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INTRODUCTION 

Cancer is one of the leading causes of death 
worldwide, accounting for an estimated 10 

million deaths in 2020 (WHO, 2021). It has been 
projected that by 2030, cancer will surpass heart 

disease as the leading cause of death in some 

countries like Australia, Canada, the UK, New 
Zealand, and Denmark (Wishart, 2015). It is a 

disease that begins when the body has lost 

control of the cells or due to damages or defects in 

genes involved in cell division which is the rapid 
creation of abnormal cells that grow beyond their 

usual boundaries; a process referred to as 

metastasis. During metastasis, disseminating 
cancer cells escape from primary tumors and 

acquire cellular traits that allow them to travel and 
colonize distant organs (Chambers & Werb, 

2015). Understanding the mechanism of cancer 

progression is necessary for its diagnosis and 
treatment, thus researchers have developed 

mathematical models to understand and predict 
how cancer cells evolve and respond to therapy 

(Lingeshwaran & Puthur, 2018).  According to 
Byrne (1999a), to develop an effective cancer 

treatment, it is important to identify the 

mechanisms controlling cancer growth. The 
interactions between tumor cells and other 

components of the tumor micro-environment 
such as immune cells, fibroblasts, and other 

connective tissue cells are complex and 

continuously changing because interaction 
strengths are density-dependent. Consequently, 

understanding these interactions sufficiently to 
derive cancer immunotherapies (e.g., vaccines), 

has proven a very challenging task (Gajewski, 

2007).  In the area of developmental Biology, 

partial differential equations for pattern formation 

usually take the form of reaction-diffusion type 

(Turing, 1952). The effect which diffusion has on 
pattern formation in reaction-diffusion systems 

has been discussed by Turing (1952). Since then, 

more attention has been paid to theoretical 
models to explain pattern formation in many 

areas especially Biology (Zheng & Jianwei, 2014). 
It is pertinent to note that for a two-component 

reaction-diffusion system, a key requirement for 

diffusion-driven instability is the concept of 
long-range inhibition and short-range activation 

(Gierer & Meinhardt, 1972).  
In this paper, we modified the model presented 

by Wilkie and Hahnfeldt (2013) by adding 
diffusion. We further assumed cancer and 

immune cells sub-populations to be governed by 

Gompertzian growth function. 
Growth processes have often been characterized 

by a sigmoidal curve reflecting an initial relatively 
slow growth rate, increasing to a maximum and 

then slowing down to approach an upper limit. It 

has frequently been used to describe growth in 
size across time. The most common mathematical 

forms used to model human size as a function of 
age include the logistic and the Gompertz curves. 

The Logistic curve, however, locates the point of 

inflection in terms of maximum growth rate 
exactly half-way between the initial and final size 

and the rate is imputed as symmetrical on either 
side of this. However, limiting feature of the 

logistic curve is that the location of the point of 

inflection in terms of maximum growth rate is 

exactly half-way between the initial and final size 

and the rate is imputed as symmetrical on either 
side of the midpoint (Michelle, 2012). 
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ABSTRACT 
Pattern formation is very broad in nature, and understanding the causes of its 
generation has greatly advanced over the past decades. In this paper, we investigate 
Turing pattern formation in a cancer-immune cells interaction which is spatially 
distributed. We derived conditions under which Turing patterns emerged due to 
diffusion-driven instability. Numerical results revealed the formation of isolated 
groups such as spotted and stripe-like patterns due to the cells interaction. 
Furthermore, the results have shown that the model exhibited patterns due to 
cross-diffusion.  
Keywords:  Cancer cells; Immune cells; Reaction Diffusion; Turing pattern; 
Cross-Diffusion; Bendixson-Dulac criterion. 
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The Gompertzian equation originated from the 
actuarial model developed by Gompertz 

(Gompertz, 1825), and was applied to the study of 

growth in biological and economic contexts in 

1932. Laird (1964) showed that the Gompertzian 

equation could describe the normal growth of an 
organism such as the guinea pig over an 

incredible 10 000-fold range of growth because of 
the equation’s ability to exhibit exponential 

retardation-a feature not incorporated in other 

growth equations used in biological contexts at 

that time such as the logistic equation. 

Researchers have fitted the Gompertz growth 
function to different models such as plant growth, 

bird growth, fish growth, and growth of other 

animals, to tumour growth and bacterial growth 
(Tjørve & Tjørve, 2017). 

