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ABSTRACT. The grinding-induced reactions of 2-aminobenzyl alcohol and benzaldehyde 

derivatives in the presence of 30 mol% of acetic acid to give 3,1-benzoxazines are described. The 

reactions were performed at room temperature affording 3,1-benzoxazines in yields above 95% 

and high purity when benzaldehyde and its chloro and nitro derivatives were used. 
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INTRODUCTION 
 

The development of environmentally benign methods for the synthesis of organic compounds 

has attracted the attention of synthetic chemists due to the increase in ecological concerns. One 

of the most important goals of these methods developments is the elimination or reduction of 

volatile organic solvents [1-4]. Solvent-free and liquid-assisted organic reactions have captured 

great interest not only because of their ecological importance, but also because they offer many 

synthetic advantages in terms of high efficiency, yield, selectivity, simplicity of the reaction 

procedure, mild conditions, reduction of waste, as well as their safety, and low cost [5-9]. 

As part of our broad interest in the chemistry of heterocyclic compounds [10, 11], the quick, 

environmental safe and clean synthesis of 2-phenyl-3,4-dihydro-3,1-benzoxazine derivatives 

from 2-aminobenzyl alcohol and benzaldehyde derivatives in the presence of minimal amount 

of acetic acid under grinding conditions utilizing a mortar and a pestle is described. The 3,1-

benzoxazine moiety features in the natural product terresoxazine isolated from Tribulus 

terrestris [12]
 
and many other bioactive molecules [13-15]. Although several methods for the 

preparation of 1,3-oxazine derivatives have previously been reported [16-21]
 
few have been 

focused on the solid-solid or solid-liquid grinding method. 

 

RESULTS AND DISCUSSION 
 

The acetic acid-catalysed reaction of 2-aminobenzyl alcohol 1 and benzaldehyde 2 was 

considered as the model reaction. Thus, grinding of equivalent molar amounts of aminoalcohol 

1 and benzaldehyde 2 with a mortar and pestle in the presence of catalytic amount of acetic acid 

and monitoring the progress of the reaction by TLC (mobile phase = petroleum ether:ethyl 

acetate (7:3); Rf value = 0.52) gave benzoxazine 6 as a white solid in 98% yield, Scheme 1. No 

product was detected when aminoalcohol 1 and benzaldehyde 2 were ground without the 

organic acid. No significant difference was observed in the reaction when the amount of the 

acid was increased up to molar equivalent. Reducing the acid below the 30% molar equivalent 

threshold made grinding difficult because the reaction mixture dried relatively faster.   
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To further access the scope of this procedure, the solvent-free reactions of aminoalcohol 1 

with several benzaldehyde derivatives bearing electron-withdrawing groups were examined. 

Thus, grinding a mixture of aminoalcohol 1 and o-chlorobenzaldehyde 3 in the presence of 

acetic acid gave benzoxazine 7 as a yellow gum in 96% yield. m-Nitrobenzaldehyde 4 also 

reacted with 1 under the conditions described above to give benzoxazine 8 as a yellow solid in 

quantitative yield. Lastly, benzoxazine 9 was prepared in 99% yield by grinding p-

nitrobenzaldehyde 5 and 1. No observable difference in reactivity exerted by -NO2 group at the 

m- or p-position of the benzaldehyde was noticed. The yields and reaction times were almost 

same.  

The first step of the mechanism for the formation of the 3,1-benzoxazines is the nucleophilic 

attack of the amino group of 2-aminoalcohol 1 on the electrophilic carbonyl carbon of 

benzaldehyde derivatives to form an imine intermediate [22]. The imine intermediate then 

tautomerise to give the benzoxazines [23].  

Benzoxazines 6-9 were obtained in pure forms that allow spectral characterization without 

need for any purification. The 
1
H NMR spectra of benzoxazines 6-9 showed typical singlet 

peaks in the region 5.65-6.61 ppm assigned to the proton on C-2. In addition, two doublet peaks 

with a germinal coupling (14.6-14.8 Hz) in the region 4.98-6.32 and 5.15-6.39 ppm which are 

due to the protons on carbon-4 were observed. 

 

Scheme 1. Reactions of aminoalcohol 1 with benzaldehyde and its derivatives 3, 4 and 5. 

 

Scheme 2. Reactions of aminoalcohol 1 with hydroxyl- and methoxybenzaldehyde derivatives. 

