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ABSTRACT 
Consolidated functionalized carbon nanotubes/silica refractory ceramic nanocomposites 
(FCNTs/silica) were fabricated by pressureless sintering technique. Thermal conductivity 
of the nanocomposites with various amounts of carbon nanotubes (0, 1, and 4 wt.%) 
were investigated. The thermal conductivity increases with temperature, 1 wt. % 
FCNTs/silica nanocomposite gave the highest thermal conductivity. Therefore, it can be 
concluded that the carbon nanotubes (CNTs) are promising reinforcement for improving 
thermal conductivity of the silica refractory ceramics. 
Keywords: Silica; carbon nanotubes; pressureless sintering; nanocomposites; thermal 
conductivity. 

 
INTRODUCTION 

Due to their remarkable functional properties; 
such as excellent electrical conductivity 
(Bandaru, 2007; Kaushik & Majumder, 2015; 
Lekawa-Raus et al., 2014), and high thermal 
conductivity (Berber et al., 2000; Kwon & Kim, 
2006); for instance, electrical conductivity; 106 
S/m at 300 K for SWNTs, >105 S/m for MWNTs, 
and high thermal conductivity; 6600 W/ m K for 
singlewalled carbon nanotubes (SWNTs), and 
>3000 W/ m K for multiwalled carbon nanotubes 
(MWNTs) (Baughman et al., 2002; Biercuk et al., 
2002), carbon nanotubes (CNTs) are considered 
to be among the most promising reinforcement 
employed in many applications such as 
fabrication of composites, where the CNTs serve 
as fillers and binders to enhance the mechanical, 
electrical, and thermal properties (Ajayan et al., 
2000; Asl et al., 2016; Biercuk et al., 2002; 
Islam et al., 2018; Kilbride et al., 2002; Kumari 
et al., 2008; Wan et al., 2015). 
Silica refractory material depending on its 
physical and functional properties can be 
considered as a good heat conductor (at high 
temperatures) and could be used extensively in 
the construction of coke ovens. Some reported 
thermal conductivities of silica refractory bricks 
are: 1.26 W/ m K, 1.67 W/ m K, and 2.09 W/ m 
K at 300oC, 700oC, and 1100oC respectively 
(Chesti, 1986). It has been reported that 
increased in density of the silica refractory 
bricks, would definitely improve the thermal 

conductivity property of the bricks with the 
addition of fumed silica micro-particles, titania 
micro/nano-particles, controlling the ratio of 
tridymite/cristobalite to approximately 1 – 1.2 on 
a coarse-crystalline raw material basis, and 
modifying the brick manufacturing process; by 
using a granular mineral having at least 95 wt. 
% of SiO2 with maximum grain size of 3 mm and 
no more than 3 wt. % of CaO, by increasing the 
molding time or applying molding pressure 
gradually while molding, and by gradual increase 
in temperature when firing and exposing the 
brick to long curing time at the highest possible 
sintering temperature (Brunk, 2000; Mahler et 
al., 1971; Manivasakan et al., 2010; Mccreight et 
al., 1964). Apart from enhancement in thermal 
conductivity, other additional benefits that could 
be derived due to the improved densification 
are, a greater strength, increased abrasion 
resistance, and low porosity (Mccreight et al., 
1964). 
The vast majority of the most recent researches 
conducted on CNTs-reinforced ceramic 
composite dwelled on the engineering ceramics 
and investigated the effect of CNTs addition to 
mechanical and electrical properties (Bai & Xie, 
2017; Barmin et al., 2016; Chen et al., 2018; 
Chen et al., 2015; Chen et al., 2015; Han et al., 
2017; Jin et al., 2018; Lin et al., 2016; Lin et al., 
2016; Lin et al., 2018; Lin et al., 2018; Mei et 
al., 2017; Yang et al., 2018; Yang et al., 2016). 
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Only a few studies were conducted on thermal 
properties; heat capacity, thermal diffusivity, 
and thermal conductivity of CNTs/ceramic 
nanocomposites (Cao et al., 2020; Chen et al., 
2017; Jiang & Gao, 2008; Kumari et al., 2008; 
Ning et al., 2003; Pöhls et al., 2019; Shin et al., 
2018; Sivakumar et al., 2007; Zhan & 
Mukherjee, 2004), out of which very few are of 
recent. For most of these SWNTs/MWNTs-
reinforced ceramic composites, for evaluation of 
the thermal properties, the nanocomposites 
were fabricated by spark plasma sintering (SPS). 
As a novel study, this is the first research that 
attempts to determine thermal conductivity of 
the CNTs/crystalline silica ceramic employing 
also for the first time pressureless sintering 
technique for consolidation. CaO has been 
utilized as a potential binder and mineralizer in 
the manufacture of conventional silica refractory 
(Brunk, 2000; Brunk, 2001; Manivasakan et al., 
2010). Also, it has been employed as a versatile 
and suitable catalyst support in the synthesis of 
carbon nanotubes from carbon dioxide feedstock 
(Xu & Huang, 2007). Hence, CaO would be 
chemically compatible and can be a potential 
binder for the silica matrix and the CNTs. 
 