This paper is organized as follows. In Section 2, 

we formulate the model with some stability 
analysis. Results and discussion are reported in 

Section 3. 

MODEL FORMULATION 

The Gompertz model is one of the most frequently 

used sigmoid models fitted to growth data and 
other data, perhaps only second to the logistic 

model (Tjørve & Tjørve, 2017). Researchers have 
fitted the Gompertz model to different growth 

data sets from plant, bird, fish, and other animals, 

to tumor and bacterial growths (Tjørve & Tjørve, 

2017) and was found to fit data more accurately. 

We consider two populations of cells namely 
cancer cells, �(�), and immune cells, �(�). Cancer 

and immune cells are assumed to grow according 

to a Gompertz growth function.  Thus, we 
consider the model: 

 

 

��	 �(
, �) = 
�ln ���� � − ���� + ���� Δ� + ���� Δ�,
��	 �(
, �) = �(�� + �)ln �� ! � + ���� Δ� + ���� Δ� "#

$         (2.1) 

  
 �(0) = ��,        �(&) = ��, 

 
 
, '� , ��, �, �, '! > 0. 

where 
  is cancer proliferation rate, �  is 

immune proliferation rate, ��  is predation 

strength, � is cancer infection rate, '� is cancer 

carrying capacity, '!  is immune carrying 

capacity, the positive constants ���� ,  ����  are the 

self-diffusion coefficients and ���� , ����  are called 

the cross-diffusion coefficients, which imply that 
one-species molecules tend to diffuse along the 

direction of lower concentration of the other 

specie molecules. Δ = �*�+* + �*�,* is the Laplacian 

operator in the two-dimensional space, which 

describes the random movement of molecules in 

the cell. 
 

Existence of Equilibrium Points 

In this section, we establish the existence of the 

equilibrium points of the system. By equating the 
non-spatial part of system (2.1) to zero, we find 

that the system has 4 possible nonnegative 

equilibria, namely -��(0,0), -��('� , 0),  -��(0, '!) 
and the co-existence equilibrium -.� / ��0123 4 , '!5. -��(0,0) is trivial as both the cancer and immune 

cells are absent. -��('� , 0) corresponds to zero 

immune presence, -��(0, '!) corresponds to zero 

cancer presence and -.� / ��0123 4 , '!5 corresponds 

to a state allowing both the cancer and immune 

cells to co-exist. The focus of our analysis will be 
on the co-existence of the cancer and immune 

cells given by  

 -.� = / ��03 124 , '!5.    (2.2) 

 

Local Stability Analysis without Diffusion 

In this section, to show the Turing mechanism of 
how patterns are formed (Turing instability), we 

establish the local stability analysis for 

steady-state and seek conditions on the 

emergence of Turing patterns. 
 

Theorem 2.1  The positive co-existence 
equilibrium point (2.2) of the system (2.1) 
(without cross-diffusion) is locally asymptotically 
stable.  
Proof. Note that the Jacobian matrix for the 

system of equation (2.1) is

 

 

 6� = 7
ln ���� � − 
 − ��� −���
��ln �� ! � �ln �� ! � − 8(�9:!)!

; 

 Evaluating the Jacobian matrix at the positive co-existence equilibrium (2.2), we get 
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 6�(-.�) =
<=
==
=>−
 − ?2��03 124

0 − 8@ A3�
B3 124 :� C

� DE
EE
EF
 (2.3) 

 

where,  
 6��� = −
 (2.4) 

 6��� = − ?2��03 124  (2.5) 

 6��� = 0 (2.6) 

 6��� = − 8@ A3�
B3 124 :� C

�  (2.7) 

The local stability for system (2.1) exist since we have  
 �G(6�) < 0 (2.8) 

 

 
 �I�(6�) > 0 (2.9) 

 

Hence, since (2.8) and (2.9) are satisfied for (2.3), then the positive equilibrium points of the system are 
said to be locally asymptotically stable.  

