THE REDUCTION OF TRIS(2,4-PENTANEDIONATO) COBALT(III) BY TiOH$^{2+}$ AND Ti(CH$_3$COO)$^{2+}$ IN AQUEOUS ACIDIC SOLUTION

Olayinka Oyetunji1, J. Folorunso Ojo2 and Olusegun Obubuyide2

1Department of Chemistry, University of Zimbabwe, Mount Pleasant Harare, Zimbabwe, 2Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria

(Received February 2, 1994; Revised July 7, 1994)

ABSTRACT. Aquatitanium(III) reduces Co(pd)$_3$ (pd = 2,4-pentanedionato ligand) at 25$^\circ$ and I = 1.0 mol dm$^{-3}$ (LiCl) with the general rate law:

$$\frac{-d[Co(III)]}{dt} = k_{obs}[Co(III)][Ti(III)]$$

where $k_{obs} = \frac{kK}{K + [H^+]})$

TiOH$^{2+}$ is the effective titanium(III) reductant species with $k = (7.84 \pm 0.89)$ dm3 mol$^{-1}$ s$^{-1}$ and $K = (0.069 \pm 0.008)$ mol dm$^{-3}$ (k is the rate constant for electron transfer between Co(pd)$_3$ and TiOH$^{2+}$ and K is a composite equilibrium quotient). The magnitude of K and the enhanced reactivity of Co(pd)$_3$ with the effective reductant as indicated by the log-log plots (based on Marcus Linear Free Energy Relationship) suggest inner-sphere mechanism for the reaction. Ti(CH$_3$COO)$^{2+}$ generated in-situ by adding excess acetate ions to aquatitanium(III) reduces Co(pd)$_3$ much slower than does TiOH$^{2+}$ ($k_{Ti(CH_3COO)}$ = (0.39 ± 0.04) dm3 mol$^{-1}$ s$^{-1}$).

INTRODUCTION

Tris(2,4-pentanedionato) cobalt(III), Co(pd)$_3$, is reduced by V$^{2+}$ and Eu$^{2+}$ via outer-sphere mechanism while it is reduced by Cr$^{2+}$ via parallel outer-sphere and inner-sphere pathways [1]. Though 2,4-pentanedione coordinates [2] with aquatitanium(III) via the keto-enol equilibrium, Ru(pd)$_3$ is reduced [3] by aquatitanium(III) via the outer-sphere pathway. We hereby report the reduction of Co(pd)$_3$ by Ti(III). The mechanistic and rate differences observed [1-5] in the reactivities of Ru(III) and Co(III) complexes and interpreted in terms of the orbital spin difference between the two metal ions, is again exhibited in this report.

Ti(CH$_3$COO)$^{2+}$ generated in-situ [6] from the addition of excess acetate ions to aquatitanium(III), reduces Co(pd)$_3$ much slower than TiOH$^{2+}$. An explanation is suggested for this inhibition which is in contrast with catalysis observed for similar aquatitanium(III) oxidations in the presence of added oxalate and ethylenediamine tetraacetate ions [7-9].

EXPERIMENTAL

Materials. Acidic solutions of Ti(III) were prepared by dissolving titanium metal in approximately 6 mol dm$^{-3}$ HCl at about 50$^\circ$ for a period of 36 hrs, stirring with a magnetic
stirrer in an inert nitrogen atmosphere. The solutions were standardised with respect to the metal ion, Ti(III), and free acid, H⁺ concentrations as in the literature [10]. LiCl (Hopkins and Williams reagent grade) was recrystallised twice and the HCl used was of Analalr grade.

Tris(2,4-pentanedionato)cobalt(III), Co(pd)₃, was synthesised as previously described [11], and its UV-VIS spectrum showed peaks at 600 nm (ε = 125 dm³ mol⁻¹ cm⁻¹) and 328 nm (ε = 7600 dm³ mol⁻¹ cm⁻¹) in agreement with literature values.

Kinetics. Rate measurements were made by following absorbance changes in the Co(pd)₃ solution at 340 nm (ε = 6200 dm³ mol⁻¹ cm⁻¹) on a Pye Unicam SP6-500 UV-VIS spectrophotometer. Reactions were monitored under pseudo first-order conditions, with the Ti(III) concentrations in at least ten-fold excess over the Co(III) concentrations.

All kinetic measurements were made in nitrogen atmosphere to avoid air-oxidation of Ti(III) [6] and ionic strength was maintained at 1.0 mol dm⁻³ LiCl (and not LiClO₄) as ClO₄⁻ is known to oxidise Ti(III) [6, 9, 12-15]. Temperature was maintained at (25.0 ± 0.1)° by circulating water round the cell compartment from a well-thermostated water bath.

