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ABSTRACT 
Simple recurrent neural networks are widely used in time series prediction. Most researchers and 
application developers often choose arbitrarily between Elman or Jordan simple recurrent neural 
networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural 
network is also being used. In this study, we evaluated the performance of these neural networks 
on three established bench mark time series prediction problems. Results from the experiments 
showed that Jordan neural network performed significantly better than the others. However, the 
results indicated satisfactory forecasting performance by the other two neural networks. 
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INTRODUCTION 
The task of predicting future values of a time series is 
a problem that has applications in many fields such as 
sales, engineering, epidemiology, etc. For efficient 
planning, accurate and timely prediction of future 
events is required. A lot of research efforts have gone 
into the development of prediction models and 
improvement of their performances.   
Artificial Neural Networks (NN) have been used with 
success in prediction applications, and outperformed 
classical statistical models such as Auto Regressive 
Integrated Moving Average (ARIMA)(Zhang et al., 
2001) (de Almeida and Fishwick 1991). Their salient 
features are their non-linearity and ability to handle 
time series without prior knowledge of how the series 
was generated.  Most of the applications of NN are 
based on Feed forward architecture (i.e. a structure 
where information flows in only one direction) (Zhang 
et al. 1998). However, Feedforward neural networks 
(FNN) were not designed to handle dynamic systems 
and are therefore limited to handling stationary data. 
Since practical time series are often dynamic (non-
stationary), a NN structure capable of handling 
dynamic systems is required for effective modeling. 
Recurrent neural networks (RNNs) are a type of NN 
designed with feedback connections that allows 
information to also flow in a backward direction.  
These connections serve as internal memory for the 
network. Introduction of this internal memory enables 
RNN to remember its previous state during 
processing, thereby giving it the ability to handle 
dynamic systems.  RNN have been used with success 
in grammar/language processing (Lawrence et al., 
2000), gesture recognition (Murakami and Taguchi 
1991) and time series applications   (Qi and Zhang 
2008). The commonly applied RNNs to forecasting are 
the Elman and Jordan nets, generally referred to as 
Simple Recurrent Neural Networks (SRNN). A hybrid 

of Elman and Jordan nets called Multi-Recurrent 
Neural Networks (MRNN) has also been used in time 
series prediction (Dorffner, 1996).  
Researchers and developers often arbitrarily choose 
any of the SRNNs for their forecasting applications. To 
the knowledge of the authors, there is no study that 
recommends which one to use based on their 
performance on time series prediction. In this paper, 
we aim to do that by carrying out an empirical study 
comparing their performances and also that of MRNN 
on well-established bench marks.  
Since NN are nothing but structure capable of carrying 
out nonlinear mapping from a set of input patterns to 
desired target output values, they need to be trained 
for accurate target output approximation. Back 
propagation has been the most widely used NN 
training algorithm. Its variant, Resilient propagation 
(RPROP) (Riedmiller, 1994) is employed in our work 
due to its computational simplicity and fast 
convergence.  
In the subsequent sections, we present the 
background information necessary for the study, the 
experimental setup, the results and conclusions.  
I. BACKGROUND 

A. Elman Neural Network  
Elman Neural Network (Elman NN) (ELMAN, 1991), is 
a NN structure designed to allow information flow in 
both forward and backward direction using feedback 
links in order to deal with temporal properties of a 
sequential data. As illustrated in Figure I, it has a set 
of context units referred to as context set that is 
annexed to the input layer. All the context units are 
interconnected fully with all units in the hidden layer. 
Thus, the input vector; 
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The hidden layer units are also connected to their 
corresponding context layer units with weight values 
of one, such that their outputs or previous states are 
stored in the context units.  

