SYNTHESIS, SPECTROSCOPIC AND BIOLOGICAL CHARACTERIZATIONS OF PLATINUM(IV), RUTHENIUM(III) AND IRIDIDIUM(III) THEOPHYLLINE COMPLEXES

Abeer A. El-Habeb¹ and Moamen S. Refat²∗

¹Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
²Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

(Received February 5, 2024; Revised February 23, 2024; Accepted February 27, 2024)

ABSTRACT: This study used micro-analyses, (FTIR, UV-Vis) spectra, magnetic, thermogravimetric, X-ray powder diffraction (XRD) patterns, and transmittance electron microscopy (TEM) techniques to characterize three synthesized theophylline (TPH) complexes with ruthenium(III), platinum(IV), and iridium(III) metal ions. The metal ions indicated above were found to align with the TPH drug chelate as a mono-dentate ligand via the deprotonated NH group at the nitrogen atom position N7, as verified by FTIR measurements. Additionally, the complexes conductivity and magnetic susceptibility were examined. The octahedral geometry for the synthesized complexes was proposed by the current data. Except for the iridium(III) complex, which has a non-deprotonated NH group at the nitrogen atom position N7, as verified by FTIR measurements. Additionally, the metal ions indicated above were found to align with the TPH drug chelate as a mono-dentate ligand via the deprotonated NH group at the nitrogen atom position N7, as verified by FTIR measurements. Additionally, the complexes conductivity and magnetic susceptibility were examined. The octahedral geometry for the synthesized complexes was proposed by the current data. Except for the iridium(III) complex, which has a non-deprotonated NH group at the nitrogen atom position N7, as verified by FTIR measurements.

KEY WORDS: Theophylline, Metal ions, Chelation, Octahedral, Spectral analysis, Nano-particles, Biological evaluation

INTRODUCTION

Purine bases are heterocyclic bases that are nitrogen-containing and play a vital role in nucleic acids’ physiological activity [1, 2]. In the domains of pharmacology and physiology, they represent a significant class of anti-inflammatory and anticancer drugs [3]. Their ability to influence alterations in fundamental cellular processes is what gives them their anti-inflammatory properties. These substances function as phosphodiesterase’s competitive inhibitors, deactivating cyclic 3,5-adenosine monophosphate (3,5-c AMP). The inhibition of an enzyme leads to the activation of 3,5-c AMP, which in turn drives the promotion of cellular activities and glycogenolysis. Additionally, it has been suggested that the purine medicines work by lessening the binding of calcium in the cell’s membrane and myoplasm, which in turn affects the muscles’ ability to contract [4, 5].

One significant member of the class of purine bases that belongs to the anti-inflammatory medicines is theophylline (1,3-dimethyl-xanthine) [6]. It is widely recognized for its hydrotrropic properties and for its capacity to solubilize a broad range of medicinal substances [3]. As a result, it is frequently prescribed as a medication to treat conditions affecting the physiological processes of the respiratory system, including asthma or COPD [7, 8]. Theophylline was demonstrated to cause apoptosis and reduce cell growth in HeLa and MCF-7 breast cancer cell lines, but not in MCF-10A, a normal human breast cell line. It was also reported to exhibit cytotoxic effect against the MDA-MB-231 human breast cancer cell line [3, 4]. The observed effects in both investigations

*Corresponding author. E-mail: moamen@tu.edu.sa ; msrefat@yahoo.com
This work is licensed under the Creative Commons Attribution 4.0 International License
were observed at IC50 values much higher above the safe therapeutic range of theophylline, at >1 mM (>0.18 g/L) [9-11]. A novel cancer medication would also be administered at an IC99 concentration to attain a high cell death rather than an IC50 concentration, which would leave 50% of cells surviving, if it were to be utilized therapeutically. Due to its limited therapeutic index and cardiotoxic effects, theophylline should be used with extreme caution as a stand-alone anti-cancer drug [12]. Because of this, there has been a lot of interest in creating model complexes with theophylline to enhance its anti-cancer potential, as several metal complexes have antitumor action. This might resemble how metal ions interact with DNA [13, 14].

