

Bayero Journal of Pure and Applied Sciences, 5(2): 47 - 50
Received: April 2012
Accepted: November 2012
ISSN 2006-6996

IMPACT OF EMERGENT MACROPHYTES ON FISH CATCH IN NGURU LAKE

Abubakar, M.M.
Department of Biological Sciences, Federal University Dutse, Jigawa State - Nigeria mmabubakar2005@yahoo.com

Abstract

The impact of emergent macrophytes on the catch of fish in Nguru Lake was studied from May 2006 to April 2007.Physico-chemical properties of the lake were studied in conjunction with the macrophytes. Experimental fishing was carried out in portions of the lake infested with the macrophytes and portions not infested.data collected were subjected to Student,s t-test. There was significant difference between fish catch in the two portions.. The infestation of macrophytes particularly Typha sp. leads to poor fish yield. The study recommended that farmers should be enlightened on the use of organic fertilizers and other safe farming practices and that further research should be carried out on the proliferation of Typha.

Keywords: Fish, Typha, Macrophytes, Infestation

INTRODUCTION

In recent years, there have been some efforts to understand the interactions responsible for differences in Macrophyte communities at different levels of nutrient availability. Aquatic plants serve many ecosystem functions including primary production, stabilizing sediments, maintaining water clarity and providing habitat for zooplankton, macroinvertebrates and numerous fish species. Aquatic macrophytes, when present in large abundance have the power of modifying the composition, abundance and distribution of other organisms in a water body. According to McVea and Boyd (1975), the calming of the water by macrophytes reduces upwelling of nutrients from the sediments by wind action, making them less available to phytoplankton in the photic zone. Yang et al., (1992) reported that there is evidence of allelopathy by water hyacinth on phytoplankton. Scheffer et al., (2003) also reported that a reduction in production is likely to occur in a water body covered by macrophytes since the weed shade out any photoautotrophs (both phytoplankton and submerged macrophytes) beneath them. According to Valley and Bremigan (2002) there is reduction in predator feeding rates as vegetation becomes dense. Denny (1987) recognized the following categories of aquatic macrophytes: emergent, surface floating, rooted leaves and submerged macrophytes. The objective of this study is to investigate the number and size of fish catch in two different locations: emergent macrophyte infested and uninfested areas of the lake, with a view to proffer management solutions.

MATERIALS AND METHODS

The Study area and Background to the Research Location.

Nguru Lake is a part of the Hadejia Nguru wetlands (HNW), which are located in northeastern Nigeria. Nguru lake occupies an area of approximately 58.100ha and is located between latitudes $12^{\circ} 40^{\prime} \mathrm{N}$ and $13^{\circ} 60^{\prime} \mathrm{N}$ and longitudes $10^{\circ} 20^{\prime} \mathrm{E}$ and $11^{\circ} 00^{\prime} \mathrm{E}$. The lake developed from two main drainage systems. The

Hadejia and Jama'are rivers. The lake is surrounded by a flood plain made up of a network of channels and pools producing a complete pattern of permanently and seasonally flooded land and dry land (Hollis et al., 1993). Over half a million people depend upon the lake and the surrounding wetlands for their livelihoods, especially for water supply. Lafiyagi (1997) has identified about 65 species of fishes. Therefore, majority of the people living around the lake are either fishermen, or processors and marketers of fish.

Field Methods

The study was carried out on two portions of the lake on opposite banks. One portion (A) is infested with emergent macrophytes particularly Typha sp., while the other portion (B) is open water with no emergent macrophytes. Fish samples were collected monthly from the five sampling stations using gill nets of various mesh sizes with the assistance of the fishermen.
Fish samples were identified and weighed fresh, at landing sites to the nearest gram. Fish identification was done using various reference materials such as Reed et al., (1967) and Leveque et al., (1992).
Temperature and pH were determined in the field using pH meter, Model 3150. Other physico-chemical parameters were determined in the laboratory using Hach 2010 spectrophotometer.
Data on fish catches from the fishermen operating on the lake were also collected. Data collected was subjected to Student's t-test to see if there is significant difference between the two sites. Duncan's multiple range tests was also used to measure differences between the means.

RESULTS

The temperature ranged from $7^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}$. In the rainy season (May-Sept) the temperature range is $15^{\circ} \mathrm{c}$ to $32^{\circ} \mathrm{c}$, while in the dry season the temperature range is from $9^{\circ} \mathrm{C}$ to $21^{\circ} \mathrm{C}$ and $7^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$ respectively. The temperature at Nguru Lake shows highly significant seasonal variation ($p<0.001$), there was also highly significant spatial variation ($\mathrm{p}<0.001$).

