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ABSTRACT 
In this paper, we developed and qualitatively analyzed a model for the transmission 
dynamics of chikungunya virus in a human a nd  mosquito populations. The chikungunya 
virus is transmitted by Aedes mosquitoes usually Aedes albopictus mosquito and it is of big 
threat to global public health. Rigorous analysis of the model shows that the model has a 
locally asymptotically stable disease free equilibrium whenever a certain epidemiological 
threshold quantity, called the basic reproduction number is less than unity (hence, the 
diseases would not persist in  the community). The model has a unique endemic 
equilibrium when the reproduction number exceeds unity. Furthermore, the model exhibits 
the phenomenon of backward bifurcation, where the stable disease free equilibrium 
coexists with a stable endemic equilibrium.  
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INTRODUCTION 
Chikungunya virus (CHK) is viral disease that is 
transmitted to humans through the bites of an 
infected female mosquitoes (vector-bone 
disease) (Agusto et al., 2016), it is an arboviral 
disease caused by a member of the genus 
alphavirus that belongs to togaviridae family 
(Manore et al., 2014; Saswat et al., 
2013;Naowarat et al., 2011; Yakob and 
Clements, 2013). CHK virus is a non-fatal 
disease that results in too much morbidity in an 
affected humans and has an effect on the 
country’s economy as estimated by disability 
adjusted life years (DALY) thereby becoming a 
a big threat to global public health and 
development (Manore et al., 2014; Saswat et 
al., 2013; Jain et al., 2016). CHK virus gives 
permanent immunity after recovery of an 
individual (Manore et al., 2014; Saswat et al., 
2013). 
CHK virus is endemic in more than 60 countries 
in Asia, Africa, Europe, and America resulting 
several clinical cases or death (Saswat et al., 
2013; Naowarat et al., 2011; Yakob and 
Clements, 2013; Dumont and Tchuenche, 2011; 
WHO, 2016). CHK was not considered as a life 
threatening disease because it has a low death 
rate (Manore et al., 2014). More than 1.3 
million suspected cases of CHK and about 200 
death cases have been reported in the Latin 
American countries, Caribbean islands, and the 

United States of America in April, 2015 (Yakob 
and Clements, 2013; WHO, 2016). 

The CHK virus is a vector bone diseases 
(transmitted to humans via the bites of an 
infected mosquitoes) (Manore et al., 2014). 
Aedes aegypti and Aedes albopictus mosquitoes 
are the principal vectors for the transmission of 
CHK virus worldwide and the viral infection has 
the following primary signs and symptoms in 
the patients which are fever, joint pain, 
headache, muscle pain, skin rash and 
incapacitating arthralgia (Manore et al., 2014; 
Saswat et al., 2013; Naowarat et al., 2011). 
Vertical transmission has been shown to be an 
important component that enables the virus to 
be kept up in non-conducive climatic conditions 
in nature (Jain et al., 2016). Recently, 
experimental vertical transmission of CHK virus 
in Aedes aegypti has been shown (Agarwal et 
al., 2014). Information on vertical transmission 
of CHK virus in natural population is of great 
significance in order to comprehend the 
possible processes of virus survival during inter 
epidemic periods. In this paper we reported 
vertical transmission of CHK virus in aquatic 
and adult stages in the mosquito population. 

Currently, there is no specific and effective 
vaccine for CHK virus at the moment, but a 
number of vaccines are undergoing clinical 
trials (Manore et al., 2014). 
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Although there is no specific treatment for 
CHK virus (Manore et al., 2014; Saswat et al., 
2013). However, treatment could be done by 
decreasing the symptoms in order to reduce the 
burden of the disease (WHO, 2016; Agusto et 
al., 2016). 
A number of mathematical models have been 
designed to give insights into the transmission 
dynamics of CHK (see, for instance, (Manore et 
al., 2014; Saswat et al., 2013; Naowarat et al., 
2011; Yakob and Clements, 2013; Dumont and 
Tchuenche, 2011; Agusto et al., 2016)). To the 
author’s knowledge, the current study give the 
first model for CHK virus that incorporate the 
aquatic stage (egg, lava and pupa stages) and 
vertical transmission in a mosquito population. 
 
Model Formulation 
The total human population at time t, denoted 
by NH (t), is divided into four mutually exclusive 
compartments as follows: susceptible 
individuals, who are at risk of infection of CHK 

virus ( ), asymptomatic CHK individuals 

( ), CHK early infected individuals with 

clinical symptoms of CHK ( ), CHK 
advance infected individuals with clinical 

symptoms of CHK ( ), individuals who 

recovered from CHK ( ), so that: 

 
Similarly, the total mosquito (female Aedes 

albopictos or Aedes aegypti mosquito) 

population at time t denoted by ( ), is 
sub-divided into sub-populations of immature 
mosquitoes (eggs, larvae and pupae stages), 
denoted by A(t), and adult mosquitoes 

(denoted by ), so 

that: where is 
further divided into three compartments as 
follows: adult mosquitoes susceptible to CHK 

viruses ( ), adult mosquitoes exposed to 

CHK ( ), CHK-infected adult mosquitoes 

( ), so that:  
The susceptible population of individual who 

are at the risk of CHK virus infection ( ) is 
generated by recruitment of humans at a 
constant rate ΠH (all humans recruited into the 
population are assumed to be at risk of CHK 
infection). The population is diminished 

following infection with CHK (at a rate ), 
and is also decreased by natural death (at a 

rate : this is assumed to be the same in all 
human compartments). 