Through N and/or O donor atoms, theophylline coordinates with metal ions. It coordinates metal ions through the N7 atom and acts as a monodentate ligand in neutral or basic environments [15-17]. It can act as a bridging ligand with simultaneous N(7)/O(6) chelation and N(9) coordination in some situations, or as a bidentate N(7)/O(6) chelating ligand in others. N(7) becomes protonated at pH < 5, and theophylline uses N(9) to coordinate metals [9, 18-20]. Conversely, linked methyl groups prevented N(1) and N(3) atoms from interacting with metal ions [3]. Theophylline typically exhibits a mono coordination mode with first row transitional metals like cobalt(II), manganese(II), zinc (II), iron(II), and nickel(II) through the imidazole ring's N(7) atom under basic or neutral circumstances [1, 18].

Despite the fact that theophylline-metal complexes are important in the realms of biology and medicine, no papers have been published that examine the antibacterial and anticancer properties of theophylline in conjunction with biologically interesting metals like Pt(IV), Ru(III), and Ir(III). Therefore, the goal of this work is to use various analytical techniques to explore the coordination chemistry of theophylline-Pt4+, Ru3+, and Ir3+ complexes and evaluate their activities against various types of bacteria, fungus, and cancer cells.

EXPERIMENTAL

Chemicals

The theophylline medication, RuCl3, H2PtCl6.6H2O, and IrCl3.xH2O salts (Sigma-Aldrich Chemical Corporation, St. Louis, MO, USA), together with all other analytical-grade chemicals and solvents, were used without additional purifications.

Synthesis of three new Ru3+, Pt4+, and Ir3+ theophylline complexes

[Ru(TP)2(H2O)]2.Cl, [Pt(TP)2(H2O)]2.Cl, and [Ir(TP)2(H2O)](Cl) complexes. A solutions of 1.0 mmol (RuCl3, H2PtCl6.6H2O, and IrCl3.xH2O) and 2.0 mmol theophylline were combined with 25 mL of methanol, refluxed for two hours, and then neutralized with NH4OH at a pH of around 8.

Instrumentals

With the Perkin Elmer CHN 2400 (USA), elemental studies of the concentrations of carbon, hydrogen, nitrogen, and chlorine were carried out. Using a Jenway 4010 conductivity meter, the molar conductivities of newly made 1.0×10−3 mol/cm3 dimethyl sulfoxide (DMSO) solutions were determined for the dissolved chemicals. Using a Bruker FTIR Spectrophotometer, the infrared spectra were captured (4000–400 cm−1). A UV2 Unicam UV/Vis Spectrophotometer equipped with a quartz cell with a 1.0 cm path length was used to record the UV-Vis absorption spectra in DMSO solvent within the 800-200 nm range. The Magnetic Susceptibility Balance from Sherwood Scientific, located at Cambridge Science Park, Cambridge, England, was used to calculate magnetic moments at a temperature of 25 °C. A Bruker 600 MHz spectrometer was used to record 1H-NMR spectra in DMSO solutions, with TMS serving as the internal standard. Using a Shimadzu thermo-gravimetric analyzer, the TG/DTG-50H thermal investigations were conducted.
conducted under nitrogen up to 800 °C. The X’Pert PRO PANanalytical X-ray powder diffraction, target copper with secondary monochromate, was used to record the X-ray diffraction patterns. JEOL 100s microscopy was used to capture the pictures from the transmission electron microscopy (TEM).

Biological evaluations

A modified Kirby-Bauer disc diffusion method was used to assess the antimicrobial activity of the tested materials [21]. In summary, 10 millilitres of fresh media were used to cultivate 100 microliters of G(+)-bacteria (Bacillus subtilis and Staphylococcus Aureus) and G(-)-bacteria (Pseudomonas aeruginosa and Escherichia coli) until the bacteria attained a count of roughly 108 cells/mL. On agar plates that corresponded to the broth in which they were kept, 100 µL of the microbial suspension was dispersed. The disc diffusion method should be used to screen for susceptibility in isolated colonies of any organism that may be pathogenic [21]. These colonies should be selected from primary agar plates.