Bajopas Volume 5 Number 2 December, 2012

pH showed a range of 7.6-9.5 with no significant seasonal or spatial variation. Transparency ranged from $11-147 \mathrm{~cm}$. The mean turbidity during the study period is $6.49 \pm 0.02 \mathrm{ml}^{-1}$. Conductivity and alkalinity showed significant seasonal and spatial variation during the study period, both showing maxima in the dry season. The nutrients, phosphorus, nitrogen and sulphate exhibited similar pattern, with all showing maxima during the rainy season mainly due to surface run-off from agricultural lands. All the nutrients showed significant seasonal variation.
Table 1: Mean number of fishes caught in Nguru Lake

Month	Uninfested portion(B)	Infested portion(A)
May	326.00 a	276.52 b
June	303.33 a	243.80 bc
July	321.83 a	209.52 c
August	350.67 a	190.85 c
September	347.33 a	231.90 bc
October	335.00 a	263.52 b
November	325.00 a	273.92 b
December	305.83 a	284.18 b
January	308.17 a	276.59 b
February	325.00 a	274.28 b
March	321.17 a	272.33 b
April	291.67 a	268.56 b

Means with same letters in the same column are not significantly different using DMRT
Table 2: Mean results for physico-chemical properties of Nguru Lake for the two seasons

Parameter	Means for dry season	Means for rainy season
Temperature	16.83 b	22.90 a
Ph	8.11 b	8.65 a
Transparency	63.59 a	59.33 a
Depth	104.36 a	105.06 a
TDS	80.80 b	86.30 a
Suspended solids	3.51 b	4.52 a
Turbidity	6.19 a	6.92 a
Conductivity	170.69 a	174.23 a
Alkalinity	34.83 a	33.88 a
DO	6.89 a	6.55 b
BOD	4.61 a	4.67 a
COD	8.65 b	10.26 a
Total Phosphate	6.77 a	6.98 a
Total Nitrogen	6.09 a	5.57 a
Sulphate	3.74 b	6.75 a
Magnesium	0.07 a	0.09 a
Calcium	0.17 a	0.19 a
Iron	0.22 a	0.24 a
Zinc	0.97 a	0.42 a
Copper	0.07 a	0.07 a
Manganese	4.49 a	4.14 a

Means with the same letter in the same column are not significantly different using DMRT.

Table 3: Mean weight (kg) of fishes caught in Nguru Lake

Month	Uninfested portion(B)	Infested portion(A)
May	78.38 c	51.42 d
June	81.88 bc	68.82 c
July	83.70 bc	69.11 c
August	113.58 a	96.90 abc
September	98.45 abc	71.60 c
October	94.85 abc	72.50 c
November	105.45 ab	82.90 bc
December	97.68 abc	84.92 bc
January	92.07 abc	83.80 bc
February	79.38 c	64.41 d
March	78.65 c	62.00 d
April	76.33 c	59.10 d

Means with same letters in the same column are not significantly different using DMRT
Table 4: Result of t-test on fishes of Nguru Lake for the two portions of study.

Fishes	t-value
Oreochromis niloticus	0.56 ns
Sarotherodon galileus	2.32^{*}
Tilapia zillii	$3.51^{* *}$
Clarias gariepinus	$3.31^{* *}$
Heterotis niloticus	2.46^{*}
Others	$-4.96^{* *}$

*- Significant, **- Highly significant ns- Not significant

DISCUSSION

Nguru Lake is part of the Nigerian Dry Belt (Sudano Sahelian Zone) where the scarcity of water is an important limiting factor for development (Adams and Hollis, 1989).
The extent and nature of irregular and extreme ecological conditions of the savanna especially climatic variation through wind action could have a resultant effect in modifying lake ecosystems. The major physico-chemical parameters in Nguru Lake could be linked to the extent and size of the catchment area, soil characteristics, topography and vegetation covers. The water regime in this lake was mainly influenced by rainfall and discharge from its tributaries. So it is expected that any variation, whether seasonal or spatial in physico-chemical properties of Nguru lake may be influenced by climatic factors or catchment characteristics i.e. extent of human activities, and water volume fluctuations.

The results showed significant differences in number and weight of fish caught between the infested and uninfested portions of the lake. The lower catch in the macrophyte infested portion is due to the fact that, there is low temperature, low dissolved oxygen and poor light penetration. Therefore few fish can thrive well in that portion. Little (1969) reported that Typha decreased dissolved oxygen and lowered temperature of the water, which alter the fauna. Birnin-Yauri et al., (2006), showed that there was reduced fish yield in water bodies that are infested by Typha. Aquatic macrophytes when present usually compete with the phytoplankton for light and nutrients, thereby depriving the fish that feed on the plankton. Best (1998) also stated that Ceratophyllum demersum was particularly known for its nitrophily, and its ability to grow rapidly in the
upper water column enables it to maximize light availability for which it competes with phytoplankton, thus simultaneously adapting to and contributing to the light attenuation factor in the Lake. Macrophytes concentrate great amount of various substances (e.g. nutrients) and are consequently useful indicators of local pollution (Kumar et al; 2006). Balarabe and Abubakar(2007) also showed that dense stands of emergent macrophytes may bind up nutrient materials throughout the growing season so that they are not available for production of phytoplankton and other organisms that feed upon phytoplankton. This implies that, the chances for fish larval survival would greatly diminish. The results of the present study showed that the infested portions of the lake had less fish catch. This is in contrast to the findings of Cheruvelil et al.,(2001) which showed that areas infested by large monospecific beds of Eurasian watermilfoil tend to have more fish and invertebrates than do areas with diverse plants. Studies by Cross and McInerny(2001) showed that fish abundance is greater in vegetated habitats than in unvegetated habitats. Based on the results one can conclude that the proliferation of non native emergent macrophytes changes the nutrient balance of a water body. Thereby, changing the biotic composition of such a water body. It is therefore recommended that research should be carried out on ways to control emergent macrophytes particularly Typha , government and non-governmental organizations should undertake the clearing of water bodies of Typha and other macrophytes. However, care must be taken when clearing the lake of aquatic macrophytes, as any alteration to overall composition of aquatic macrophytes will invariably have some effect on the lakes fish community.