MATERIALS AND METHODS 
Materials 
Pristine multiwalled carbon nanotubes 
(PMWNTs) (CVD-grown, > 98 % purity, 10 – 20 
nm diameter, and 10 – 30 µm length) were 
received from the Chengdu Organic Chemicals 
Co., Ltd, Chinese Academy of Sciences (Sichuan 
Sheng, China). As-mined silica and clay both 
obtained from Gezawa quarry (Kano, Nigeria); 
the silica has been purified, crushed, ground, 
and pulverized (processed) using crushers, ball 
mill, and pulverizer at National metallurgical 
development centre NMDC (Farar-gada, Jos, 
Nigeria). CaO powder (ChemPur®, SYSTERM) 
was purchased from Classic Chemicals Sdn Bhd 
(Selangor, Malaysia). 
Production of FCNTs/silica nanocomposite pellets 
As-processed and graded (d(0.5) = 20.166 µm, 
using Malvern particle analyzer) silica, clay with 
size < 75 µm and CaO powder were added to 
portion of the stable suspension of FCNTs as 
prepared elsewhere (Tijjani et al., 2018). These 
were thoroughly mixed, cold pressed under 90 – 
100 MPa for 2 min, into specimen pellets 
dimensioned �∅11�� × 2�� ℎ	
�ℎ�  using 
uni-axial hydraulic press and dried at 150oC for 
24 hours. Then, the as-fabricated 
nanocomposite pellets; 0 wt. % FCNTs + S 
(SC*-0), 1 wt. % FCNTs + S (SC*-1), and 4 wt. 
% FCNTs + S (SC*-4) were subjected to thermal 
diffusivity and specific heat capacity tests. 
Where S stands for silica plus sintering aids 

(CaO + clay); to hasten the polymorphic 
conversion of quartz to cristobalite and tridimite. 
C for functionalized carbon nanotubes, * means 
all pellets  are unsintered and without * means 
all sintered. 
Determination of thermal diffusivity (�� of 
densified nanocomposite pellets: 
The as-dried pellets dimensioned ∅11�� ×
2�� ℎ	
�ℎ�; for (SC*-0), (SC*-1) and (SC*-4) 
were consolidated by pressureless sintering 
technique under argon atmosphere at 1450oC 
for 2 h with a heating rate of 5oC/min. The 
sintered pellets were then subjected to thermal 
diffusivity test using Laser Flash Apparatus LFA 
457 Micro Flash. The procedure and the values 
obtained are as explained by Tijjani (2018). 
Determination of specific heat capacity ���� of 