To evaluate whether or not Ru^3+, pt^4+, and Ir^3+ theophylline complexes exhibit a tumor cell killing ability, the effect of DMSO-soluble Ru^3+, pt^4+, and Ir^3+ theophylline complexes on human breast cancer (MCF-7) and the human hepatocellular carcinoma (HepG-2) cell lines were investigated. The two cell lines were propagated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 1% L-glutamine, HEPES buffer and 50 µg/mL gentamycin. All cells were maintained at 37 °C in a humidified atmosphere with 5% CO₂ and were subcultured two times a week. The effect of treatment with Ru^3+, pt^4+, and Ir^3+ theophylline complexes on the survival of the two human tumor cell lines was assessed using a viability assay in distilled water [22, 23]. Cells were seeded in 96-well plates at 1×10^4 cells/well. Three wells were used for each concentration of the test sample. Control cells were incubated without test sample and with or without DMSO. The little percentage of DMSO present in the wells (maximal 0.1%) was found not to affect the experiment. After incubation of the cells for at 37 °C, various concentrations of sample were added, and the incubation was continued for 24 h and viable cells yield was determined by a colorimetric method. Treated samples were compared with the cell control in the absence of the tested compounds. All experiments were carried out in triplicate. The cell cytotoxic effect of each tested compound was calculated. The optical density was measured with the microplate reader (SunRise, TECAN, Inc, USA) to determine the number of viable cells and the percentage of viability was calculated as [(1-(ODt/ODc))]×100% where ODt is the mean optical density of wells treated with the tested sample and ODc is the mean optical density of untreated cells. The relation between surviving cells and drug concentration is plotted to get the survival curve of each tumor cell line after treatment with the specified compound. The 50% inhibitory concentration (IC₅₀), the concentration required to cause toxic effects in 50% of intact cells, was estimated from graphic plots of the dose response curve for each conc. using Graphpad Prism software (San Diego, CA. USA).

RESULTS AND DISCUSSION

Results of stoichiometric and molar conductance

The elemental analyses show that there is good agreement between estimated and experimental results for the Ru(III), Pt(IV), and Ir(III) theophylline complexes. The colors of the complexes of ruthenium(III), platinum(IV), and iridium(III) are dark brown, yellowish brown, and black. It was discovered that the complexes were soluble in DMSO and DMF solvents but insoluble in ether, water, methanol, ethanol, chloroform, and ester. The Ru^3+, pt^4+, and Ir^3+ theophylline complexes broke down at a temperature between 376 and 550 °C. This section includes a summary of the
analytical results for these complexes as well as some physico-chemical properties of the Ru$^{3+}$, pt$^{4+}$, and Ir$^{3+}$ theophylline complexes. Theophylline (TPH) ligand and metal ions Ru$^{3+}$, pt$^{4+}$, and Ir$^{3+}$ interacted in 1:2 molar proportions (metal-to-ligand), according to the analytical data. With the exception of the iridium(III) complex, which has a non-electrolytic statement at $\Lambda = 17 \; \Omega^{-1}\text{cm}^2\text{mol}^{-1}$ [24], conductance measurements for ruthenium(III) and platinum(IV) complexes in $10^{-3} \text{M dimethyl sulfoxide solution}$ show electrolytes behavior. This suggests that one or two chlorine atoms are present outside the coordination sphere for the ruthenium(III) and platinum(IV) complexes, respectively. Through the use of gravimetric analysis, the metal contents are estimated. The infrared and ultraviolet-visible spectra of Ru$^{3+}$, pt$^{4+}$, and Ir$^{3+}$ theophylline complexes are examined, along with tabulations and possible assignments of their several significant distinctive bands.

