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ABSTRACT: Based on the earlier developed thermodynamic description of
homogeneous and heterogeneous adscrbed monolayers (10) a kinetic description
of first-order phase transitions in adsorbed layers (2d-condensation,
2d-decomposition of multicomponent layers) is proposed. It is shown that
for the special type of transitions considered both the general scenario and
the kinetics of the process are qualitiatively the same as for its
three-dimensional analogue.

The results are applied to an explanation of the results of the computer
calculations by Koch et. al. (8) of the process. of condensation in adsorbed
monolayers, consisting of particles interacting via & Lennard-Jones potential.

INTRODUCTION

In the last decades, based on the works of Gibbs, Rayleigh, Pockels, Devaux,
Marcelin, Langmuir, Adam and others, the investigation of the properties of
adsorbed layers became a rapidly developing area of research in physical
chemistry with a large number of applications (1-4). In particular, it was noticed
that aedsorbed layers may exist in different states, resembling the
three-dimensional solid, liquid and gas phases, and that sharp trasitions between
the different states may occur (5-8).

The topic of our present investigation is the kinetic description of first-order
phase transitions in physisorbed monolayers, eg., the 2d-liquid-vapour fransition
or the decomposition of a 2d-multicomponent layer. It is assumed that the
2d system is closed (conservation of the number of particles) and that the
temperature T is kept constant.

Based on a thermodynamic investigation of the process of formation of clusters
of the newly evolving phase a general scenario of the transition and a kinetic
description of different stages are given. It is shown that for the type of process
discussed both the scenario and the kinetics of the transition are gualitatively
the same as that of the three-dimensional analogue.

2. Thermodynamic Description of the Formation of One Cluster in
Monomolecular Films

in the following discussion we consider the process of formation and growth
of clusters with a higher surface density of particles I'y(2d-liquid) compared
with the molar density lgof the less dense initial {2d-vapour) phase in =
one-component physisorbed layer. The thermodynamic parameters are chosen
in such a way that the initially homogeneous 2d-vapour is in-a metastable state.

Two types of constraints are considered. As & first example, it is assumed
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that the state of the 2d-vapour is not affected by the process of formation
and growth of the clusters. This assumption is correct, if the surface area of
the system is varied in the course of the transition (Fig. 1).

1f, in contrast, the surface area A is fixed, then the formation of a cluster
is accompanied by depletion effects. This is the second case to be studied here.
Since this second case is reslized in the computer calculations of Koch et.al.
(9), their work can be taken as one example our investigations can be compared
with.

Fig.1: Model used for the investigation of phase transitions in adsorbed layers.
The two considered boundary condilions are realized by a free motion
or by a fixation of the position of the barrier, respectively.
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Fig. 2: Change of the thermodynamic potentinl as a function of the cluster
radius for both considered cases. For A G only one extremum exists,
depletion effects lead to the existence of an additional minimum
of A F for & relatively large size of the cluster.
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The different constraints are illustrated by Fig. 1. In both cases studied the
number of monomers in the layer is assumed to be constant. In the first case
the position of the barrier is varied in the course of the transition to retain
equality of the surface tension at both sides, while in the second case its position
is fixed.

The characteristic potentials describing both situations are the Gibbs free
energy G and the Helmholtz free energy F, respectively. For the case only
one cluster is formed in the system, these potentials cen be expressed in the
following way (10)

G
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0 is the surface tension, A the surface area, 1 the chemical potential, n the
mole number, K the line tension and L: the length of the dividing line between
the cluster (specified by the subscript &) and the surrounding vapour (specified
by B).

Since U and U can be considered as functions of the surface densities of
particles T and the temperature T, in the first case both gquantities remain
unchanged in the process of formation of the clusters. Thus in expression for
G we may substitute 0g=0,1g=H, where the quantities without a subscript refer
to the homogeneous metastable initial state.

Moreover, based on the Gibbs adsorption equation

= - 2:2

do Iy du, (2.2)
assuming incompressibility of the 2d-liquid, we obtain
+ +

Oy =0 =Ty Iy, (0) -, (@] (2.3)

For the calculation of G we take as the reference value for g the external tension

c =0 (2.4)

o =g (2.5)
where ©' is the value of the surface tension for a stable 2d liquid-vapor
coexistence at a straight 1d interface.

With egs. (2.2)-(2.5) egs. (2.1) are transformed into the following expression

G
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In the calculation of F in addition the condition A = Ay + Ag was used.

