

Bayero Journal of Pure and Applied Sciences, 5(1): 48 – 56

Received: September 2011 Accepted: March 2012 ISSN 2006 – 6996

FOLIAR EPIDERMAL CHARACTERS OF SOME STERCULIACEAE SPECIES IN NIGERIA

*Aworinde, D.O., Ogundairo, B.O., Osuntoyinbo, K.F. and Olanloye, O.A.

Department of Biological Sciences, University of Agriculture, Abeokuta, Ogun State, Nigeria *Correspondence author: davidaworinde@yahoo.com

ABSTRACT

Foliar epidermal studies were conducted on ten species in the family Sterculiaceae in search of stable taxonomic characters that could be employed in order contribute to their classification and identification. In spite of the remarkable morphological differences, the results indicated that the species are relatively uniform in their quantitative macromorphological characters except for the leaf shape and base which varied from elliptic, lanceolate to palmate and leaf base from cordate, obtuse to cunneate. The epidermal characters such as number of cells, anticlinal wall pattern, cell wall thickness and the stomata size varied among the species. The epidermal cells varied from polygonal to irregular while the anticlinal walls varied from straight to straight \curve and slightly curved. All the species except Cola nitida (Vent) Schott, Malachanta alnifolia (Bak) Pierre, Mansonia altissima (A.Chev) R.Capuron, Theobroma cacao Linn and Waltheria indica Linn are amphistomatic. Stomata types included anisocytic in T. cacao, laterocytic in C. hispida, anomocytic in C. millenni Schum, Staurocytic in C. nitida and paracytic in W. indica, M. altissima and Malacantha alnifolia. Keywords: Foliar epidermis, Nigeria, Sterculiaceae.

INTRODUCTION

The family name Sterculiaceae was based on the genus Sterculia. The family is made up of trees, shrubs, and herbs comprising about 70 genera, totaling around 1500 species which are found majorly in the tropics (Burkill, 1985). They are further characterized by the presence of stellate hairs. The leaves are simple or infrequently palmately lobed or compound. They have stipulate leaves which are caducous. The most famous species of the family are Theobroma cacao and Cola species. According to Motamayor and Lanaud (2002) Theobroma cacao is an indigene of South America and is commercially exploited for its seed output that is mainly destined for manufacturing chocolate products. Cola species, a tropical African genus of the family comprises 122 species which are mostly evergreen, small or moderately sized tree and is widely cultivated in tropical countries especially in Nigeria because of its economic importance. The species considered in this study are Theobroma cacao, Cola hispida Brenan & Keay, C. millenni, C. nitida, Triplochyton scleroxylon, Malanchata alnifolia, Mansonia altissima, Waltheria indica, Pterigota marcocarpa K.Schum and Kleinhovia hospita L. All the studied species are trees except for Waltheria indica which is a shrub. Various characters have been used in describing and delimiting species in the family Sterculiaceae, but not much attention has been drawn to the leaf epidermal characters, it is therefore imperative to attempt a search for epidermal characters that may be of taxonomic importance. The main objective of this work was to study the leaf epidermis of some species of Sterculiaceae in Nigeria in search of useful and stable taxonomic characters that can assist in identifying and enable a better understanding of the variations among the species even in their fragmentary state.

MATERIALS AND METHODS

Seven plant genera in the family Sterculiaceae were selected for the study. Fresh samples used for these investigations were collected from UIH (abbreviation according to Holmgren and Keuken, 1974), Agodi Botanical garden and some field collections were also made. Measurement of parameters for morphological data followed Isawunmi (1989) and observation of quantitative characters was made *in situ*. Specimens were prepared for photomicrography as described by Aworinde and Ogundairo (2009).

Stomata index (SI) was calculated using the formula of Salisbury (1972) as modified by Hussin *et al.*, (2000).

Where S denotes number of stomata per unit area and E number of epidermal cells of the same area. Measurement of the epidermal cell width was taken at the widest point on each cell.

RESULTS

Parameters of morphological and anatomical importance are presented in Tables 1-5 while Figures A - T are the images from the photomicrographic study.

Macromorphological characters

Leaves in Sterculiaceae family are simple, having opposite or whorled arrangement and mostly entire and stipulate. The leaf shapes varied from elliptic, lanceolate to palmate but rarely obovate (Table 3). The leaves are mostly glabrous in all except *Cola hispida, Malachanta alnifolia, Mansonia altissima* and *Waltheria indica*.

