

Bayero Journal of Pure and Applied Sciences, 3(1): 108 - 111 Received: April, 2009 Accepted: March, 2010

A DETERMINATION OF THE GENERALIZED GRAVITY FOR CERTAIN SINGULAR MAPS IN FINITE FULL TRANSFORMATION SEMIGROUPS

Sani Sadissou

Department of Mathematics, Gombe State University, Gombe

ABSTRACT
For any
$$\alpha$$
 in Sing_n, it is well known from Saito (1989) that $k(\alpha) = \left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil$ or $\left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil + 1$; and
 $k(\alpha) = \left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil$ or $\left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil + 1$; and

$$k(\alpha) = \left| \frac{g(\alpha)}{d(\alpha)} \right|$$
 if $g(\alpha) = 1 \mod(d(\alpha))$. In this paper, using division algorithm, for each α in

Sing_n we write $g(\alpha) = dm + s$ with $0 \le s \le d - 1$ where d is the defect of a. A complete determination of k(a) was obtained for $g(\alpha) = dm$ (i.e. s = 0) for all d and $g(\alpha) = dm + s$ for $d \le 2$, where a is assumed to have no cyclic orbits.

Keywords: Full Transformation Semigroups, Idempotents, Singular Maps, Orbits, Defect, Generalized Gravity.

INTRODUCTION

In Howie (1966) started the search for a subsemigroup of a transformation semigroup generated by idempotent elements. He considered the full transformation semigroup T_X that is the semigroup of all maps from a set X to itself. For a finite set X with $|X| = n, T_X$ is denoted as T_n and Howie was able to show that Sing_n the set of all singular maps in T_n (i.e all maps $\alpha \in T_n$ such that $|im\alpha| < n$) is a subsemigroup of T_n ; and moreover E the set of idempotents in T_n generates Sing_n i.e <E>= Sing_n. If we let E_1 denote the set of idempotents of defect 1 (i.e all idempotents ϵ for which $|im\epsilon| = n-1$) it was found again that <E₁> = Sing_n.

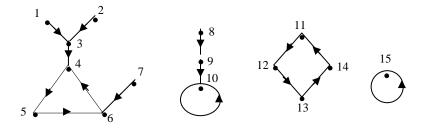
Also, for any a in Sing_n Howie (1980) and Iwahori (1977) where able to obtain the formula for the length of a i.e. the minimum number of idempotents of defect 1 required to generate a. This means, assuming k to be the least number of

idempotents in E_1 in the expression of a as a product of idempotents in E₁ i.e. $a = \varepsilon_1 \varepsilon_2 \dots \varepsilon_k$, then k(a)=g(a)the gravity of a, and this number was shown to be g(a)=n+c(a)-f(a), where c(a) is the number of cyclic orbits in the diagraph of a and f(a) is the number of fixed points in a. It should be noted that every map a in T_n is associated with a diagraph with n vertices in which there is an edge $i \rightarrow j$ if and only if ia=j. Let $X=\{1,2,\ldots,n\}$ then for $i,j \in X$, we write $i \equiv j$ if and only if there exist r, $s \ge 0$ such that $ia^r = ja^s$. This is an equivalence relation and it partitions X into disjoint classes, called orbits. The orbits are the connected components of the associated diagraph and there are four types of components or orbits: standard, acyclic, cyclic and trivial. f(a) the number of fixed points in a is equal to the number of acyclic components plus that of trivial ones.

Example 1: $\alpha \in Sing_{15}$

α =	(1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	3	3	4	5	6	4	6	9	10	10	12	13	14	15	15)

has orbits {1, 2, 3, 4, 5, 6, 7}, {8, 9, 10}, {11, 12, 13, 14}, {15} which are respectively standard, acyclic, cyclic and trivial. $\Gamma(\alpha)$ the associated digraph is



The results of Howie (1980) and Iwahori (1977) were extended to idempotents in E not necessary in E_1 by Saito (1989). That is for every a in Sing_n if d(a is the defect of a (i.e. d(a) = n - |im a|) then k(a) the generalized

gravity of a is obtained to be $k(\alpha) = \left| \frac{g(\alpha)}{d(\alpha)} \right|$ or $\left| \frac{g(\alpha)}{d(\alpha)} \right| + 1$ and $k(\alpha) = \left| \frac{g(\alpha)}{d(\alpha)} \right|$ if