Table 1. FTIR assignments (cm$^{-1}$) of theophylline complexes.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>ν(N–H)</th>
<th>ν(C=O)</th>
<th>ν(C=C)</th>
<th>ν(C=N)</th>
<th>ν(M-N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPE</td>
<td>3120</td>
<td>1720</td>
<td>1665</td>
<td>1564</td>
<td>-</td>
</tr>
<tr>
<td>Ru(III) complex</td>
<td>-</td>
<td>1710</td>
<td>1638</td>
<td>1548</td>
<td>448, 423</td>
</tr>
<tr>
<td>Pt(IV) complex</td>
<td>-</td>
<td>1704</td>
<td>1653</td>
<td>1552</td>
<td>448, 418</td>
</tr>
<tr>
<td>Ir(III) complex</td>
<td>-</td>
<td>1714</td>
<td>1663</td>
<td>1557</td>
<td>448, 419</td>
</tr>
</tbody>
</table>
Synthesis and characterization of Pt(IV), Ru(III) and Ir(III) theophylline complexes

Figure 1. FTIR spectra of (A): Ru(III), (B): Pt(IV), and (C): Ir(III) theophylline complexes.

Magnetic and electronic measurements

Two absorption maxima, corresponding to π-π* and n-π* transitions, are visible in the electronic spectrum of the theophylline drug at 275 and 289 nm. The carbonyl group's n-π* transition, which is responsible for the band in the theophylline's electronic spectrum at 289 nm, remained nearly unaltered upon complexation, indicating that the carbonyl group of the TPH ligand was not involved in complexation [30]. The Ru(III) complex exhibits three electronic transitions at 498 nm, 425 nm, and 360 nm. These transitions can be explained by 2T_{2g} → 4T_{1g} (ν1), 2T_{2g} → 4T_{2g} (ν2), and 2T_{2g} → 2A_{2g} (ν3). The magnetic moment of 1.87 B.M. of the ruthenium(III) complex supports the observation of a single unpaired electron in an octahedral environment for the Ru(III) ion in a low spin 4d⁵ configuration [31-34]. The different bands of platinum(IV) theophylline complex at 287 nm and 337 nm can be explained by metal ligand charge transfer (M→LCT) and the d-d transition band. N→Pt(IV) metal charge transfer (Lπ→Pt^π) and d-d transition bands combine to form the other band at 419 [34]. The UV–Vis spectrum of iridium(III) complex shows two bands at 339 nm and 288 nm, which were deduced from the ground state 1A_{1g}. The two transitions that were allowed by spin, 1A_{1g}→1T_{1g} (ν1) and 1A_{1g}→1T_{2g} (ν2), were found to be within the expected ranges [27-31]. Two MLCT-related absorption peaks at 433 and 500 nm were visible in the Ir(III) complex spectrum. Given that the complexes of iridium(III) and platinum(IV) exhibit diamagnetic characteristics, their geometries must be octahedral.
1H NMR study

Figure 2 illustrates the scanning of the platinum(IV) complex's 1H-NMR data. When complexation occurs in theophylline (Formula 1), the broad peak attributed to N7H (δ = 14) disappears, indicating that the deprotonated hydrogen atom of the NH group is involved (Figure 3). Due to the ligand's altered electronic environment upon complexation, the peaks receive an insignificant downfield shift (Table 2).

Figure 2. 1H-NMR spectrum of Pt(IV) theophylline complex.
Synthesis and characterization of Pt(IV), Ru(III) and Ir(III) theophylline complexes

Figure 3. Speculated structures of RuIII, PtIV and IrIII theophylline complexes.

Table 2. 1H-NMR proton signals of the TPH ligand and Pt(IV) complex.

<table>
<thead>
<tr>
<th>1H</th>
<th>N(7)-H</th>
<th>C(8)-H</th>
<th>N(3)-CH$_3$</th>
<th>N(1)-CH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPH</td>
<td>14</td>
<td>7.975</td>
<td>3.200</td>
<td>3.400</td>
</tr>
<tr>
<td>Pt(IV)</td>
<td>-</td>
<td>8.580</td>
<td>3.217</td>
<td>3.424</td>
</tr>
</tbody>
</table>

Morphological investigations (XRD and TEM)