The apices are mostly acuminate with the exception of *Waltheria indica* which is acute. The bases are mostly cordate and the leaf sizes show considerable variation within the family with the largest in *Pterigota marcocarpa* having 38cm and the smallest *C. nitida* having 18cm respectively. The lowest leaf length\width ratio ranges from 1:1 to 2:1 (Table 3).

Micromophological characters Epidermal cells

Leaf epidermal cells are irregular or more often polygonal. Anticlinal wall patterns are slightly curved to straight. Irregular cells exist more often on the abaxial surfaces than adaxial surfaces. The irregular cells are sometimes intermixed with polygonal cells in Kleinhovia hospita and Malanchata alnifolia. The polygonal and irregular epidermal cells possess straight\curved anticlinal walls but in few cases they have straight or slightly curved walls T. cacao, M altissima, K. hospita and M. alnifolia (Fig. A, O, K and M) (Table 1 and 2). Variation also occurs in the number of epidermal cells on both the adaxial and abaxial surfaces. On the abaxial surface, M. alnifolia has the highest mean number of 218µm while K. hospita has the lowest mean of 49.1µm. Also, on the adaxial surface C. milleni has the highest mean number of 363.4µm with W. indica having the lowest mean of 32.3µm (Table 4).

The epidermal cell walls are thick ranging from 7.4 μ m in *P. macrocarpa* to 1.4 μ m in *M. altissima* on the abaxial surface. The cell wall thickness on the adaxial surface ranged from 1.8 μ m in *M. alnifolia* to 7.8 μ m in *P. macrocarpa* (Table 4). Abaxial epidermal cell walls are generally less thick than adaxial cell walls.

Stomata

The most common type of stomata in the family is paracytic as found in P. marcocarpa, M. altissima and M. alnifolia. In amphistomatic taxa the stomata are more frequent on the abaxial surfaces (Table 1 and 2). The mean stomata number varied from 10.2 in K. hospita to 242.8 in T. cacao on the abaxial surface with stomata index ranging from 14.5 to 60.6% in P. marcocarpa and C. nitida respectively. On the adaxial surface, the mean stomata number ranged from 6.4 in W. indica to 139 in T. scleroxylon with a stomata index of 2 to 29.8 in C. nitida and M. alnifolia respectively (Table 5). Generally, more stomata occur on the abaxial surface than the adaxial surface. Mean stomata length is in the range of 26 to 61.4µm in T. cacao and C. milleni respectively on the abaxial surface while it ranged from 30.4 to 64.5µm in *T.cacao* and *C. nitida* on the adaxial surface. Mean stomata width varies from 7.1µm in P. macrocarpa to 22.1µm in *C. nitida* on the abaxial surface and 12µm in *T.* cacao to 26.5µm in C. nitida on the adaxial surface (Table 5).

 Table 1: Epidermal characters of some species of Sterculiaceae (Abaxial surfaces)

ΤΑΧΑ												
	1	2	3	4	5	6	7	8	9	10	11	
Theobroma cacao	+	-	+	-	-	+	-	-	-	-	-	
Waltheria indica	+	-	-	+	-	+	-	-	-	-	-	
Cola nitida	+	-	-	-	+	-	+	-	-	-	-	
Cola millenni	+	-	-	+	-	-	-	-	-	-	+	
Cola hispida	-	+	-	-	+	-	-	-	+	-	-	
Mansonia altissima	+	-	+	-	-	-	-	+	-	-	-	
Triplochyton scleroxylon	+	-	-	-	+	-	-	-	-	+	-	
Kleinhovia hospita	-	+	+	-	-	+	-	-	-	-	-	
Malanchata alnifolia	-	+	-	+	-	-	-	+	-	-	-	
Pterigota marcocarpa	+	-	-	+	-	-	-	+	-	-	-	

Legend to character codes: 1= polygonal cell shape, 2 = irregular cell shape, 3 slightly curved anticlinal wall pattern, 4 = straight anticlinal wall pattern, 5=straight/curved anticlinal wall pattern 6= anisocytic stomata type, 7 = staurocytic stomata type, 8 = paracytic stomata type, 9 = laterocytic stomata type, 10 = absence of stomata, 11 = anomocytic stomata type.