$$g(\alpha) \equiv 1 \mod(d(\alpha))$$

Saito [4] introduced levelling of a set which we will also use in this paper. Let $V_0 = \{v_1, v_2, ..., v_d\}$ be a set of positive integers ($d \ge 2$) and let $maxV_0 = v_1$ and $minV_0 = v_1$ If $v_1 - v_2 \ge 3$, let us subtract k_1 from v_1 and add $k_1 + 1$ to v_1 , where k_1 is some positive integer which satisfies $k_1 \le v_1 - v_2$, and define

$$V_{1} = \begin{cases} \{v_{1}, ..., v_{j} - k_{1}, ..., v_{j} + k_{1} + 1, ..., v_{d}\} & \text{if } v_{i} - v_{j} \\ V_{0} & \text{otherwise} \end{cases}$$

by repeating this procedure on if $maxV_1 - minV_1 \ge 3$, $V_2 = V_1$ otherwise.

This process can be continued until no further new sets can be obtained. Then we obtain V_0 , V_1 ,..., V_t , where $maxV_k - minV_k \ge 3$, if k < t and $maxV_t - minV_t \ge 2$. In this case, we have $maxV_0 \ge minV_1 \ge ... \ge maxV_t$ and $minV_0 \le minV_1 \le ... \le minV_t$. Then V_i (i = 0, 1, ...

 V_1 , we obtain a new set V_2

 ≥ 3

, t) are called levelled sets of V_{o} and V_{t} is a completely levelled set.

We now state the following results from Saito (1989) which we shall use subsequently.

Theorem 1.1 [4, theorem 10]: Let Sing_n be the semigroup of all singular mappings from X in to X, where $X = \{1, 2, ..., n\}$, and let E be the set of idempotents of Sing_n. For α in Sing_n, let $k(\alpha)$ be the unique positive integer for which

$$\alpha \in \mathsf{E}^{\mathsf{k}(\alpha)}, \alpha \notin \mathsf{E}^{\mathsf{k}(\alpha)} \text{ and } g(\alpha) \text{ the gravity of } \alpha \text{ and } d(\alpha) \text{ the defect of } \alpha. \text{ Then } k(\alpha) = \left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil \text{ or } \left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil$$

+ 1, and equals
$$\left[\frac{g(\alpha)}{d(\alpha)}\right]$$
 if $g(\alpha) \equiv 1 \mod(d(\alpha))$.

Lemma 1.2 [4, lemma 14]: Let $V_0 = \{v_1, v_2, ..., v_d\}$ be a set of positive integers with $v_1 + v_2 + ... + v_d = g$ $(d \ge 2)$. Then there exists a completely levelled set V_k $(0 \le k \le d - 1)$ of V_0 such that $\left\lceil \frac{g}{d} \right\rceil \le \max V_k \le \left\lceil \frac{g}{d} \right\rceil + 1$ and $\max V_k = \left\lceil \frac{g}{d} \right\rceil$ if $g = 1 \mod(d)$.

For basic concepts and definitions on semigroup theory, see for example Howie (195) and for a detailed discussion of idempotents in finite full transformation semigroups Levi and Seif (2002) and Blyth and Santos (2006).

The Generalized Gravity of Certain Singular Maps in Finite Full Transformation Semigroups

In this work we use division algorithm to write $g(\alpha) = dm + s$ for $0 \le s \le d - 1$, where d is the defect of a, and a is assumed to have no cyclic orbits. Then using the methods of levelling provided in Saito (1989) and Sani (2008) we obtain the following results:

Theorem 2.1: Let a be an element in $Sing_n$ whose defect d(a)=2 and assume a to have no cyclic orbits. Then $k(a) = \left| \frac{g(\alpha)}{d(\alpha)} \right|$ if and only if g(a) is an odd integer or that g(a) is even and $V_o = \{m, m\}$ where $g(a) = 2m \ (m \in \mathbf{Z})$, where V_0 is the initial levelled set corresponding to any representation of a.

Proof:

i)

If g(a) is odd i.e. g(a) = 2m + 1 then $g(a) = 1 \mod (2)$ and it follows from Theorem 1.1 that k(a) $=\left|\frac{g(\alpha)}{d(\alpha)}\right|.$