Output of each unit in the output layer is computed 
as; 

 

where   
 
Introduction of context units makes  
Elman NN capable of performing sequence prediction 
that is beyond the power of a standard FNN. 
However, Elman NN cannot really deal with an 
arbitrarily long history in the data (Bengio, Simard, 
and Frasconi 1994). Examples of time series 
applications with Elman NN are [10 - 13].     
B. Jordan Neural Networks 

Jordan Neural Network (Jordan NN) (Jordan 1986), is 
a model that realizes functional dependency between 
sequence elements and estimates on one hand and 
the to-be forecast value on the other (Dorffner 1996). 
It is very similar to Elman NN except that the context 
layer stores a copy of the output layer instead of 
hidden layer(Engelbrecht 2005). Structure of Jordan 
NN is shown in Fig II. The input layer becomes 

 
 

 
by annexing the context set. The output units are calculated as 

 

where  
 
Due to its recurrent nature, it can efficiently be 
applied to time series processing but cannot capture 
longer term dependency too like Elman NN (Bengio, 
Simard, and Frasconi 1994). (Yasdi 1999) (Song 
2011)(Song 2011)(Song 2011)[15] are examples of its 
applications to time series forecasting. 
C. Multi-recurrent Neural Networks 

Multi-recurrent Neural Network (MRNN) is obtained 
from combination of Elman and Jordan NNs. As 
depicted in Figure III, it has a feedback connection 
from both hidden and output layer connecting into the 
context set. The context set subjoins the input layer 
and interconnects fully to the hidden layer. The input 
layer becomes 

                                              
And each output unit is calculated as  

 
Where

 
 MRNN has a larger number of degree-of-freedoms 
(weights) compared to SRNNs. According to (Dorffner 
1996), a number of empirical studies have some 

versions of MRNN significantly outperform most other 
simple forecasting methods in real world applications. 
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Figure I Elman NN    

 
Figure II Jordan NN 

Figure III Multi-Recurrent NN 
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MATERIALS AND METHODS 
In this study, three well-known established 
benchmark time-series were used to evaluate the 
performances of the prediction models investigated. 
The first two series were obtained from online 
repository at 
https://datamarket.com/data/list/?q=provider:dstl  
and the last artificially generated; 

1) International airline time series; This series 
has a total of 144 observations of monthly 
totals of passengers from January, 1949 to 
December 1960. It follows a multiplicative 
seasonal pattern with upward trend as 

shown in Fig I. The dataset is non-stationary 
due to the presence of strong seasonal 
variation.  

2) The Quarterly Standard & Poor’s 500 (S&P 
500) indexes (1900 to 1996); It has 388 data 
points. Plot of the dataset as shown in Figure 
II revealed a constant trend with long-run 
cycles.  

3) Mackey Glass chaotic time series; This data 
set is a solution of the Mackey-Glass 
delay-differential equation (Lapedes and 
Farber 1987) ; 

 
 

using , a = 0.2, b = 0.1, c = 10, 

initial condition x(t) = 0.9 for 0 ≤ t ≤ , a 
500 points dataset was generated for this 
study, where 480 data points after the initial 
transients were used for training and testing.  
Plot of the series is shown in Figure III; 

All datasets were scaled to [-1, 1] and normalized 
using (Engelbrecht, 2005); 

where N is the number of observations in the dataset. 
Each of the datasets was divided into two 
independent subsets in a chronological order, where 
the first 80% of the dataset was used for training and 
the last 20% for testing. Note that for parameter 
optimization purpose only, the training dataset was 
further partitioned where the first 70% was used for 
training & the outstanding 30% for validation. 

           
 
 

Figure iv: Airline Passengers Time Series      Figure v: Airline Passengers Time Series 
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Figure vi: Mackay-Glass Time Series   
 
In all the experiments, one step-ahead prediction 
horizon was considered. This translates to a single 
output neuron in all the NN architectures used. For 
Airline time series, we used 12 input neurons each 
representing month of a year since the data was 
collected monthly. For the S&P, we used 4 input 

neurons each representing quarter of a year since it is 
quarterly based. Four input neurons were used in 
Mackay time series prediction, as adopted from 
previous work of (Larsen et al., 1998). Criteria 
proposed by (Sheela and Deepa 2013) was used in 
fixing the number of hidden neurons;  

 

where  and  are the number of hidden and 
input units respectively. The criteria satisfy 
convergence theorem and has proven to be an 
effective method as evident in their empirical studies. 
For all the NNs, linear activation functions were used 
in the input layer units. In the hidden and output 

layer units, modified hyperbolic tangent functions 
were employed as recommended in (LeCun et al. 
2012). It is defined as