Table 2: Epidermal characters of some species of Sterculiaceae (Adaxial surfaces)

ΤΑΧΑ		CHARACTER CODES									
	1	2	3	4	5	6	7	8	9	10 1	1
Theobroma cacao	+	-	+	+	-	+	-	-	-	-	-
Waltheria indica	+	-	-	-	+	-	-	+	-	-	-
Cola nitida	+	-	-	-	+	-	+	-	-	-	-
Cola millenni	+	-	-	-	+	-	-	-	-	+	-
Cola hispida	-	+	-	-	+	-	-	-	-	+	-
Mansonia altissima	-	+	-	-	+	-	-	+	-	-	-
Triplochyton scleroxylon	+	-	-	+	-	-	-	-	-	-	+
Kleinhovia hospita	+	-	-	+	-	-	-	-	-	+	-
Malanchata alnifolia	+	-	-	-	+	-	-	+	-		-
Pterigota marcocarpa	+	-	-	+	-	-	-	-	-	- +	-

Legend to character codes: 1= polygonal cell shape, 2 = irregular cell shape, 3 slightly curved anticlinal wall pattern, 4 = straight anticlinal wall pattern, 5=straight/curved anticlinal wall pattern 6= anisocytic stomata type, 7 = staurocytic stomata type, 8 = paracytic stomata type, 9 = laterocytic stomata type, 10 = absence of stomata, 11 = anomocytic stomata type.

Taxa	Apex	Margin	Shape	Base	Trichome	Length	Width	Petiole length	Length width Ratio
Cola hispida	Acuminate	Entire	Elliptic	Obtuse	+ +	6.5(12.1±0.8)15.6	4.1(9.3±0.7)12.0	8.3(15.2±0.9)18.2	1:1
Cola millenni	Acuminate	Entire	Palmate	Cunneate		15.0(18.5±0.7)21.0	6.5(17.5±1.5)22.5	23.0(26.5±0.9)31.0	1:1
Cola nitida	Acuminate	Entire	Lanceolate	Obtuse		15.0(17.4±0.6)21.0	6.0(7.1±0.3)9.0	20.0(21.9±0.5)25.0	2:1
Kleinhovia hospita	Acuminate	Entire	Elliptic	Cordate		19.0(24.4±0.9)29.0	19.0(25.3±1.2)29.0	8.9(49.7±4.7)61.0	1:1
Malanchata alnifolia	Acuminate	Entire	Elliptic	Obtuse	+ +	5.0(6.1±0.2)7.2	3.0(3.9±0.2)4.9	6.0(7.5±0.4)9.5	1:1
Mansonia altissima	Acuminate	Entire	Elliptic	Cordate	+ +	15.0(23.4±1.6)28.5	12.0(18.4±1.2)22.5	18.0(29.6±2.3)39.0	2:1
Pterigota marcocarpa	Acuminate	Entire	Elliptic	Cordate		20.0(30.8±2.3)41.0	20.0(29.1±1.9)36.9	49.0(64.7±3.1)79.0	1:1
Theobroma cacao	Acuminate	Entire	Lanceolate	Obtuse		30.0(32.1±0.5)35.5	9.5(10.8±0.3)11.7	31.0(33.6±0.6)37.5	2:1
Triplochyton scleroxylon	Acuminate	Entire	Palmate	Cunneate		15.0(18.6±0.7)21.5	15.0(18.5±0.9)22.5	23.0(26.6±0.8)31.0	1:1
Waltheria indica	Acute	Crenate	Lanceolate	Cordate	+ +	13.5(14.6±0.2)15.5	9.0(10.3±0.2)11.7	18.5(19.8±0.3)21.0	1:1

Table 3: Leaf morphological features of some species of Sterculiaceae (all quantitative characters min.(mean± s.e.)max)

denotes glabrous leaf

+ + denotes pubescent leaf

Table 4: Variation in epidermal cell size and cell wall thickness of the studied taxa

Taxa	Number of cells per (μm) (Abaxial)	Number of cells per (µm) (Adaxial)	Cell wall Thickness(µm) (Abaxial)	Cell wall Thickness(µm) (Adaxial)	
Cola hispida	59(93.4±10.7)152	150(187.7±6.4)217	2(4.9±0.5)7	5(7.1±0.5)10	
Cola millenni	90(110.4±4.8)140	299(363.4±15.6)430	3(4.1±0.2)5	4(5.5±0.3)7	
Cola nitida	136(205.4±14.1)268	48(102±11.2)160	5(6.9±0.4)9	5(6.5±0.3)8	
Kleinhovia hospital	37(49.1±2.4)58	159(177.6±3.9)200	2(3.3±0.4)5	1(2.3±0.3)4	
Malanchata alnifolia	188(218±8.2)268	72(97.2±5.1)120	$1(1.8\pm0.3)3$	$1(1.5\pm0.2)3$	
Mansonia altissima	72(97.2±5.1)120	188(213.2±6.1)240	1(1.4±0.2)3	1(2.2±0.5)5	
Pterigota marcocarpa	170(188.4±4.9)210	$200(218.1\pm4.2)240$	3(7.4±0.6)10	7(7.8±0.3)9	
Thebroma cacao	143(187.3±9.7)230	160(211.9±10.0)260	4(5.9±0.4)8	4(6.4±0.4)8	
Triplochyton scleroxylon	59(83.5±6.8)139	200(217.1±4.2)239	1(3±0.3)5	4(6.6±0.4)8	
Waltheria indica	80(98±4.4)120	12(32.3±3.2)45	1(1.7±0.2)3	1(1.6±0.2)3	