This view is supported by the work of Valley et al., (2004) who conclude that overall whole lake aquatic plant treatment is risky. Significant biological risks associated with large scale manipulations include excessive removal of fish habitat and thus decline of fish populations, loss of sensitive plant species, decline

REFERENCES

Adams, W.M. and Hollis, G.E. (1989). Hydrology and sustainable resource development of a Sahelian flood plain wetland. Hadejia-Nguru Wetland, Conservation Project Nguru, Nigeria.
Balarabe, M. L. and Abubakar, M. M. (2007). Contribution to some Elemental Accumulation in Nguru Lake North-eastern Nigeria. International Journal of Pure and Applied Sciences (IJPAS) 1 (1):26-29.
Best, E. P. H. (1998). Effect of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum. Aquatic Botany 8: 197-206.
Birnin-Yauri, Y .A., Daddy, F., Ahmed, Y. B. and Owotunse, S. (2006). Impact of Typha on fish catch in Kebbi State. Fisheries Society of Nigeria, Conference Proceedings 2006.
Cheruvelil, K.S., Soranno,P.A. and Madsen, J.D. (2001). Epiphytic macroinvertebrates along a gradient of Eurasian watermilfoil. Journal of Aquatic Plant Management 39: 67-72
Cross, T.K. and McInerny, M.C.(2001). Spatial habitat influences on inshore fish communities in a selected Minnesota ecological lake class. Minnesota Department of Natural Resources, investigational Report 494. St. Paul.
Denny, P. (1987). Mineral cycling by wetland plants a review. Arch. Hydrobiol. Bech. 27: 1-25.
Hollis, G. E., Penson, S. J., Thompson, J. R. and Sule, A. R. (1993). Hydrology of the river basin. In Hollies et al., (eds). The Hadejia-Nguru Wetlands, environment, economy and sustainable development of a Sahelian floodplain wetland IUCN Gland Switzerland.
Kumar, J. I. N., Soni, H. and Kumar, R. N. (2006). Biomonitoring of selected freshwater macroplytes to asses lake tracer element contamination: a case study of Nal sarover Bird Sanctuary, Gujarat, India. Journal of Limnology 65(1): 9-16.
in water clarity and potential long term cumulative effects of multiple treatments, since eradication of non-native plant species is highly unlikely. And farmers should be enlightened on the use of organic fertilizers and other safe farming practices.

Lafiagi, A. (1997). A Report of fish biodiversity inventory in the Hadejia-Nguru Wetlands. Hadejia-Nguru Wetlands Conservation Project. HNWCP Nguru Nigeria.
Leveque, C. D., Paugy, K. and Teugels, G.G. (eds). (1992). Fauene des poison d'eaux douces et saumatres de L'Afrique de I'Ouest (Tome) ORSTOM et MRAC Tervuren and Paris. 902.
Little, E.C.S.(1969). Weed and Man-made lakes. The Accra Symposium, Ghana. University Press, Accra, Ghana. Pp 284-291
Mcvea, C. and Boyd, C. E. (1975). Effects of water hyacinth cover on Water chemistry, phytoplankton and fish in pond. Journal of Environmental Quality 4: 375-378.
Reed, W., Burchard, J., Hopson, A. J., Jennes, J. and Yaro, I. (1967). Fishes of northern Nigeria, Ministry of Agriculture Northern Nigeria. Gaskiya Corporation, Zaria, Nigeria.
Scheffer, M., Szaba, S., Gragnani, A., Van Nes, E. H., Rinaddi, S., Kautsky, N., Norberg, J., Roijackers, R.M.M. and Franken, R.J.M. (2003). Floating plant dominance as a stable stake Acad. Sci. USA 100: 4040-4045.
Valley, R.D. and Bremigan, M.T.(2002). Effects of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Transactions of the American Fisheries Society 131: 234-244.
Valley, R.D., Cross, T.K. and Radomski, P. (2004). The role of submersed aquatic vegetation as habitat for fish in Minnesota Lakes, including the implications of non-native plant invasions and their management. Minnesota Department of Natural Resources. Special Publication 160.: 1-25
Yang, S.Y., Yu, Z.W., Sun, W.H., Zhog, B.W., Yu, S.W., Wu, H.M., Huang, S.Y., Zhou, H.Q., Ma, K., and Lao, X.F. (1992). Isolation and identification of anti- algal compounds in root system of water hyacinth. Acta. Phytophysiol. Sin. 18: 399-402.