RESULTS

The stoichiometry of each reaction was checked by spectrophotometric titrations and confirmed to be 1 mole of Co(pd)₃ consumed by 1 mole of the Ti(III) complex both in the presence and absence of the acetate ion. The kinetic data are listed in Tables 1 and 2. From Table 1, it is observed that at constant free acid concentration, there is no large or systematic variation in the values of the second-order rate constants (k₀ᵇˢ). This follows a general rate law of the type:

\[
Rate = \frac{-d[Co(pd)₃]}{dt} = kₐᵢₜ[Co(pd)₃][Ti(III)]
\]

(1)

It is however observed that kᵦᵢₜ varies inversely with free acid concentration, such that a plot of kₐᵢₜ⁻¹ against [H⁺] (Figure 1) is linear. This is consistent with the rate expression:

\[
kₐᵢₜ = \frac{kK}{K + [H^+]}\]

(2)

The values of k and K obtained, employing least-square fit to the plot of kₐᵢₜ⁻¹ against [H⁺] are:

\[
k = (7.84 ± 0.89) \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}
\]

\[
K = (0.069 ± 0.008) \text{ mol dm}^3
\]

When acetate ion is added to the aquatitanium(III) reductant, an additional reductant species, Ti(CH₃COO)²⁺ is formed. The important equilibria in this connection are:

\[
Ti^{3+} + H_2O \rightarrow TiOH^{2+} + H^+ \quad K_A = \frac{[TiOH^{2+}][H^+]}{[Ti^{3+}]}\]

(3)
The reduction of tris(2,4-pentanedionato) cobalt(III)

\[
CH_3COOH \rightarrow CH_3COO^- + H^+ \quad K_B = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]} \quad (4)
\]

\[
Ti^{3+} + CH_3COO^- \rightarrow Ti(CH_3COO)^{2+} \quad K_C = \frac{[Ti(CH_3COO)^{2+}]}{[Ti^{3+}][CH_3COO^-]} \quad (5)
\]

Table 1. Kinetic data for the reduction of Co(pd)$_3$ by aqua-Ti(III) in 1.0 mol.dm$^{-3}$ (LiCl) and at (25.0 ± 0.10)$^\circ$.

<table>
<thead>
<tr>
<th>$[H^+]$ mol dm$^{-3}$</th>
<th>$10^4[Co(pd)_3]$ mol dm$^{-3}$</th>
<th>$10^4[Ti(III)]$ mol dm$^{-3}$</th>
<th>10^4k s$^{-1}$</th>
<th>k_{obs} dm3 mol$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>2.00</td>
<td>2.00</td>
<td>13.67</td>
<td>6.83</td>
</tr>
<tr>
<td>2.00</td>
<td>2.05</td>
<td>15.80</td>
<td>7.70</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>3.00</td>
<td>22.00</td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td>1.83</td>
<td>1.98</td>
<td>13.73</td>
<td>6.92</td>
</tr>
<tr>
<td>1.85</td>
<td>1.98</td>
<td>13.29</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.05</td>
<td>14.51</td>
<td>7.08</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>1.83</td>
<td>1.98</td>
<td>11.25</td>
<td>5.67</td>
</tr>
<tr>
<td>1.83</td>
<td>2.00</td>
<td>12.70</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>3.00</td>
<td>19.05</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>4.00</td>
<td>24.60</td>
<td>6.15</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>1.83</td>
<td>1.98</td>
<td>11.30</td>
<td>5.71</td>
</tr>
<tr>
<td>1.83</td>
<td>2.00</td>
<td>10.55</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>2.05</td>
<td>11.30</td>
<td>5.51</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>4.00</td>
<td>22.00</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>0.050</td>
<td>1.83</td>
<td>1.96</td>
<td>8.03</td>
<td>4.09</td>
</tr>
<tr>
<td>1.83</td>
<td>1.98</td>
<td>10.00</td>
<td>5.06</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>3.00</td>
<td>12.93</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>4.00</td>
<td>15.70</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td>0.075</td>
<td>1.83</td>
<td>1.96</td>
<td>7.34</td>
<td>3.74</td>
</tr>
<tr>
<td>1.83</td>
<td>1.98</td>
<td>7.08</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>2.00</td>
<td>7.65</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>1.83</td>
<td>1.96</td>
<td>6.67</td>
<td>3.40</td>
</tr>
<tr>
<td>1.83</td>
<td>1.98</td>
<td>5.81</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>2.00</td>
<td>7.00</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.05</td>
<td>6.00</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>3.00</td>
<td>9.84</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>1.83</td>
<td>4.00</td>
<td>12.35</td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>6.00</td>
<td>19.08</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>10.0</td>
<td>32.00</td>
<td>3.20</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Kinetic data for the reduction of Co(pd)$_3$ by Ti(CH$_3$COO)$^{2+}$ in 10 mol dm$^{-3}$ (LiCl) and at (25.0 ± 0.1)$^\circ$.