Таха	Stomata Density per µm (Abaxial)	StomataDensity per μm (Adaxial)	Stomata length (Abaxial)	Stomata length (Adaxial)	Stomata Width (Abaxial)	Stomata Width (Adaxial)	S.I % (Ab)	5.I % (Ad)
Cola hispida	15(20.4±1.9)35	-	50(58±1.9)65	-	10(18.7±1.3)23	-	60.6	-
Cola millenni	34(51±3.7)67	-	50(61.4±2.8)70	-	$10(12.8 \pm 1.0)20$	-	34.5	-
Cola nitida	39(55.9±2.9)69	9(23.4±3.2)40	50(61.4±2.8)70	60(64.5±1.4)70	15(22.1±1.3)28	22(26.5±0.9)31	21.8	2
Kleinhovia hospita	4(10.2±1.0)15	-	35(48.2±3.7)69	-	7(10.3±0.8)15	-	23.4	-
Malanchata alnifolia	22(28.3±1.0)33	20(34±2.9)48	48(57.3±2.3)70	50(60.8±2.4)70	10(21.5±1.8)30	10(17±2.3)30	14.6	29.8
Mansonia altissima	18(24.3±1.3)30	47(53.3±1.5)60	30(47.2±3.5)60	50(60.8±1.6)68	10(20.5±2.2)30	20(25.6±1.4)30	20.5	23.8
Pterigota marcocarpa	19(25.3±1.2)29	-	44(53.2±1.7)61	-	6(7.1±0.3)9	-	14.5	-
Thebroma cacao	200(242.8±12.6)320	65(89.7±5.2)120	15(26±1.9)35	24(30.4±2.1)44	9(11.1±0.7)15	10(12±0.6)15	47.7	27.1
Triplochyton scleroxylon	-	100(139±8.2)180	38(46.1±1.7)52	-	10(14.5±1.1)20	-	46.3	-
Waltheria indica	20(24.5±1.1)30	2(6.4±0.8)10	40(54.3±2.8)65	50(61.4±2.0)72	10(19.8±2.1)30	10(14.6±1.7)26	23.7	29.8

Table 5: Stomata character of the studied taxa [all measurement in μ m(min (mean ± s.e)max)].

- denotes no stomata, S.I = Stomata Index

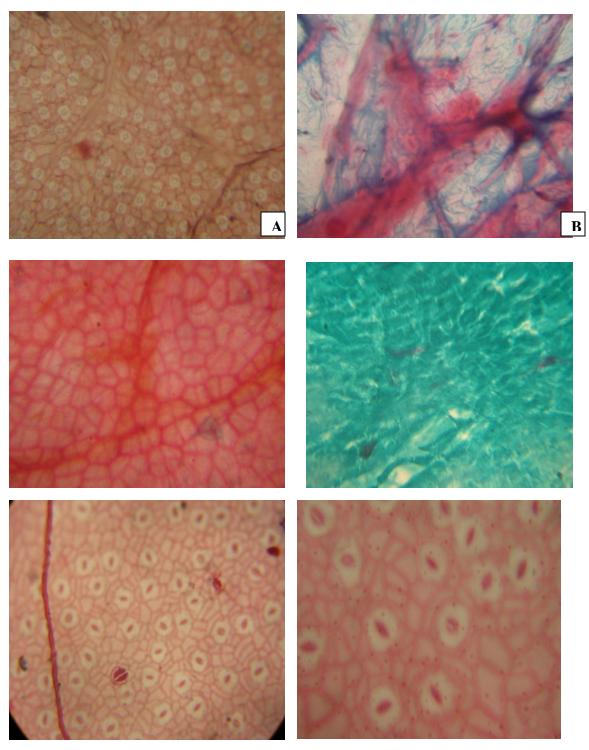


Fig. A, B: Abaxial and Adaxial surface of *Theobroma cacao* with anisocytic stomata. Fig. C, D: Abaxial and Adaxial surface of *Cola hispida* with laterocytic and no stomata respectively. Fig E, F: Adaxial and Abaxial surface of *Cola nitida* with staurocytic stomata.