Local Stability Analysis with Self-Diffusion 
For the local stability analysis with self-diffusion, the spatial model (2.1) is reduced to the following 

standard R-D equations 

 

 

��	 �(
, �) = 
�ln ���� � − ���� + ���J Δ�,
��	 �(
, �) = �(�� + �)ln �� ! � + ���J Δ�  (2.10) 

 

For this simplified model, we can prove:  
 

Theorem 2.2  The positive steady state -.� of (2.10) is locally asymptotically stable.  
Proof. At the positive steady state -.�, the linearization of equation (2.10) is 

 

 

��	 �(
, �) = 6��� � + 6��� � + ���� Δ�,
��	 �(
, �) = 6��� � + 6��� � + ���� Δ�  (2.11) 

 
Following Malchow et al. (2008), any solution of (2.11) can be expanded into Fourier series so that  

 
�(
, �) = ∑LM,NO� �MN(
, �) = ∑LM,NO� 
M,N(�)sin'
�(
, �) = ∑LM,NO� �MN(
, �) = ∑LM,NO� RM,N(�)sin'
 S (2.12) 

where 0 < 
 < T+ and 0 < U < T, T+ and T, giving the size of the system in the directions of 
 and U  respectively. ' = (VM, VN)  where VM = WX/T+  and VN = WZ/T,  are the corresponding 

wavenumbers. 

Using system (2.12), system (2.11) becomes 
 

 
[[	 
M,Nsin'
 = ���� Δ\
M,N(�)sin'
] + 6��� \
M,N(�)sin'
] +                                                           6��� \RM,N(�)sin'
] 

 
[[	 RM,Nsin'
 = ���� Δ\RM,N(�)sin'
] + 6��� \
M,N(�)sin'
] +                                                           6��� \RM,N(�)sin'
] 

  

 
[[	 
M,Nsin'
 = −���� '�
M,Nsin'
 + 6��� 
M,Nsin'
 + 6��� RM,Nsin'
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[[	 RM,Nsin'
 = −���� '�RM,Nsin'
 + 6��� 
M,Nsin'
 + 6��� RM,Nsin'
 

 

 

 

[[	 
M,N = −���� '�
M,N + 6��� 
M,N + 6��� RM,N
[[	 RM,N = −���� '�RM,N + 6��� 
M,N + 6��� RM,N

^ (2.13) 

 
 

 
[[	 _
M,NRM,N ` = /6��� − ���� '�        6���      6��� 6��� − ���� '�5 _
M,NRM,N ` (2.14) 

 

A general solution of (2.13) has the form �?Iab	 + �cIa*	 , where the constants �?  and �c  are 

determined by the initial conditions and the exponents d�,� are the eigenvalues of the following matrix: 

 

 ef� = /6��� − ���� '�        6���       6��� 6��� − ���� '�5 (2.15) 

 
 

 g� = /���� 00 ���� 5 

 

where g� are the entries for the self-diffusion coefficients. 

The eigenvalues d�,� of (2.15) satisfy the following characteristics polynomial  

 d� − Zd + X = 0 (2.16) 

 

 where  
 Z = �G(ef�) = 6��� − ���� '� + 6��� − ���� '� 

           = −�h�11'� − ���� '� + 6��� + 6���  

                        = −(���� + ���� )'� + (6��� + 6��� ) 
           = −(���� + ���� )'� + �G(6�) < 0 

 
 Therefore, �G(ef�) < 0 where ���� , ���� ∈ ℝ:. 

 
 X = �I�(ef�) = (6��� − ���� '�)(6��� − ���'�) − 6��� 6���  
                            = 6��� 6��� − 6��� ���� '� − 6��� ���� '� + ���� ���� 'k − 6��� 6���  
                            = �I�(g�)'k − (6��� ���� + 6��� ���� )'� + �I�(6�) > 0 

 �I�(g� ), �I�(6�), ���� , ���� > 0 and 6��� , 6��� < 0. Therefore, �I�(ef�) > 0. 

Thus, we have �G(ef�) < 0 < �I�(ef�). Hence, the proof is completed.  

 
Local Stability Analysis with Self-Diffusion and Cross-Diffusion 

For the local stability analysis with self-diffusion and cross-diffusion, the general representation of the 

linearized form of (2.1) about (2.2) is as follows: 

 

 

��	 �(
, �) = ���� Δ� + ���� Δ� + 6��� � + 6��� �
��	 �(
, �) = ���� Δ� + ���� Δ� + 6��� � + 6��� � (2.17) 

 
 

 g� = l���� �������� ���� m,        6� = l6��� 6���6��� 6��� m ,        n = o�� p 
 where  

 ���� , ����   are the self − diffusion coefficients 
 

 ���� , ����   are the cross − diffusion coefficients 
 

 6{,| , }, ~ = 1,2  are the cofactors of the linearized Jacobian matrix 
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 Using system (2.12), system (2.17) becomes 
 

 
[[	 
M,Nsin'
 = ���� Δ\
M,N(�)sin'
] + ���� Δ\RM,N(�)sin'
] 