Instead of the potentials G and F it is more convenient to deal with the
difference between their values in the heterogeneous state cluster in the medium
and the homogeneous initial state for the description of cluster formation.
Taking into account egs.(2.7), describing F and G for homogeneous layers (10),
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A phase transition may occur if the chemical potential of the particles in
the cluster is less than in the vapour phase. If this condition is fulfilled, AG
and AF show a dependence on the cluster radius r,:2 behaviour, as presented
in Fig. 2.

The extrema of AG and AF are determined by two-dimensional
Gibbs-Thomson equations
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The second derivatives at the extrema are given by
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While for AG only one extremum (maximum) exists, depletion effects result,
additionally, also in a minimum of {F, corresponding to & thermodynamically
stable heterogeneous state.

3. Generalization to Ensembles of Clusters

In the stage of nucleation, a large number of clusters is usually formed.
Consequently, for this general case we have to generalize the thermodynamic
description of clusters in the otherwise homogeneous medium.

Denoting by N the total number of clusters in the system, the characteristic
potentials of an ensemble of clusters with different sizes are given by
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the superscript (j) specifying the different clusters.
In the case of N identical 2d-drops these equations can be transformed into
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In the derivations of egs. (3.2) the same approximations as in the preceding
chapter were used.

6G and AT, expressed by egs. (3.2), depend on two variables, the common
radius g, and the number of clusters N. For a fixed value of N the extrems
of the thermodynamic potentials sre again given by eguations of the type (2.9),
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The second-order derivatives read, now
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Taking into account that, according to eq. (3.3), the critical cluster size is given

by

r = -
C

Fa[uftc) - xza(u')] (3.5)

the expression for AG can be written as

T
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where pG. is the extremum value of AG for the case only one cluster is present
in the system.

Thus the position of the extrema of £ G and the point of intersection of the
function AG = aG{r ) with the r -axis do not depend on the number of cluster
(see Fig.3). & @

The situation is quite different if we calculate AF = /F(y, ) for different
values of the number of clusters N. According to eq. (3.3) the position of the
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extrema for this second case depends on the number of clusters N. Considering
N as a continuous variable, from the generalized Gibbs-Thomson equation (3.7)
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Fig.3: 4G as a function of the radius for different voalues of the numbers of
ciusters (N = 1,2,3)
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Fig. 4: LT as a function of the radius fer a fixed number of clusters N in the
system. The direction of the variztion of tiie extrema with an increasing
number of clusters is indicatéd by asrrows.
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the following expression for the variation of the position of the extrema with
an increase of N is obtained;

T & ot Lo g | 55
dN 2N sy ’
Moreover, since for the extrema (3AF/3r, =0) we may write
dAF _  OAF aF, Ty BAF
== (~—)T + (—-*JN = (——)r (3.9)
dN 3N "o arm dN eN "o
resulting in
dAaF _ _
E =1®L , L.=2m, (3.10)
re in eq.(3.10) is one of the possible two solutions for ry of eq.(3.7).
From the extremum conditions eq.(3.4) we find further
dr
1+y>0 , —= x 0 (3.11)
dN
for the maxima and
drcx
1+y<0 , — < 0 (3.12)
dN

for the minima of AF.

The variation of the position of the extrema of AF with an increasing number
of clustersb is indicated in Fig.4 by arrows. There exists a critical number of
clusters N~ for which both extrema coincide in a point of inflexion. N~ and
the corresponding value of r, for the point of inflexion are given by

2
SAF _ ATAF, _
(_a )N = (_Z)N =0 (3.13)
ra ara

In Fig. 5 /F is presented as a function of r; for different values of the number
of clusters N. The resulting figure suggests, that in analogy to three-dimensional
case (see, e.g., (11)) phase transitions in 2d-layers starting from metastable
initial states may proceed via three main stages, a first stage of nucleation
and a possible simultaneous growth of the already formed supercritical clusters
(dotted curve), a second stage of practically independent growth of the clusters
their number being nearly constant (dashed-dotted curve) and a third stage
of competitive growth, of Ostwald ripening, resulting in a decrease of the number
of clusters and an increase of their mean radius (dashed curve).

It should be stressed that this scenario holds strictly only if the underlying
thermodynamic description assumptions are fulfilled (e.g., physisorption on
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smooth surfaces, absence of additional heterogeneities in the layer) and if the
growth of the clusters proceeds mainly by diffusion-like processes. It is believed,
however, that such additional factors, which may influence the transition, not
necessarily result in a totally different scenario, though modifications, of course,
are possible (compare (15)).

