

Bayero Journal of Pure and Applied Sciences, 1(1):39 – 42 Received: November, 2008 Accepted: November, 2008

PREVALENCE OF ESCHERICHIA COLI 0157:H7 IN FRESH AND ROASTED BEEF IN KANO CITY, NIGERIA

*¹Dahiru, M., Uraih, N²., Enabulele, S.A³ and Shamsudeen, U⁴.

¹Primary Health Care Department, Dawkin Tofa Local Government Council, Kano, Nigeria.
² Department of Microbiology. Faculty of Life Sci. Univ. of Benin, BeninCity.
³ Department of Biological Sciences, College of Nat. and Appl. Sci, Igbinedion Univ. Okada, Nigeria.
⁴ Department of Biological Sciences, Bayero University, Kano, Nigeria.
*Correspondence Author: Email:- <u>musahanifa/musahanifa2@yahoo.com</u>

ABSTRACT

The prevalence of Enterohemorrhagic Escherichia coli 0157:H7 in 300 fresh beef and 150 roasted beef samples from Kano city Nigeria was determined, by direct plating on Sorbitol MacConkey agar (CT-SMAC) supplemented with Cefexime 50µg/L and Potassium tellurite 25mg/L and resuscitation on Trypticase Soy Broth (TSB) at 25°C for two hours for roasted beef samples. Presumptive colonies were confirmed by using E. coli 0157:H7 latex agglutination test kit. Prevalence rate of 53% was obtained in fresh beef and 25.3% in roasted beef. Consumption of inadequately cooked beef poses a serious risk of infection. The study therefore stressed the need for health authorities to educate and put in place efficient surveillance strategies for detection and control of possible outbreaks of E. coli 0157:H7 in the society.

Keywords: Pravalence, Escherichia coli 0157:H7, Beef

INTRODUCTION

Enterohemorrhagic Escherichia coli 0157:H7 is an important food-born pathogen (Benjamin and Datta, 1995) which was first identified in 1982 as a cause of hemorrhagic colitis during outbreaks of bloody diarrhea in Oregon and Michigan, USA. After these cases, several outbreaks of hemorrhagic colitis and hemolytic uremic syndrome caused by this organism have been epidemiologically linked to consumption of ground beef (Schlundt, 2001). The likely cause of E. coli O157:H7 infection is undercooked ground beef. Additionally, unchlorinated water, raw milk, cold sandwiches and vegetables have been implicated as sources of some outbreaks. Other implicated foods include unpasteurized apple cider and juice, salad dressing containing mayonnaise, home-made yoghurt, frozen meats, turkey roll and clams (FAO/WHO, 2003). Since then a number of works have reported the incidence of E. coli O157:H7 in food and during outbreaks (Hancock et al., 1994; Karch et al 1996; Uzeh et al., 2006; Agbogu et al., 2006). Mead et al (1999) has estimated the incidence of E. coli 0157:H7 to 50% among EHEC serotype in relation to public health problems. This study was planned to investigate the presence of E. coli O157:H7 in retail fresh beef and roasted beef sold in Kano metropolis.

MATERIAL AND METHODS

Three hundred (300) samples of fresh beef and one hundred and fifty (150) roasted beef samples each

were randomly collected from retail markets in a sterile polyethene bags, from the six metropolitan Local Government Areas of Kano State. The samples were analyzed within two hours of collection.

One gram (1g) of fresh beef samples each was aseptically collected placed in a sterile blender and homogenized in 9 ml of (1%) peptone water for 1 minute to obtain a homogenate. The homogenate was further serially diluted up to 10^4 (FAO, 1979). It was then cultured on CT-SMAC for E. coli 0157:H7. However, for roasted beef, 1g of each sample was transferred into 9ml Trypticase Soy Broth (Lab M) shaken and incubated at 20°C for 2h (Kudo et al., 2000), then 1ml each of the incubated broth was serially diluted in peptone water to 10^2 . All the samples were cultured on Sorbitol MacConkey agar CT-SMAC (U.S Biological, Swampsctt) supplemented with Cefexime (50µg/L) and Potassium tellurite (2.5 mg/L) at 45°C (March and Ratnam, 1986). The plates were allowed to solidify and incubated at 37°C for 24 hours (Chapman et al., 1994; Karch et al., 1996). The population of the non-sorbitol fermenters in the samples was determined by counting the colony forming unit (cfu/ml) (Wells et al., 2005), and confirmed by using Latex agglutination test Kit (antio157:H7 antibody for E. coli 0157:H7) test kit DR0620M (Oxoid LTD Hamspshire, England) as described by Nataro and Kaper (1998). The data obtained was analyzed by the use of ANOVA statistical analysis on SPSS package.