                               +6��� \
M,N(�)sin'
] + 6��� \RM,N(�)sin'
] 

 
[[	 RM,Nsin'
 = ���� Δ\
M,N(�)sin'
] + ���� Δ\RM,N(�)sin'
] 

                               +6��� \
M,N(�)sin'
] + 6��� \RM,N(�)sin'
] 

 

 

 
[[	 
M,N = −���� '�
M,N − ���� '�RM,N + 6��� 
M,N + 6��� RM,N 

 
[[	 RM,N = −���� '�
M,N − ���� '�RM,N + 6��� 
M,N + 6��� RM,N 

 
[[	 _
M,NRM,N ` = /6��� − ���� '� 6��� − ���� '�6��� − ���� '� 6��� − ���� '�5 _
M,NRM,N ` 

 �f� = /6��� − ���� '� 6��� − ���� '�6��� − ���� '� 6��� − ���� '�5 

 �� = /���� �������� ���� 5 

 
where �� are the entries for the self-diffusion and cross-diffusion coefficients. 

 
 �G(�f�) = 6��� − ���� '� + 6��� − ���� '� 

                = −(���� + ���� )'� + �G(6�) < 0 

 
 
 �I�(�f�) = (6��� − ���� '�)(6��� − ���'�) − (6��� − ���� '�)(6��� − ���� '�) 
                   = �I�(��)'k − (6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� )'� + �I�(6�) 

 

Diffusive instability occurs when at least one of the following conditions is true  
 �G(�f�) = −(���� + ���� )'� + �G(6�) > 0 (2.18) 

  
 �I�(�f�) = �I�(��)'k − (6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� )'� + �I�(6�) < 0 (2.19) 

 
The first condition will not be satisfied since ���� , ���� ∈ ℝ: and by (2.8), �G(�f�) < 0. 

Thus if we want the system to become unstable, we need (2.19) to be true. We look for ' > 'N{M where 'N{M is the first mode that can cause instability, i.e. 

Let � = '� , then  

 ℎ(P) = �I�(��)�� − (6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� )� +   �I�(6�) < 0 (2.20) 

 
Now equation (2.20) will be quadratic in � which is a parabola that opens up since �I�(��) is positive. 

To find the minimum value of ℎ(�), we set the derivative with respect to � equal to zero:  

 
[�(�)[� = 2�I�(��)� − (6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� ) = 0 

 or  

 '�� = �bb� [**� :�**� [bb� ��*b� [b*� ��b*� [*b��[0	(��)  

To find the minimum value, substitute this expression for � into (2.20).  

 ⇒ �I�(��) ��bb� [**� :�**� [bb� ��*b� [b*� ��b*� [*b��[0	(��) �� − (6��� ���� + 6��� ���� − 6��� ����  

    −6��� ���� ) ��bb� [**� :�**� [bb� ��*b� [b*� ��b*� [*b��[0	(��) � + �I�(6�) < 0 

 ⇒          6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� > 2��I�(��)�I�(6�) 
  

Hence for Turing instability to occur, the following conditions must be satisfied  
                       �G(6�) < 0 (2.21) 

                      �I�(6�) > 0 (2.22) 

 6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� > 0 (2.23) 

 6��� ���� + 6��� ���� − 6��� ���� − 6��� ���� > 2��I�(��)�I�(6�) (2.24)  
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Remark 2.1 In the absence of cross-diffusion, 
the system (2.17) is stable as it satisfies the 
stability conditions (2.21) and (2.22). This will 
hold for any positive value of ����  and ���� .   
Remark 2.2 With self-diffusion, the RD system is 
stable as it satisfies the stability conditions (2.21) 
and (2.22) being that the second term of �I�(ef�) 
will be positive as 6��� , 6��� < 0 (2.4 and 2.7) and ���� , ���� > 0. Therefore, �I�(ef�) will always be 
positive for all ���� , ���� ∈ ℝ:.  
Remark 2.3 With self-diffusion and 
cross-diffusion, the RD system needs to satisfy 

the conditions for Turing instability to hold. The 
trace �G(�f� ) will remain negative but the 
determinant �I�(�f� ) is uncertain. Hence we 
proceeded to show the sufficient conditions for �I�(�f�) < 0 to hold which resulted to conditions 
(2.23) and (2.24).  
Global Stability Analysis  

Theorem 2.3  Suppose ��(�, �) = ��! is a Dulac 

function, then the system (2.1) is globally 
asymptotically stable.  