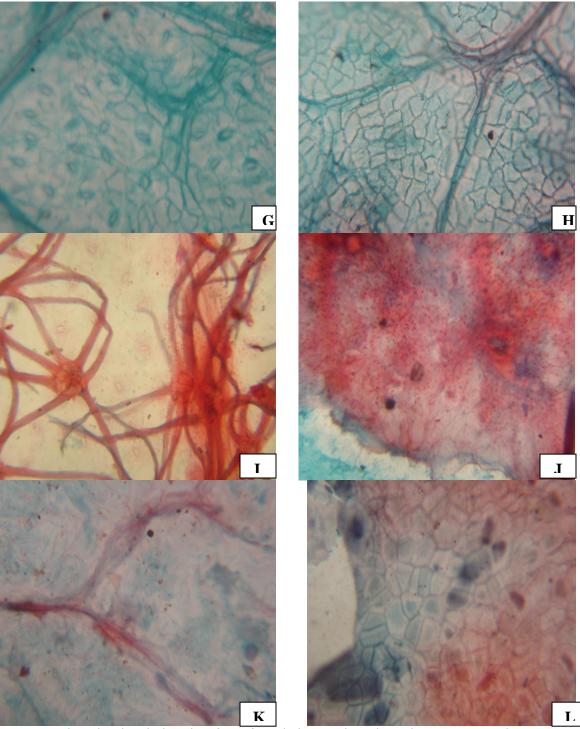


Fig. G, H: The Adaxial and Abaxial surface of *Triplochyton scleroxylon* with anomocytic and no stomata respectively.

Fig. I, J: Adaxial and Abaxial surface of *Waltheria indica* with paracytic and anisocytic stomta respectively. Fig. K, L: Adaxial and Abaxial surface of *Kleinhovia hospita* with no stomata and anisocytic type respectively.

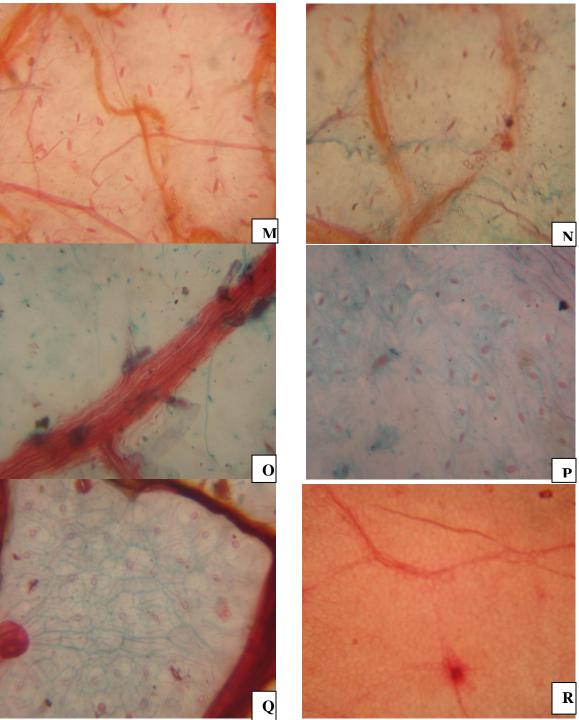


Fig. M, N: Adaxial and Abaxial surface of *Malanchata alnifoia* with paracytic stomata. Fig. O, P: Adaxial and Abaxial surface of *Mansonia altissima* with paracytic stomata. Fig. Q, R: Adaxial and Abaxial surface of *Cola millenni* with no stomata and anomocytic stomata.

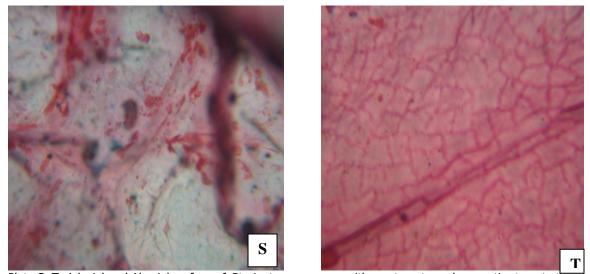


Plate S, T: Adaxial and Abaxial surface of *Pterigota marcocarpa* with no stomata and paracytic stomata type.