RESULTS

The result of the analysis of fresh beef and roasted beef samples is as presented in Table 1. The fresh beef has a mean NSFC count of 1.5×10^6 cfu/g and roasted beef had a mean of 3.0×10^2 cfu/g. Out of

300 fresh beef sampled, 163 yielded NSFC out of which 158 were confirmed to be serologically positive *E. coli* 0157:H7. Of the 150 sampled roasted beef samples, 38 yielded NSFC and the 38 were confirmed to be *E. coli* 0157:H7.

Table 1: A comparative distribution of serologically confirmed *E. coli* 0157:H7 isolated between fresh and roasted beef

Meat sample	No. of sample Collected	Mean SFC counts (cfu/g)	Non- sorbitol fermented colonies	Serologically Confirmed	Percentages
Fresh					
Beef	300	1.5 x 10 ⁶	163	158	53%
Roasted Beef	150	3.0 x 10 ²	38	38	25%

Key:

SFC = Sorbitol fermenting colonies, NSFC = Non Sorbitol fermenting colonies, cfu/g = Colony forming unit per gram, EHEC = Enterohemorragic *E. coli* (0157:H7)

DISCUSSION

Fresh beef was found to be more contaminated than Roasted beef samples, with mean SFC counts of 1.5 x 10^6 cfu/g (Table 1). This might be as a result of so many factors at the slaughtering and skinning points. These include contamination from external sources like air, soil, use of non portable water and improperly washed utensils. It might also be from internal sources like intestines content, lymph nodes, as well as cross contamination by meat handlers. All these could contribute to the microbial contamination of fresh beef as described by Umoh (2001). The evidence of contamination as the most potential source of E. coli 0157:H7 in beef was vividly highlighted further by Elder et al. (2000) that meat only becomes contaminated with E. coli 0157:H7, when in contact with contaminated hide and or feaces during slaughter process. Evidently, E. coli 0157:H7 has been isolated from feaces or gastrointestinal tract of cattle, sheep, horses, pigs, turkeys, dogs and a variety of wild animals (Hancock et al., 1998). However carcass contamination may vary with season, plant design and operation, geographic area, location within the plant, and to some extent, anatomical carcass site (Sofos et al., 1999). The 53% prevalence rate in fresh beef is a clear indication of heavy contamination. This agrees with the work of Petridis et al. (2006) who reported undercook ground beef implicated as a source of contamination that led to the infection of 243 in Montana USA. Hancock et al. (1994) also reported a prevalence rate of E. coli 0157:H7 in herds of dairy cattle to be 8.3% and 16% from pastured beef cattle herds.

Although Roasted beef is least contaminated (25%) having a mean counts of 3.0×10^2 cfu/g (Table 1) and showed no significance difference between counts of samples. Uzeh *et al.* (2006) reported a total bacterial count on *Trire-suya*, (a local delicacy) in Nigeria, to be in the range of 7×10^1 to 42×10^1 cfu/g

an indication of high contamination, thus the mean counts of 3.0 x 10^2 cfu/g of NSF shows more contamination (Uzeh et al., 2006). Addition of spices is a tradition in local roasted beef preparation and have been shown to exhibit antimicrobial effect, majority of which is linked to their Phenolic compounds (Shelef, 1984), however spices have played an insignificant inhibitory role, if any, as to the growth and survival of E. coli 0157:H7. According to Frazier and Westhoff (2006) spices and condiments do not have a marked bacteriostatic activity in the concentrations normally used and unless they are treated to reduce their microbial loads, they may add high numbers and undesirable types of microorganisms in the food in which they are used. Similarly, Uzeh et al. (2006) have reported the resistance of the activity of Afromomum melagueta, Piper quinense, and Capsicum fructescens spices by *Psuedomonas aeruginosa* on *Tsire-suya*. The percentage prevalence E. coli 0157:H7 in roasted beef (25.3%) might be partly due to pre-enrichment on liquid and non selective medium, which enhances recovery of the injured cells (Kudo et al., 2000; Clavero and Beuchat, 1995).