 
Proof. Define Dulac function  

 Φ(�, �) = ��!         �, � > 0, 
and denote the right-hand side of system (2.1) by Θ(�, �), Ψ(�, �). We have  

 �}�(ΦΘ, ΦΨ) = ����� + ����!  

            = ��� o ��! �
�ln ���� � − �����p 
              +  ��! o ��! _�(�� + �)ln �� ! �`p 
            = − (�:8)�! − 89(�:� (3  ))!* < 0 

Thus, system (2.1) does not have limit circle in Ω and by Bendixson-Dulac’s criterion, the positive 

equilibrium points of the system (2.1) is globally asymptotically stable.  

 

RESULTS AND DISCUSSION 
In this paper, we consider a zero-flux boundary 

condition with region defined as a square, then 
we discretize the space and time in which the 
square is divided as e ¢ �  lattice site domain 

with ℎ length of lattices and time step ℎ�. The 

system size is set at 100 ¢ 100 with time step 1/1000  and space stepsize 
N?+ = 1/100 . We 

study the spatiotemporal dynamics of a 

cancer-immune cell interaction model with 

cross-diffusion under the zero-flux boundary 
conditions. We show that the Turing instability 

can be induced by cross-diffusion, which shows 
that the model dynamics portray patterns 

controlled by the diffusion coefficients. As one of 
our objectives is to investigate the influence of 

cross-diffusion on the cancer-immune model, the 
value of the cross-diffusion coefficients maybe 

positive, negative, or zero. The term positive 

cross-diffusion coefficient denotes the movement 

of the species in the direction of lower 

concentration of another species and negative 
cross-diffusion coefficient denotes that one 

species tends to diffuse in the direction of higher 
concentration (Gui-Quan, 2012). 

We simulated the model using the parameter 

values given in Table (1) and ensured all the 

Turing conditions were satisfied.

   

Table  1: Parameter values and description 

 Parameters  Description  Values Reference 
 Cancer proliferation rate 0.2 Wilkie and Hahnfeldt (2013) � Immune proliferation 
rate  

0.00002 Assumed 

�� Predation strength  0.0001 Wilkie and Hahnfeldt (2013) � Cancer infection rate  1.5 Assumed '� Cancer carrying capacity 100 Assumed '! Immune carrying 
capacity 

100 Assumed 

��� Self-diffusion coefficient 50 Assumed ��� Cross diffusion 
coefficient  

-1 Assumed 

��� Cross diffusion 

coefficient  

7000 Assumed 

��� Self-diffusion coefficient 50 Assumed 
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In the numerical simulations, different types of 
dynamics were observed. The patterns generated 

show that the distribution and interaction of 

morphogens are caused by diffusion. The shade 

of the color represents the concentration of 

morphogen protein in the cells and it is found that 
the red corresponds to high, and blue 

corresponds to the low concentrations of cancer 
and immune cells respectively. 

In Figures 1 and 2, spot patterns were observed in 

the immune cell population compared to the 

cancer cell population. There are more 
morphogen concentrations in the immune cells 

population when compared to the cancer cells 

population. In Figure 3, we observed a significant 

change in the patterns formed. Here, the cancer 

cross-diffusion coefficient is -2, which means 
there is more diffusion to an area of higher 

concentration while we have the immune 
cross-diffusion coefficient to tend to diffuse more 

to an area of lower concentration. 

 

   
Figure  1:  Turing Patterns of cancer-immune model with Gompertzian growth (2.1) for £¤¤ = ¥¦, £¤§ = −¤, £§¤ = ¨¦¦¦, £§§ = ¥¦, © = ¦. ª 

   

 

   
Figure  2:  Turing Patterns of cancer-immune model with Gompertzian growth (2.1) for £¤¤ = §¦¦, £¤§ = −§, £§¤ = ¨¥¦¦, £§§ = §¦¦, © = ¦. ª 

   

   
Figure  3:  Turing Patterns of cancer-immune model with Gompertzian growth (2.1) for £¤¤ = §¥¦, £¤§ = −§, £§¤ = «¦¦¦, £§§ = §¥¦, © = ¦. ª 
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From our results related to cross-diffusion on 

cancer-immune cell population, we hope that it 

will suggest new empirical and theoretical studies 

and make a bridge for further study. We believe 

that theoretical and experimental studies and 

constructive criticisms will clarify the actual 

mechanisms that take place in real biological 

systems. 
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