 

Next, to further delineate the scope of this procedure, the reactions of aminoalcohol 1 and 

benzaldehyde derivatives bearing electron-donating hydroxyl or methoxy groups under the 

grinding conditions were studied. In the event, o-hydroxybenzaldehyde 10 reacted with 

aminoalcohol 1 in 30 minutes of grinding to give imine 13 as the only detectable product in 

98% yield. Attempts to cyclise imine 13 to benzoxazine 14 by grinding for 1 hour and adding 

more acetic acid were futile. Interestingly and somewhat surprisingly, grinding of aminoalcohol 

1 with m-hydroxybenzaldehyde 11 gave a yellow gum in 88% yield (Scheme 2). The 1H NMR 

spectrum of the product revealed that it was a 4:1 tautomeric mixture of benzoxazine 16 and 

imine 15 respectable. The proportion of the tautomers was determined by integration of the well 

separated H-2 of the benzoxazine 16 and the –N=CH- proton of imine 15.  Likewise, p-

methoxybenzaldehyde 12 reacted under the same conditions to yield a 3:1 mixture of 

benzoxazine 18 and imine 17 in 97% yield. Attempts to separate these mixtures by column 

chromatography were futile suggesting that the benzoxazines and their imine tautomers existed 

in equilibrium [23]. 
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CONCLUSION 
 

In conclusion, benzaldehyde, o-chloro-, m-nitro- and p-nitro-substituted derivatives of 

benzaldehyde reacted with 2-aminobenzyl alcohol in the presence of catalytic amount of acetic 

acid under grinding conditions at room temperature to give the corresponding 1,3-benzoxazines 

in short reaction times with high yields and purity. In contrast, o-hydroxybenzaldehyde reacted 

with 2-aminobenzyl alcohol to give the corresponding imine while m-hydroxy- and p-methoxy-

substituted derivatives of benzaldehyde reacted under the conditions described above to give an 

equilibrium mixture of the corresponding benzoxazines and imines. 

 

EXPERIMENTAL 
 

General experimental conditions. All reagents were purchased from Merck and Aldrich and 

used without further purification. Thin layer chromatography experiments were performed on 

TLC silica gel 60 aluminium plates and a mixture of petroleum ether and ethyl acetate (7:3) was 

used as the mobile phase. Melting points were recorded using a Stuart scientific melting point 

apparatus and are uncorrected. The NMR spectra were acquired on a Bruker DPX 300 

spectrometer using TMS as the internal standard. The mass spectra were obtained on a GCT 

Premier instrument. 
 

General procedure for the synthesis of 3,1-benzoxazines. A mixture of 2-aminobenzyl alcohol 

(1 mmol), benzaldehyde derivative (1 mmol) and acetic acid (0.3 mmol) was mixed thoroughly 

in a mortar followed by grinding with a pestle till the completion of the reaction as indicated by 

TLC (5-30 min). The product was then allowed to stand in a fumehood over night to allow the 

acetic acid to evaporate and the product was then characterized. 
  

2-Phenyl-1,2-dihydro-4H-3,1-benzoxazine (6). White solid, m.p. 94-96 
o
C. 

1
H NMR (300 MHz, 

CDCl3): 4.72 (1H, s, NH), 4.99 (1H, d, J = 14.7 Hz, H-4), 5.17 (1H, d, J = 14.7 Hz, H-4), 5.65 

(1H, s, H-2), 6.76 (1H, d, J = 7.5 Hz, H-8), 6.91 (1H, dd, J = 7.5 and 7.8 Hz, H-6), 7.03 (1H, d, 

J = 7.5 Hz, H-5), 7.14 (1H, dd, J = 7.5 and 7.8 Hz, H-7), 7.44 (3H, m, H-3’, 4’ and 5’), 7.60 

(2H, m, H-2’ and 6’); 
13

C (75 MHz, CDCl3): 67.7 (C-4), 82.8 (C-2), 115.7(C-8), 122.3 (C-6), 

125.9 (C-5), 126.4 (C-4’), 126.8 (C-2’ and 6’), 128.5 (C-3’ and 5’),128.8 (C-7), 134.7 (C-4a), 

140.5 (C-1’), 145.1 (C-8a). HRMS (EI): m/z calcd for C14H13NO (M
+
) 211.2590; found: 

211.2593.  
 