                                                
Starting values for weights were chosen randomly. To 
use optimal weight initialization range, we considered 
ranges {(-0.01, 0.01), (-0.02, 0.02), (-0.03, 0.03), (-
0.04, 0.04), (-0.05, 0.05)}.  The range that gave us 
minimum average training and validation error after 
30 runs was chosen as optimal.  
In the experiments, we used MSE as the performance 
measure. All experiments were carried out using 
version 1 of Computational Intelligence Library (CILib) 
(Cloete et al., 2008)and results reported are averages 
over 30 simulations, where 1000 iterations was the 
stopping condition for each algorithm.  
Two-tailed non-parametric Mann-Whitney U test was 
used to statistically determine if the difference in 

performance were significant. The null hypothesis �0∶ 

�1= �2, where �1 and �2 are the means of the two 

samples being compared, were evaluated at a 

significance level of 95%. �1∶ �1≠ �2 defined the 

alternative hypothesis. Thus, any p-value less than 
0.05 corresponded to rejection of the null hypothesis 
that there is no statistically significant difference 
between the sample means. For the sake of 
convenience, all p-values were bounded below by 
0.0001. 
RESULTS AND DISCUSSION 
Table 1 presents average training errors (TE) and 
generalization errors (GE) with their confidence 
interval obtained from predicting the three-time series 
considered, where minimum values obtained are 
displayed in italics.  
For Airline time series, clearly Jordan NN yields the 
minimum TE and GE, outperforming Elman NN and 
MRNNS. Elman performed worst compared to all the 
three RNNs investigated. Mann Whitney test result in 
table 2 & 3 showed that Jordan NN performance was 
statistically significant in both training and 
generalization compared to Elman NN and to MRNN. 
Also, from table 2 & 3, the p-values suggested 
significant difference in Elman NN Vs. MRNN 
performance, with table 1 indicating superiority of 
Elman NN performance over MRNN.  
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Table 1: Mean Errors of the Forecasting Models 

 

 
In predicting the S&P time series, Jordan NN 
outperformed both Elman NN and MRNN by yielding 
the lowest average errors as shown in table 1. 
However, Mann Whitney (in Table 2 & 3) indicated 

that difference in performance between Jordan and 
Elman NN in predicting the S&P was not statistically 
significant. Compared to MRNN, Jordan NN performed 
better at significant level of 95%. 

 
Table 2:  Mann-Whitney U p-values obtained for the average training error comparisons on the    time series with 
reference to the null hypothesis that the means of the compared samples are equal at the significance level of 
95%.   

 
 
 
 
 
 
Table 3:  Mann-Whitney U p-values obtained for the average generalization error comparisons on the time 
series with reference to the null hypothesis that the means of the compared samples are equal at the 
significance level of 95%.                                                                                                                                                                                                                                             

Time Series Elman Vs Jordan Elman Vs MRNN Jordan Vs MRNN 

Airline 0.0289 0.0021 0.0399 

S&P 500 0.9411 0.0690 0.0332 

Mackay-
Glass 

0.0082 0.0002 0.0136 

 
In predicting Mackay time series, Jordan NN yielded 
the lowest average errors (TE and GE), outperforming 
the other RNNS as shown in table 1. MRNN had the 
worst performance. Mann Whitney (in table 2 & 3) 
showed that Jordan NN performance was statistically 
significant compared to both Elman NN and MRNN. 
Elman NN also performed significantly better than 
MRNN. 
CONCLUSION 
The study evaluated the performance of simple 
recurrent neural networks and the so called Elman-
Jordan (multi-recurrent) architectures in time series 
prediction. Resilient propagation was used to train the 
RNNs on three established bench mark time series 

prediction problems. Results from the experiments 
showed that Jordan NN yielded the lowest average 
training and generalization errors, outperforming both 
Elman NN and MRNN in all the three prediction 
problems. Mann Whitney U test showed that Jordan 
NN performed significantly better in two out of the 
three problems. The results also indicated that 
combining Elman and Jordan architectures (MRNN) 
does not necessarily improve performance. Based on 
the datasets studied, we therefore recommend using 
Jordan NN in time series prediction against Elman NN 
and MRNN. However, further investigation using more 
dataset is required. 
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