The X-ray diffraction patterns of the theophyllinato complexes of ruthenium(III), platinum(IV), and iridium(III) exhibit a crystalline-to-amorphous behavior, as illustrated in Figures 4A-C. Using the Debye-Scherrer equation [35], the average crystallite sizes of the theophyllinato complexes are calculated at the peak width at half height of the most intense peak (FWHM) at θ (Table 3). In a given material, the dislocation density is inversely related to the size of the crystallites and directly proportional to the lattice strain. A decrease in both strain and dislocation density signifies the creation of high-quality complexes [36]. The dislocation density (δ) in Table 3 represents the dislocation network in the theophyllinato complexes.
Figure 4. XRD spectra of (A): Ru(III), (B): Pt(IV), and (C): Ir(III) theophylline complexes.

Table 3. Physical spectral calculations of theophyllinato complexes of Ru(III), Pt(IV), and Ir(III).

<table>
<thead>
<tr>
<th>Complexes</th>
<th>2θ</th>
<th>Intensity</th>
<th>d-spacing</th>
<th>D (nm)</th>
<th>δ (10^{12} \text{lin.m}^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(III)</td>
<td>16</td>
<td>100</td>
<td>5.4902</td>
<td>43</td>
<td>0.0005</td>
</tr>
<tr>
<td>Pt(IV)</td>
<td>24</td>
<td>100</td>
<td>3.6352</td>
<td>9</td>
<td>0.0123</td>
</tr>
<tr>
<td>Ir(III)</td>
<td>13</td>
<td>100</td>
<td>6.8708</td>
<td>27</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

The nanoscale particles in the theophyllinato complexes of Ru(III), Pt(IV), and Ir(III) are visible in the TEM micrographs (Figure 5A-C). Theophylline complexes’ average particle diameter was calculated by fitting the data derived from TEM images to a normal distribution. Particle sizes ranged from 10 to 40 nm, according to the generated photos. The TEM micrographs (Figure 5A-C) show a black area that varies in size and has spherical forms.
Synthesis and characterization of Pt(IV), Ru(III) and Ir(III) theophylline complexes

A

B

C

Figure 5. TEM images of (A): Ru(III), (B): Pt(IV), and (C): Ir(III) theophylline complexes.

Thermogravimetric analyses

Based on the TGA-DrTGA-DSC curves (Figure 6A-C), thermogravimetric studies of the theophyllinato complexes of Ru(III), Pt(IV), and Ir(III) have been addressed. Ru(III), Pt(IV), and Ir(III) anhydrous theophyllinato complexes are stable at 200 °C. At thermogravimetric maximum peaks DTG_{max} = (150, 290, 375, 510, and 660 °C), (140, 250, 350, 550, and 575 °C), and (325, 400, and 490 °C), respectively, the TGA-DrTGA-DSC curves of the Ru(III), Pt(IV), and Ir(III) complexes demonstrate a thermal decomposition in three to five degradation steps. These endothermic peaks correspond to the pyrolysis of the two theophylline moieties, coordinated water molecules, and chlorine atoms. RuO_{2}, PtO, and IrO_{2} are represented by the residual weights at these DTG_{max} points, which are 24.22, 27.51, and 32.21% of the initial weight.
Figure 6A. TGA, dTGA, and DSC curves of Ru(III)-TP complex.

Figure 6B. TGA, dTGA, and DSC curves of Pt(IV)-TP complex.
Synthesis and characterization of Pt(IV), Ru(III) and Ir(III) theophylline complexes

Evaluations of antimicrobial and anticancer activities

The antibacterial properties of the Ru(III), Pt(IV), and Ir(III) theophyllinato complexes have been evaluated in vitro against G(+) bacteria, such as *Bacillus subtilis* and *Staphylococcus Aureus*, and G(-) bacteria, such as *Pseudomonas aeruginosa* and *Escherichia coli*. Table 4 provides a summary of the zones of inhibition generated by the test substances. It has been noted that: (i) Compared to free TPH medication, the ruthenium (III) and iridium (III) complexes effectively inhibit *Bacillus subtilis* and *Escherichia coli*. (ii) Compared to free TPE medication, the platinum (IV) complex effectively inhibits G(+) bacteria (*Bacillus subtilis* and *Staphylococcus Aureus*) and G(-) bacteria (*Pseudomonas aeruginosa* and *Escherichia coli*).