2-(2’-Chlorophenyl)-1,2-dihydro-4H-3,1-benzoxazine (7). Yellow gum. 
1
H NMR (300 MHz, 

CDCl3): 4.18 (1H, br, NH), 5.02 (1H, d, J = 14.6 Hz, H-4), 5.23 (1H, d, J = 14.6 Hz, H-4), 6.04 

(1H, s, H-2), 6.76 (1H, d, J = 7.8 Hz, H-8), 6.93 (1H, t, J =7.44 and 7.56 Hz, H-6) 7.04 (1H, d, 

J = 7.44 Hz, H-5) 7.17 (1H, dd, J = 7.56 and 7.8 Hz, H-7), 7.43 (3H, m, H-4’, 5’ and 6’), 7.84 

(1H, dd, J = 7.5 and 2.6 Hz, H-3); 
13

C NMR (75 MHz, CDCl3): 68.0 (C-4), 81.8 (C-2), 116.7 

(C-8), 121.7 (C-6), 124.2 (C-5), 127.4 (C-5’), 127.6 (C-6’), 128.1 (C-7), 129.2 (C-3’), 130.5 (C-

2’), 132.7 (C-4a), 136.7 (C-1’), 142.1 (C-8a). HRMS (EI): m/z calcd for C14H12NOCl (M
+
) 

245.0668; found: 245.0632.  
 

2-(3’-Nitrophenyl)-1,2-dihydro-4H-3,1-benzoxazine (8). Yellow solid, m.p. 80-82 
o
C. 

1
H NMR 

(300 MHz, CDCl3): 5.99 (1H, br, NH), 6.32 (1H, d, J = 14.8 Hz, H-4), 6.39 (1H, d, J = 14.8 Hz, 

H-4), 6.61 (1H, s, H-2), 7.04 (1H, d, J = 7.9 Hz, H-8), 7.08 (1H, dd, J = 7.3 and 7.0 Hz, H-6), 

7.12 (1H, d, J = 7.0 Hz , H-5), 7.17 (1H, dd, J = 7.3 and 7.9 Hz , H-7), 7.35 (1H, dd, J = 8.2 and 

7.6 Hz, H-5’), 7.49 (1H, d, J = 8.2 Hz, H-6’), 7.60 (1H, d, J = 7.6 Hz, H-4’), 7.69 (1H, s, H-2’); 
13

C NMR (75 MHz, CDCl3): 67.3 (C-4), 83.8 (C-2), 117.9 (C-8), 120.7 (C-6), 122.0 ( C-4’) 

122.4 (C-2’), 123.9 (C-5), 124.9 (C-5’), 127.7 (C-6’), 129.7 (C-4a), 132.9 (C-7), 141.9 (C-1’), 
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141.3 (C-8a), 148.4 (C-3’). HRMS (EI): m/z calcd for C14H12N2O3 (M
+
) 256.25668; found: 

256.25664.  
 

2-(4’-nitrophenyl)-1,2-dihydro-4H-3,1-benzoxazine (9). Yellow solid, m.p. 102-104 
o
C. 

1
H 

NMR (300 MHz, CDCl3): 4.21 (1H, br, NH), 4.98 (1H, d, J = 14.7 Hz, H-4), 5.15 (1H, d, J = 

14.7 Hz, H-4), 5.74 (1H, s, H-2), 6.83 (1H, d, J = 8.0 Hz, H-8), 6.98 (1H, dd, J = 7.2 and 6.9 

Hz, H-6), 7.03 (1H, d, J = 6.9 Hz, H-5), 7.19 (1H, dd, J = 7.2 and 8.0 Hz, H-7), 7.82 (2H, d, J = 

8.6 Hz, H-2’ and 6’), 8.31 (2H, d, J = 8.6 Hz, H-3’ and 5’); 
13

C NMR (75 MHz, CDCl3): 67.2 

(C-4), 83.9 (C-2), 118.0 (C-8), 120.8 (C-6), 122.5 (C-5), 123.9 (C-2’ and 6’), 125.1 (C-7), 

127.7 (C-3’and 5’), 140.8 (C-4a), 145.9 (C-1’ and 8a), 148.3 (C-4’); HRMS (EI): m/z calcd for 

C14H12N2O3 (M
+
) 256.2568; found 256.2572. 
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