linear regression model in 

terms of prediction accuracy and information 
content on the predictor variables. The 

regularised models by design ensured that all the 
predictor variables can be used in estimating the 

model. On the regularized models, Lasso model 

appeared superior to Ridge and Elastic net 
models. The results of our study have shown that 

of the 14 variables used, eight are significant 
factors of breast cancer determination. In this 

study, we found that breast cancer patients in age 

group 60-69, that are in Stage 2 and Stage 3 of 
the disease have lower survival times and 

therefore have higher risk of dying from the 

disease. In contrast, patients that are either 
single or married and are in Stage 1 of the disease 

have longer survival times and hence lower risk 
of dying from the disease. 

It is, therefore, recommended that the Federal 

and State Ministries of health should embark and 
sustain awareness campaigns about the breast 

cancer in the population in order for the sufferers 
to be detected and treated early, so as to improve 

the survival status.  
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