If g(a) is even say g(a) = 2m, $\left| \frac{g(\alpha)}{d(\alpha)} \right| = \left\lceil \frac{2m}{2} \right\rceil$ = m. Now, suppose V_o = {m, m}, obviously V_o is ii) levelled and

completely

$$\begin{aligned} \mathsf{k}(\mathfrak{a}) &= \mathsf{max}\mathsf{V}_{\mathsf{o}} = \mathsf{m} = \left\lceil \frac{g\left(\alpha\right)}{d\left(\alpha\right)} \right\rceil.\\ \text{Conversely, if } \mathsf{V}_{\mathsf{o}} &= \{\mathsf{v}_{\mathsf{1}}, \mathsf{v}_{\mathsf{2}}\} = \{2\mathsf{m} - \mathsf{s}, \mathsf{s}\}, \, 1 \leq \mathsf{s} < \mathsf{m}.\\ \text{Take } \mathsf{k}_{\mathsf{1}} &= 2\mathsf{m} - \mathsf{s} - \mathsf{m} = \mathsf{m} - \mathsf{s} \text{ then}\\ \mathsf{V}_{\mathsf{1}} &= \{2\mathsf{m} - \mathsf{s} - (\mathsf{m} - \mathsf{s}), \, \mathsf{s} + (\mathsf{m} - \mathsf{s}) + 1\} = \{\mathsf{m}, \, \mathsf{m} + 1\} \text{ and}\\ \mathsf{k}(\mathfrak{a}) &= \mathsf{max}\mathsf{V}_{\mathsf{1}} = \mathsf{m} + 1 = \left\lceil \frac{g\left(\alpha\right)}{d\left(\alpha\right)} \right\rceil + 1. \text{ Hence the result.} \end{aligned}$$

Theorem 2.2: Let a be an element in Sing_n with defect d(a)=d and assume a to have no cyclic orbits. If g(a) = ddm for some positive integer m, then

$$k(a) = \left| \frac{g(\alpha)}{d(\alpha)} \right|$$
 if and only if $V_o = \{m, m, ..., m\}$ that is $v_i = m$

 $1 \le i \le d$ where V_o is the initial levelled set corresponding to any representation of a.

Proof: Suppose $V_o = \{m, m, \dots, m\}$. Clearly,

$$k(a) = \max V_o = m = \left| \frac{g(\alpha)}{d(\alpha)} \right| = \frac{dm}{d}$$

Conversely, suppose V_o = {v₁, v₂, . . ., v_d} with some v_i ≠ m 1≤ i ≤ d. Without loss of generality we may assume V_o = {v₁, v₂, . . ., v_d} where v₁ ≤ v₂ ≤ . . . ≤ v_d and v₁ < m. Thus v_d ≥ m + 1. If v_d = m + 1, then V_o is a

completely leveled set and k(a) = maxV_o = m + 1 = $\left[\frac{g(\alpha)}{d(\alpha)}\right]$ +1.

On the other hand, if $v_d \ge m + 2$ then $maxV_o - minV_o$ V_o (q \ge 1). Clearly max V_q > m since every levelling will = v_d – $v_1 \geq$ 3. In this case V_o is not completely levelled. Now, let V_q be the completely levelled set of increase

 $\sum v_i$ by 1. And since from Lemma 1.2 $m \le maxV_q \le m + 1$, it follows that

$$k(a) = \max V_q = m + 1 = \left\lceil \frac{g(\alpha)}{d(\alpha)} \right\rceil + 1$$
. Hence the proof.

Conclusion

In this paper, a complete determination of k(a) was obtained for all a of defect 2 and also for all a with defect d provided g(a) = dm for some positive integer m. However the problem of determining k(a) for the remaining cases remains open.

REFERENCES

- Howie, J. M. -The subsemigroup generated by the idempotents of a full transformation semigroup, *J.* of *London Math. Soc.*, 41 (1966), pp 707-716.
- Iwahori, N. A length formula in a semigroup of mappings, *J. of the Fac. of Sci. of the Univ. of Tokyo Sect. 1A Math. 24* (1977), pp 255 – 260.
- Howie, J. M. Products of idempotents in finite full transformation semigroups, *Proc.of the Roy. Soc. of Edinburgh*; A,86, (1980), pp 243 254.
- Saito, T. Products of idempotents in finite full transformation semigroups, *Semigroup Forum* 39 (1989), pp 295-309.
- Howie, J. M. Fundamentals of semigroup theory, Clarendon Press Oxford (1995).
- Levi, I. and Seif, S. –Combinatorial techniques for determining rank and idempotent rank of certain finite semigroups, *Proc. of the Edinburgh Math. Soc.* (2002), pp 617-630.
- Blyth, T. S. and Santos, M. H. –Skew pairs of idempotents in transformation semigroups, *Acta Mathmatica Sinica, English Series, Vol.22, No. 6* (2006), pp.1705-1714.
- Sani, S. -On the generalized gravity in finite full transformation semigroups, MSc thesis submitted to the department of Mathematical Sciences, Bayero University, Kano, 2008.