densified nanocomposite pellets: 
Thermo-analytical measurements were 
performed on the unsintered powdered 
FCNTs/silica �∅11�� × 2�� ℎ	
�ℎ� pellets; 
SC*-0, SC*-1, and SC*-4 by TGA/DSC analyzer, 
in a dynamic air atmosphere, using respective 
weights of 10.1428 mg, 10.1151 mg, and 
10.0158 mg in aluminium crucible 70 ��. 
Heating has been done at the rate of 20 K min-1 
from room temperature (RT) to 1450oC. The 
procedure and the values obtained are as 
reported by Tijjani (2018). 
Determination of bulk density ��) of densified 
nanocomposite pellets: 
The bulk density was determined by Archimedes’ 
method. The values obtained for the densified 
samples; SC-0, SC-1 and SC-4 are 1.74 ±
0.00 � ���⁄ , 1.74 ± 0.01 � ���⁄  !" 1.72 ±
0.00 � ���⁄ #	$%	��
&	'( (Tijjani, 2018). 
Determination of thermal conductivity �) of 
densified nanocomposite pellets: 
The thermal conductivities (k) of the 
nanocomposites were determined by calculation 
using Equation 1 and the values of 
��, ��  !" � above for SC-0, SC-1 and SC-4.  

) = �����      �1 
RESULTS AND DISCUSSION 

Thermal Conductivity of FCNTs/silica bricks 
The thermal conductivities of FCNTs/silica 
nanocomposites are calculated based on the 
equation 1. The plots are as shown in Figure 1. 
Thermal conductivity increases with increased 
temperature for all FCNTs/silica bricks under the 
temperature range considered. SC-1 has the 
highest thermal conductivity of the three blends. 
It reported an enhancement of more than 130% 
as compared to that of unreinforced silica brick 
(SC-0) at 117oC. At 163oC, this amount is almost 
doubled > 240%. The same trend has been 
reported for MWNTs-TiN composite; in which, at 
100oC, a lesser increment of 11 % thermal 
conductivity was exhibited as compared to plain 
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TiN and at 430oC, this amount was enhanced to 
97 % for 5 wt. % MWNTs loading (Jiang & Gao, 
2008). For SC-4, at 117oC, the thermal 
conductivity decreases by 78 % as compared to 
that of a conventional brick. This amount is 
steadily decreased to about 74 % at 163oC. The 
reason behind the remarkable improvement in 
thermal conductivity with 1 wt. % FCNTs 
addition can be attributed to the following 
outstanding properties of the nanocomposite: 
The high thermal conductivity of the of the 
MWNTs (3000 W m-1 K-1) as compared to the 
negligible value of the silica matrix 2.35 W m-1 K-

1 at 1000oC (Brunk, 2001). This may justify the 
extraordinary enhancement due to the 

incorporation of CNTs in the matrix. Better 
dispersion of the lowest loading CNTs may be 
another reason. It could be due to an excellent 
covalent combination of the CNTs and silica 
which reduces the tube-matrix thermal boundary 
resistance and hence improving the thermal 
conductivity. Also, the increment may be due to 
the polymorphic formation of more tridymite 
with crystal growth as compared to that in 
conventional brick (Brunk, 2000). The high 
reduction of the thermal conductivity with 4 wt. 
% FCNTs could be attributed to agglomeration 
that leads to subsequent deterioration of 
thermal property as the percentage of CNTs 
increase. 

 
Figure 1: The thermal conductivity of the FCNTs/silica bricks 

 
CONCLUSION 

Thermal conductivities of fuctionalized CNTs-
reinforced silica nanocomposite bricks for varied 
CNTs loading 0, 1, and 4 wt. % have been 
determined. 1 wt. % FCNTs/silica 
nanocomposite reports the highest thermal 

conductivity. At 117oC and 163oC the thermal 
conductivity has been enhanced remarkably to 
more than 130 % and in excess of 240 % 
respectively, as compared to that of the 
conventional un-reinforced silica brick. 
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