Thus,  

The population of asymptomatic CHK 
individuals (EH) is generated following the 
infection of susceptible individuals (at a rate 

. It is decreased by the development of 

clinical symptoms of CHK (at a rate ), and 
natural death. 

Hence,  
The population of CHK early infected 

humans with clinical symptoms of CHK ( ) is 
generated by progression of CHK-exposed 

individuals (at the rate ). The population is 
decreased by progression to the advanced-

infectious state of CHK (at a rate ). The 
population is further decreased by natural 

death and CHK-induced death (at a rate ). So 
that, 

 
The population of individuals at advanced-

infectious state of CHK with clinical symptoms 

of CHK ( ) is generated at the rate . The 
population is decreased by recovery of CHK (at 

a rate ). It is further decreased by natural 
death and CHK-induced death (at a rate δ2). So 
that, 

 
The population of recovered CHK-infected 

individuals ( ) is generated by the successful 
treatment of CHK-infected individuals (at the 

rate ). It is diminished by natural death. 

Therefore,  
Immature mosquitoes (eggs, larvae and pupae) 
are lumped into a single compartment (A) for 
computational convenience (Okuneye & Gumel, 
2016). The population of immature mosquitoes 

is generated at the rate ( ), where  is the 
egg deposition rate. The population of 
immature mosquitoes is decreased by 
maturation to susceptible adult mosquitoes (at 
a rate ξ), infectious adult mosquitoes (at a rate 

(1 −ξ)) and natural death (at a rate ). So 
that, 

 The population of 

susceptible adult mosquitoes ( ) is generated 
at the rate (ξ). The population is diminished by 
infection, following effective contact with CHK-
infected (at a rate λv) and natural death (at a 

rate ; this rate is assumed, for mathematical 
convenience, to be same for all the 
epidemiological classes for mosquitoes). 
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Hence,  

The population of CHK-exposed adult mosquitoes ( ) is generated following infection with 

CHK (at a rate λv). It further decreased by the progression of CHK (at a rate ), and natural 

death. Thus,  

The population of CHK-infected adult mosquitoes ( ) is generated at the rate (1 −ξ) and 

( ). It is further decreased by natural death. Thus,  
The model for the CHK is given by the following deterministic system of non-linear differential 
equations (a flow diagram of the model is depicted in Figure 1). 

 

 

 

 

(1) 

 

 

 

 

where,    and    
,        (2) 

and  

In (2),  is the transmission probability of CHK and , , , > 1 are the modification 
parameters accounting for the assumption that infected humans and mosquitoes are more 
infectious than exposed humans and mosquitoes, respectively (Duong et al., 2015). Furthermore, 

is the per capita biting rate of female mosquito on the human host per unit time. 

Similarly, is the number of bites per mosquito per unit time. Following (Chitnis et al., 

2006), the biting rates and  are respectively given by, 

 and  

Where  is the number of times one mosquito would want to bite humans per unit time (if 

humans were freely available) and  is the maximum number of mosquito bites a human can 
receive per unit time. 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1: Schematic diagram of the model (1). 
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The model (1) is an extension of some of the CHK transmission models (e.g., those in (Manore et 
al., 2014; Yakob & Clements, 2013; Agusto et al., 2016) by (inter alia) : 
i. Including the dynamics of early infectious and advanced infectious state of CHK in human 
population (this was not included in (Agusto et al., 2016; Yakob & Clements, 2013)); 
ii. Using a nonlinear biting rate (constant rate was used in (Agusto et al., 2016); 
iii. Including the dynamics of an aquatic (immature) stage of the mosquito (egg, lava and pupa   
stages) (this was not considered in (Manore et al., 2014; Yakob & Clements, 2013; Agusto et al., 
2016)). 
Basic qualitative properties of the model 
In this section, the basic qualitative features of the model (1) will now be explored. 
Let µ = min(µA, µv). We claim the following: 
Theorem: The system (1) preserves positivity of solutions. In other words, the solutions of the 

model (1) with positive initial data and remain positive ∀t >0. Further, and 

.  
Proof. It is clear from the first equation of the model (1) that, 

(3) 

so that, (4) 
Using similar approach, it can be shown that all other state variables of the model remain 
positive ∀t > 0. Furthermore, adding the first five equations in the model (1) and the last four 
equations of the system (1) gives, respectively, 

(5) 

and (6) 

Thus, and 

. So that, 

and

. Hence, and  

. 
Lemma:The following biologically feasible region of the model equation (1)  

is positively invariant and 
attracting. Refer to (Van-den & Watmough,2002) for the proof of the above lemma. Therefore, the 
model (1) is mathematically well-posed and epidemiologically reasonable since all the variables 
remain non-negative for all t≥0.Hence,it is sufficient to consider the dynamics of the model (1)in D 
(Hethcote,2000). 
Asymptotic stability of disease-free equilibrium (DFE) 
 
TDFE 
Theorem:  The TDFE o f  the model (1), denoted by Υ0, is GAS in  Ω whenever RN≤1. 