In addition, during roasting of beef, heat is expected to have denatured microorganisms present, yet *E. coli* 0157:H7 was isolated, though it's optimal growth temperature is approximately 37° C (98.6°F), and is not reported to grow at temperatures below 8°C to 10°C (46°F to 50°F) or above 44°C to 45°C (Buchanan and Doyle, 1997). However, Ansay *et al.* (1999) reported *E. coli* O157:H7 survives freezing with some decline in concentration. Equally, Clavero and Beuchat, (1995), recovered 5 strains of *E. coli* 0157:H7 at 568°C for 0, 15 and 30 minutes by using a non selective medium (Trypticase Soy Broth), with decrease in the microbial load in the samples, as the heating time increased. This signifies that, *E. coli* 0157:H7 could survive temperatures above 45°C.

CONCLUSION

The results of this investigation in Kano metropolis show a high prevalence rate of *E. coli* 0157:H7 (53% in fresh beef and 25% in roasted beef) could be attributed to lack of good hygienic practice right from abattoir, during handling and transportation of carcass

REFERENCES

- Agbogu, V. N., Veronica, J. Umoh., Charles, A. Okuofu., Stella, I. Smith. and Joseph, B. Ameh. (2006) Study of the bacteriological and physiological indicators of pollution of surface waters in Zaria, Nigeria. *Afri. J. of Biotech, Vol.* 5 (9): 732-737
- Agaoglu ,S., Yavuz. M.T., Berktas, M. and Guducuoglu, H. (2000) Defection of *Escherichia coli* in Retail Ground Beef, Raw Ground Beef. Patties and Raw Meat , Balls sold in van. Eest. J. of Med. **5**(2): 7375.
- Ansay, S.E., Darling, K.A.and Kaspar, C.W. (1999) Survival of *Escherichia coli* O157:H7 in ground-beef patties during storage at 2, -2, 15 and then -2 degrees C, and -20 degrees. *C. J. Food Prot* **62**(11):1243-7.
- Benjamin, M. M. and A. R. Datta. (1995). Acid tolerance of enterohemorrhagic *Escherichia coli. Appl. Environ. Microbiol.* **61**:1669-1672
- Buchanan, R. L. and M. P. Doyle. (1997). *Food borne Disease Significance of Escherichia coli* 0157:H7 *and other Entrohemorrhagic E. coli*. *Food Technology;* **51**: 69-75.
- Chapman, P. A., D. J. Wright. and C. A. Siddons. (1994). A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing *Escherichia coli* O157 from bovine faeces. *J. Med. Microbiol.* **40**:424-427.
- Clavero, M. R. S. and L. R. Beuchat. (1995). Suitability of Selective Plating Media for ecovering Heat- or Freeze-Stressed *Escherichia coli* O157:H7 from Tryptic Soy Broth and Ground Beef; *J. Appl and E. Microb.* **61** (9): 3268– 3273
- Elder, R. O., J. E. Keen., G. R. Siragusa., G. A. Barkocy-Gallagher., M. Koohmaraie. and W. W. Laegreid. (2000). Correlation of enterohemorrhagic *Escherichia coli* O157 prevalence in feces, hides, and carcasses of beef cattle during processing. *Proc. Natl. Acad. Sci.* **97**:2999-3003.
- Food and Agricultural Organization (FAO), (1979). Mannuals of Food quality Control for Microbiological Analysis.
- Food and Agricultural Organization/World Health Organization (FAO/WHO), Codex Committee on Food Hygiene, (2003). Risk profile for Enterohemorragic *Escherichia coli*, including the identification of the commoditis of concerned, including sprouts, ground beef and pork. CX/FH 03/5-Add.4 Sep. 2002.

to the market. Thus, intensive sanitary measures should be taken to establish reliable hygienic standard in all operations. In view of this, health authorities and researchers have a duty to educate and put in place efficient surveillance strategies for detection and control of outbreaks of *E. coli* O157:H7 in the society.