DISCUSSION

The study of the epidermal surfaces of Sterculiaceae revealed a number of important micromorphological characters and these characters exhibit interesting interspecific variations that are of diagnostic significance for identification and delimitation

The cell wall shape varied greatly among T. cacao, W. indica, C. nitida, C. millenni, T. scleroxylon and P. marcocarpa can be grouped together as they possessed polygonal shape on both the adaxial and abaxial surfaces. Curved and slightly straight walls were associated with irregular cell shape while straight walls were associated with polygonal cells. These findings were in agreement Stace (1965) with who suggested that environmental conditions such as humidity play a significant role in determining the pattern of anticlinal walls. There is a wide variation in the number and distribution of stomata found in all the species studied. Classification of different types of stomata complexes is based on the number and position of the subsidiary cells and the ontogeny of the cell types. In consonance with Metcalfe and Chalk (1979) the presence of both anisocytic and paracytic stomata in Waltheria indica distinguished

REFERENCES

- Adegbite, A.E. (2008): Leaf anatomical studies in some species of the tribe Cichorieae (Asteraceae) in Nigeria. Comp. Newsl., 46: 49 – 58.
- Aworinde, D.O. and Ogundairo, B.O. (2009): Leaf epidermal micromorphology in some members of *Solanum* L. (Solanaceae) in Nigeria. University of Zambia Journal of Science and Technology, 13(2): 29 – 40.

it from other species and is diagnostic. The presence of laterocytic stomata found in Cola hispida also distinguished it from the remaining species. The appearance of more stomata on the abaxial surface is an adaptation to water loss (Mbagwu et al. 2008). Furthermore, this appears to be a coping strategy to survive drought (Aworinde and Ogundairo, 2009). Also, in agreement with Metcalfe and Chalk (1950) and Mbagwu and Edeoga (2006) who observed that stomata are usually more on the lower epidermis in species of Amaranthus and Vigna respectively. The differences in stomata density and stomata index of the species are often а reflection of physiological responses to combination of environmental factors which could be useful in delimitation at the species level (Adegbite, 2008). The striking difference observed in the data and figures of the characters such as stomata sizes, stomata index, stomata density and in the size, shape and density of the epidermal cells of the species studied are therefore of taxonomic importance. Also the similarities observed in the stomata type and epidermal cells arrangement of the species provides evidence for their genetic and evolutionary relationships and justification for their taxonomic grouping.

- Burkill, H.M. (1985): The useful plants of west tropical Africa. 2nd edition, Royal Botanical Garden, Kew, pp. 507 705.
- Holmgren, P.K. and Keuken, W. (1974): Index Herbariorum. Part 1. The herbaria of the world. Utrecht.
- Hussin, K.H., Seng, H., Ibrahim, W.Q., Gen, L.J. Ping and Nian, L. (2000): Comparative leaf anatomy of *Alpinia* Roxb. species (Zingiberaceae) from China. Bot. J. Linn. Soc., 133: 161 – 180.

- Isawunmi, M.A. (1989): Leaf epidermal studies in the genus *Venonia* Schreber tribe Vernoniaceae (Compositae) in West Africa. Feedes Repert. 100: 335 – 355.
- Mbagwu, F.N and Edeoga, H.O. (2006): Observation on the vegetative and floral morphology of some *Vigna species* (Leguminosae-Papilionoideae), Pakistan Journal of Biological Sciences, 9: 1754 – 1758.
- Mbagwu, F.N., Nwachukwu, C.U. and Okoro, O.O. (2008): Comparative leaf epidermal studies on *S. marcocarpon* and *S. nigrum*, Research Journal of Botany, 3(1): 45 – 48.
- Metcalfe, C.R. and Chalk,L.(1950). Anatomy of dicotyledons. Oxford: Clarendon press, pp 1067 – 1074.

- Metcalfe, C.R. and Chalk, L. (1979): Anatomy of dicotyledons. Oxford: Clarendon press, pp 456 473.
- Motamayor, J. and Lanaud, C. (2002): Cacao domestication: The origin of the cacao cultivated by the Mayas. Heredity, 89: 380 – 386.
- Salisbury, E.J. (1927): On the causes and ecological significance of stomata frequency with special reference to the woodland flora. Phil. Trans. Roy. Soc., 21B: 1065.
- Stace, C.A. (1965): Circular studies as aid to plant taxonomy. Brit. Mus. (Nat. Hist. Bull.) Bot., 4: 3 – 78.