<table>
<thead>
<tr>
<th>$10^4[H^+]_1$ mol dm$^{-3}$</th>
<th>$10^4[H^+]_2$ mol dm$^{-3}$</th>
<th>$10^4[CH_3COO^-]$ mol dm$^{-3}$</th>
<th>k_{obsi} dm3 mol$^{-1}$ s$^{-1}$</th>
<th>B dm3 mol$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100.2</td>
<td>2.0</td>
<td>1.55</td>
<td>6.34</td>
</tr>
<tr>
<td>100</td>
<td>100.3</td>
<td>3.0</td>
<td>1.28</td>
<td>6.77</td>
</tr>
<tr>
<td>100</td>
<td>100.4</td>
<td>4.0</td>
<td>1.11</td>
<td>7.20</td>
</tr>
<tr>
<td>100</td>
<td>100.6</td>
<td>6.0</td>
<td>0.91</td>
<td>8.08</td>
</tr>
<tr>
<td>100</td>
<td>100.8</td>
<td>8.0</td>
<td>0.81</td>
<td>9.14</td>
</tr>
<tr>
<td>100</td>
<td>101.0</td>
<td>10.0</td>
<td>0.73</td>
<td>9.99</td>
</tr>
</tbody>
</table>

$^[CO(pd)_3] = (1.885 - 2.00) \times 10^4$ mol dm$^{-3}$, $[Ti(III)] = 2.0 \times 10^4$ mol dm$^{-3}$
Chaudhuri and Diebler [6] measured K_B and k_c as 3.4×10^{-5} mol dm$^{-3}$ and 390 dm3 mol$^{-1}$, respectively at 15° and 0.5 mol dm$^{-3}$ ionic strength (LiCl).

In the presence of this added acetate, the competing redox reactions are:

$$Ti^{3+} + Co(pd)_3 \rightarrow \text{products}$$ \hspace{1cm} (6)

$$TiOH^{2+} + Co(pd)_3 \rightarrow \text{products}$$ \hspace{1cm} (7)

$$Ti(CH_3COO)^{2+} + Co(cp)_3 \rightarrow \text{products}$$ \hspace{1cm} (8)

From the aquatitanium(III)/Co(pd)$_3$ reaction, TiOH$^{2+}$ is the only active reductant (i.e. $k_c \approx 0$). Therefore treatment of Equations 6 to 8 leads to a rate expression given by:

$$\frac{-d[Co(III)]}{dt} = k[TiOH^{2+}] + k_1[Ti(CH_3COO)^{2+}] = k_s$$

$$= k_{obs} [Ti(III)]_T$$ \hspace{1cm} (9)

where, k_s is the pseudo-first order rate constant and $[Ti(III)]_T$ the total Ti(III) concentration and k_{obs} is given as:

$$k_{obs} = \frac{kK[H^+]^{-1} + k_1K_cL}{1 + K[H^+]^{-1} + K_cL}$$ \hspace{1cm} (10)

where, L is the free acetate ion concentration.

Rearrangement of Equation 10 gives:
\[k_{\text{obs}}(1 + K[H^+])^{-1} + K_cL = kK[H^+]^{-1} + k_1K_cL \] \hspace{1cm} (11)

Using our values of \(k_{\text{obs}} \) and \(K_c \), an iterative computer programme was used to obtain other parameters listed in Table 2. Our computed value of 1100 dm\(^3\) mol\(^{-1}\) for \(K_c \) differs from Chaudhuri and Diebler’s value [6] of 390 dm\(^3\) mol\(^{-1}\). This disagreement might have emanated from the different experimental conditions. From a plot of the left hand side of Equation 11 (denoted by B in Table 2) against \(L \), values of \(k_c \) (7.78 dm\(^3\) mol\(^{-1}\) s\(^{-1}\)) and \(k_1 \) (0.39 dm\(^3\) mol\(^{-1}\) s\(^{-1}\)) are obtained from the slope and intercept, respectively. The value of \(k_c \) (7.78 ± 0.81 dm\(^3\) mol\(^{-1}\) s\(^{-1}\)) obtained here is in good agreement with the previous value of \(k_{\text{ion}} \) (7.84 ± 0.89 dm\(^3\) mol\(^{-1}\) s\(^{-1}\)) obtained in the absence of acetate ions.