Because of the ligand orbital overlap and partial sharing of the metal ion’s positive charge with donor groups during chelation, the polarity of the metal ion is lowered to a higher extent. Moreover, it improves the complex's lipophilicity and raises the delocalization of electrons throughout the entire chelate ring. The enhanced lipophilicity facilitates the complexes' entry into lipid membranes and prevents the metal binding sites on the microorganism's enzymes. However, due to their toxicity and propensity to bind to free ligands found in biological systems like the nitrogen bases of proteins and nucleic acids, metal salts alone do not function as effective antibacterial agents despite having higher activity than the complexes under investigation [37, 38].

In *vitro* cytotoxicity assessment of the Ru(III), Pt(IV), and Ir(III) theophyllinato complexes were performed on human breast (MCF-7) and liver (HepG-2) tumor cell lines. The results evaluated upon the determination of inhibitory concentration of 50 % (IC\textsubscript{50}), the data was shown in (Figure 1S, supplementary material). The evaluation of cytotoxicity of Ir(III) (IC\textsubscript{50} = 50.5 ± 3.2 µg/mL), Pt(IV) (IC\textsubscript{50} = 114 ± 5.4 µg/mL), Ru(III)-TPH (IC\textsubscript{50} = 47 ± 3.1 µg/mL) theophyllinato complexes against HepG-2 cell line. Evaluation of cytotoxicity of Ir(III) (IC\textsubscript{50} = 57.60 ± 3.8 µg/mL), Pt(IV) (IC\textsubscript{50} = 135 ± 6.2 µg/mL), Ru(III)-TPH (IC\textsubscript{50} = 55 ± 3.4 µg/mL) theophyllinato complexes against MCF-7 cell line.

Figure 6C. TGA, dTGA, and DSC curves of Ir(III)-TP complex.

Table 4. Inhibition zone diameter of theophyllinato complexes against some kind of bacteria.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inhibition zone diameter (mm/mg sample)</th>
<th>Bacterial species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>Control: DMSO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Standard: Ampicillin</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>Antibacterial agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPH ligand</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Ir(III)-TP complex</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Pt(IV)-TP complex</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Ru(III)-TP complex</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

- G: Gram reaction. Solvent: DMSO.

CONCLUSION

In the present paper, we are describing three of transition metal complexes of theophylline with Ru(III), Pt(IV), and Ir(III). These complexes were characterized by elemental analysis, molar conductance, IR, NMR, magnetic susceptibility, UV-visible spectral studies, SEM, TEM and X-ray diffraction. Based on the above studies, the ligand behaves as monodentate N donor and forms coordinate bonds through deprotonated NH group at the nitrogen atom position N7 in five-member ring. The complexes of [Ru(TP)(2)(H2O)4]Cl and [Pt(TP)(2)(H2O)4]Cl2, were found to electrolytic nature but the [Ir(TP)(2)(H2O)3(Cl)] complex has a non-electrolytic nature on the basis of values of molar conductance. Analytical data and stoichiometry suggest ligand metal ratio of 2:1 for all the complexes. Electronic spectra and Magnetic susceptibility measurements reveal octahedral geometry for Ru(III), Pt(IV), and Ir(III) complexes. The synthesized metal complexes have been screened for their antibacterial (Bacillus subtilis, Staphylococcus Aureus, Pseudomonas aeruginosa and Escherichia coli) and anti-cancer activities against human breast (MCF-7) and liver (HepG-2) tumor cell lines.

ACKNOWLEDGEMENT

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R75), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

REFERENCES

18. Aoki, K.; Yamazaki, H. Interaction of tetrakis-(m-carboxylato) dirhodiamn(II), an antitumour agent, with nucleic acid bases. X-ray crystal structures of [Rh₂(acetato)_6(theophylline)_4] and[Rh₂(acetato)_6(caffeine)]; *J.C.S. Chem. Commun.* 1980, 926, 186-188.