- Frazier, W.C. and Westhoff, S.A.(2006) *Food Microbiology* 3rd Edition McGraw Hill Publishing Company Limited. Newyork, pp.163-165,223-236,419-543
- Hancock, D. D., T. E. Besser., M. L. Kinsel., P. I. Tarr., D. H. Rice. and M. G. Paros. (1994). The prevalence of *Escherichia coli* O157.H7 in dairy and beef cattle in Washington state. *Epidemiol. Infect.* **113**:199-207.
- Hancock, D. D., Besser, T. E. and Rice, D.G. (1998). Multiple source of *Escherichia coli 0157* in feed lots and diary farms in the northrestorn USA. *Prev. Vet. Med.* **35**: 11-19.
- Karch, H., C. Janetzki-Mittmann., S. Aleksic. and M. Datz. (1996). Isolation of enterohemorrhagic *Escherichia coli* O157 strains from patients with hemolytic-uremic syndrome by using immunomagnetic separation, DNA-based methods, and direct culture. *J. Clin. Microbiol.* **34:**516-519
- Kudo, H. Y., M. Ikedo., H. Kodaka., H. Nakagawa., K. Goto., T. Masuda., H. Konuma., T. Kojima. and S. Kumagai. (2000) Selective Enrichment with a Resuscitation Step for Isolation of Freeze-Injured *Escherichia coli* O157:H7 from Foods. *J. Apl. and Environ. Microb.* **66** (7): 2866-2872.
- Kudva, I. T., P. G. Hatfield, and C. J. Hovde. (1995). Effect of diet on the shedding of *Escherichia coli* 0157:H7 in a sheep model. *Appl. Environ. Microbiol.* **61**:1363-1370. March
- March, S.B and Ratnam, S. (1986) Sorbitol-MacConkey medium for detection of *Escherichia coli* O157:H7 associated with hemorrhagic colitis. *J Clin Microbiol* ;**23**:869-872.
- Mead, P.S., slutsker, L., Dietz. V., L.F. McCaig., J.S Bresee., C. Shapiro., P. M. Griffin., and Tauxe. (1999). Food related illness and death in the united states. *J. Emerg. Infect. Dis.* 5(5): 607-25.
- Nataro, J. P., and J. B. Kaper. (1998). Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. **11**:142-201.
- Petridis, H., G. Kidder. and A. Ogram. (2006). *Escherichia coli* O157:H7 A Potential Health Concern. University of Florida IFAS Extention.
- Schlundt, J. (2001). Emerging food borne pathogens. Biomed. J. Environ. Sci. **14**(1-2):44-52.
- Shelef , L.A. (1984). Antimicrobial effects of spices. J. of Food Safety. 6(1) 29-44

- Shin Sata., Tomohiko, Fujisawa., Ro Osawa., Atsushi Iguchi., Shiro Yamai. and Toshio, Shimada. (2003). An Improved Enrichment Broth for Isolation of *Escherichia coli* 0157, with Specific Reference to Starved Cells, from Radish Sprouts. *Applied and Environ. Micro.* Vol. **69**, No. 3. 1858–1860
- Sofos, J. N., Kochevar, S. L., Bellinger, G. R., Buege, D. R., Hancock, D. D., Ingham, S. C., Morgan, J. B., Reagan, J. O. and Smith, G. C. (1999). Sources and extent of microbiological contamination of beef carcasses in seven United States slaughtering plants. *J. Food Prot.* 62:140-145.
- Umoh, J.U. (2001). An overview of possible critical control points of ready-to-eat beef product of northern Nigeria. International conference on food and security, conference center Ibadan, Nigeria. Pp 109-115
- Uzeh, R.E., R.E.O. henhen. and O.O.A deniji. (2006). Bacterial contamination of 'Tsire- Suya', a Ngerian meat product. *Pakistan J. of Nutrition* **5**(5):458-460
- Wells, J. E., Barry, E.D. and Varel, V.H. (2005) Effects of common forage phenolic acids on *Escherichia coli 0157:H7* viability in bovine feces. J.Appl.Environ. Microbiol. 71(12):7974-7979.