DISCUSSION

The value of \(K \) obtained (0.069 mol dm\(^{-3}\)) from the electron transfer reaction between Ti(III) and tris(2,4-pentanedionato) cobalt(III) is about 35 times greater than would be expected for simple deprotonation of Ti\(^{3+} \) in which \(K_c \) is 2 x 10\(^{-3}\) mol dm\(^{-3}\) [7, 11, 13]. A scheme consistent with the data can therefore be expressed as in Equations 12 to 15.

\[\text{Co}^{III}(pd)_3 + \text{Ti}^{3+} \xrightleftharpoons[k_{-1}]{k_1} (pd)_2\text{Co}^{III}(pd)\text{Ti}^{3+} \] \hspace{1cm} (12)

\[(pd)_2\text{Co}^{III}(pd)\text{Ti}^{3+} \xrightleftharpoons[k_2]{k_{-2}} (pd)_2\text{Co}^{III}(pd)\text{TiOH}^{2+} + H^+ \] \hspace{1cm} (13)

\[(pd)_2\text{Co}^{III}(pd)\text{TiOH}^{2+} \xrightleftharpoons[k_3]{k_{-3}} (pd)_2\text{Co}^{II}(pd)\text{Ti}^{IV}OH^{2+} \] \hspace{1cm} (14)

\[(pd)_2\text{CO}^{II}(pd)\text{Ti}^{IV}OH^{2+} \xrightarrow{\text{fast}} \text{products} \] \hspace{1cm} (15)

Similar schemes had previously been proposed for the Co(NH\(_3\))\(_2\)C\(_2\)O\(_4\)\(^{3+}\), Ru(C\(_2\)O\(_4\))\(_3\)\(^{3-}\) and (NH\(_3\))\(_2\)RuX\(^+\) (X = SO\(_4\)^{2-}, S\(_2\)O\(_8\)^{2-}, \text{etc.}) reductions by Ti(III) [7, 8, 16] which involve unstable precursor complexes. The electron transfer (ET) rate constant at 25\(^\circ\), \(I = 1.0 \) mol dm\(^{-3}\) (LiCl) for the Ti(III)/Co(pd)_3 system \((k = 7.84 ± 0.89 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1})\) is much smaller than those previously [8, 10, 15] ascribed to substitution-controlled ET processes. The rate of substitution reactions of Ti(III) have been reported to be dependent on the charge of the entering group [7, 12].

Since Co(pd)_3 is uncharged, the relatively low ET rate constant obtained in this study cannot therefore be entirely ascribed to a substitution-controlled step, and so the deprotonation and ET steps, (13) and (14), respectively, must be rate-determining to some extent as well.

The redox rate constants for the reduction of some Co(III) complexes by TiOH\(^{2+}\) and V\(^{2+}\) were subjected to the modified Marcus equation plots [15, 17, 18] (Figure 2). Based on the plot, these reactions (with the exception of [(NH\(_3\))\(_2\)CoO\(_2\)Co(NH\(_3\))\(_4\)]\(^{3+}\) reduction presented by H on the plot) had been suggested to occur by the outer-sphere mechanism. The V\(^{2+}\)
reduction of Co(pd)$_3$ was also suggested to be by this outer-sphere mechanism [1]. The point representing the present reaction (I) lies above the line in Figure 2 and hence an inner-sphere mechanism is suggested for the reduction of Co(pd)$_3$ by TiOH$^{2+}$. Furthermore, Linck and Sullivan [1] had proposed a parallel outer- and inner-sphere mechanism for the Cr$^{3+}$ reduction of Co(pd)$_3$ at high acidity (2 mol dm$^{-3}$ HClO$_4$) saying that the inner-sphere percentage increased with decreasing acidity. Considering the low acid (highest is 0.1 mol dm$^{-3}$) employed in this work, our inner-sphere mechanism is in excellent agreement with the earlier observation [1].

![Figure 2. Log-log plot for the reduction of some Co(III) complexes by TiOH$^{2+}$ and V$^{2+}$ [15] (I = this work).](image)

It has been reported that the addition of non-bridging oxalate [7, 8, 9], EDTA [19, 20, 21] and 2,4-pentanedionato [9] ligands onto Ti(III) have consistently catalysed the reactions of Ti(III) with Co(III) and Ru(III) complexes. In the present system, the effect of added acetate ion on Ti(III) as a non-bridging ligand has caused inhibition, an observation opposite to the earlier ones. A somewhat similar slower intramolecular electron transfer was observed [22] in some Ti(III) - Co(III) and Ti(III) - Ru(III) reactions but involving bigger dihydroxyquinone dianion as a bridging ligand. A plausible explanation of our present observation can be ascribed to the reduction in the oxidation potential of Ti(III) in the presence of added acetate [23]: i.e. Ti(CH$_3$COO)$_2^{2+}$ is expected to be less reactive than TiOH$^{2+}$ as has been demonstrated in this study.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge financial support from Obafemi Awolowo University Research Committee. We are also grateful to University of Zimbabwe for providing facilities to complete this work.
REFERENCES