Proof. Following(Okuneye&Gumel,2016),the model(1)can be re-written as ,  
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Where Y = ( )T,A(Y)isa9x9M-matrix(Metzler-Matrix)given by, 
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And G=( ,0,0,0,0,0,0,0,0)T.let  (so the model (1) has only the TDFE, ). Furthermore, 

let . Thus, the equation  can be re-written as 

, where  is the 9 x 9 matrix of coefficients of the model (1) with 

variables . It is clear that  is the only 

equilibrium of the system . Consider the Lyapunov function  with 

 (Okuneye & Gumel, 2016). Thus  except at 

. Furthermore (where a prime now denotes differentiation with respect to ), 

. 

Since in , it follows that . Furthermore, it follows from La Salles’s 
Invariance Principle (Theorem 6.4 of (LaSalle, 1976)) that the maximal invariant set contained in 

 is the . Thus, the transformed equilibrium,  , is GAS in  if 

. 
NDFE 
Using the next generation operator method on the system( Van-den&Watmough,2002), the associated 

basic reproduction number of the model (9), denoted by , is given by, 

,where, 

, , ,  

, , and . 

Lemma: The DFE ( ), of the CHK model(1) is locally asymptotically stable (LAS) if , 

and unstable if . 
Existence of backward bifurcation 
Here, the center manifold theory will be use to investigate the conditions on the parameter values in 
the model that cause forward or backward bifurcation to occur (Carr,1981;Castillo-
Chavez&Song,2004;Van-den & Watmough,2002). 

       Consider the system, , where  is the bifurcation parameter,  is 

continuously differentiable at least twice in both  and . The disease-free equilibrium is the 

line  and the local stability of the disease-free equilibrium at the point   (Van-den 

& Watmough, 2002). Now it shall show that there are non-trivial equilibrium near the bifurcation 

parameter.  

Solving for gives 

. 
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By Lemma 3.3, the disease-free equilibrium  is locally stable when  and unstable 

when . Here  is the bifurcation value. For convenience, let , , 

, , , , , , , so that 

 and .Further, by adopting the same 

vector notations with , the model (1) can be written in the form  

where . 

The Jacobian of the transformed system, evaluated at the DFE ( ) with  (denoted 

by ), is given by 
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where  , 

 , 

 , ,  

 
 

The Jacobian  of the linearized system has a simple zero eigen value (with all other eigen 
values having negative real part). Using the notation in (Castito-Chavez & Song, 2004), the following 
computations are carried out. 

Eigen vectors of : For the case when it can be shown that the J( ) has a 

right eigen vector (Corresponding to the zero eigen value), given by w=[ , ,…, ]Twhere, 

,  

, , , , , 

, , 

. Similarly, the components of the left eigenvector of 

 (corresponding to the zero eigen value), denoted by , are given by, 
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, , , , , 

, , ,  

. 

It is worth mentioning that the free right eigenvectors,  and left eigenvector, , are chosen to 

be  and 

,where,

  and  

 , so that  (in line with (Castillo-Chavez & Song,2004)).It can be shown, by computing the 

non-zero partial derivatives of the right-hand side functions, (i=1,...,9), that the associated backward 
bifurcation coefficients, a and b ,are given, respectively, by(seeTheorem4.1in(Castillo-Chavez & 
Song,2004)): 

+(− (1+ )( + ηv) 

( + + ) +Πv ( ( + ηv) + ( + + ))) )

µv+ 

Πv (− ( + + ) + ( ( +

ηv) − ( + )( + + )))ξ)µv  

and   

 

,where,   and  

 

Since the coefficient b is automatically positive, it follows that the model (1) will undergo backward 
bifurcation i f  the coefficient a, is positive. 
 
CONCLUSION 
This paper presents a deterministic m o d e l  for 
the transmission dynamics of chikungunya. The 
model, which realistically adopts a standard 
incidence formulation, allows chikungunya 
transmission by exposed humans and mosquitoes. 
The model is rigorously analyzed to gain insights 
into the qualitative dynamics of chikungunya. 
The main theoretical and epidemiological findings 
of the study show that: 

• The TDFE of the model is GAS whenever 
the threshold quantity is less than or 
equal to one. 

• The model exhibits the phenomenon of 
backward bifurcation, where the stable 
NDFE co-exists with a stable endemic 
equilibrium, even when the reproduction 
number is less than unity. 
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