Ne

N3

Fig. 5: AT as a function of the radius for different values of the number of
clusters (Ny < Ng > Ng < N€),

The results of the thermodynamic investigations are used now, te give a kinetic
description of the growth of the clusters. Hereby it is assumed that the growth
proceeds mainly via an addition of monomers. The process of nucleation can
again be described in terms of a quasi-steady-state nucleation rate (see, e.g.,
(11)) and is, therefore, not discussed in detail here.

4.  Kinetics of Growth of Single Clusters

The kinetic description of the growth of the 2d-clusters, outlined here, is
based on a general equation for the density of fluxes i© of particles through
the interface between two phases. derived earlier by one of the authors in

cooperation with I. Gutzow ({(see, e.g., (11),12)). For the considered case this
equation can be written as

st migl glle=Bdv g (4.1)
n

[ is the diffusion coefficient of the monomers in the medium, R the universal
gas constant, p the characteristic thermodynamic potential of the heterogeneeus
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system (cluster in the otherwise homogereous medium), 1 a parameter with
the physical meaning of the width of the inhomogeneous region between the
different phases, & a unit vector directed perpendicular to the surface of the
cluster,

The universal' applicability of the equstion (4.1) arises from the fact, that
all thermodynamic information about the system of interest is contained in
¢, while the type of growth is described by the parameter 1. 1 is equal to a
constant of molecular dimensions for (interface) kinetic limited growth; it is
equal, at least to a good approximation, to the radius of the cluster for diffusion
limited growth (12,14). The total flux of particles through the interface of the
cluster and, consequently, the change of the number of moles in the cluster
are given by

% = = 2vr I‘).ré .]_ EP.

dt SRT 1 &n (4.2)
a

Assuming incompressibility of the cluster phase we may write also
dp nr
g 1 3
G - == ! ﬁ_q* (4.3)
dt ]‘mRT 1 ar

For the constraints described by Gibbs' free energy¢ has to be replaced by
A5G, Moreover,i’aﬂ" and we get

dr& o« 1

l-} (4.4)
dt = RT 1 T T

re being determind by eq. (3.5). 9

If r.>> re, then the cluster grows as ry "t for diffusion limited growth and
as ry - t for kinetic limited growth. If r, < rq, then the cluster shrinks and
disappears.

The same structure of the growth equation is obtained also if 4 G is replaced
by LF for the second type of comstraints, but in this case the eritical cluster
size depends on the radius of the growing cluster via

= (4.5)
:R G, * ra [-JB T : ]
It is evident that the kinetic equations describing the growth of the clusters

are consistent witl, the results of the thermodynamic analysis, discussed in
section 2.

5. Kinetics of Growth of Ensembles of Clusters

For an arbitary number of clusters present in the system, the growth equation
for the j-th cluster can be written as

an ¥ - pp
"B i 3¢
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A =y anl]
Lo RT 1(_3) BT
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9 in eq. (5.1) is given by egs. (3.1) for both considered cases.

If the state of the medium is not changed by the growth of the clusters
(= AG), the clusters grow independently of each other and the growth equations
for each of them are again reduced to egs.(3.5) and (4.4), again.

For finite systems with a constant surface (¢ = AF), however, the growth
of each of the clusters is affected by the size and the total number of all clusters
present in the system. The growth equation is given by eg. (4.4) but r. (eq.
(4.5)) depends through T .on the total number of particles in the a-phase.

While in the second stage of the phase transition (dashed-dotted curve in
Fig. 5) this dependence plays no significant role - most clusters grow at the
expense of the monomers in the vapour phase with ryvt and v t, respectively
- it determines the evolution in the third stage, the stage of competitive growth
or Ostwald ripening (dashed curve in Fig.5).

For the derivation of the kinetic equations, describing Ostwald ripening in
adsorbed layers, we start with equation (5.1) and assume in addition, that the
total mass of the new phase is distributed between N nearly identical clusters.
Teking the sum over all clusters, we obtain

N-f‘f‘.@ .8 1 % (5.2)
dt ri RT L My

where ¢ is given now by the second of the egs. (3.2).

Moreover, since the thermodynamic driving force of the competitive growth
is the decrease of AF, connected with the decrease of the number of clusters,
we replace

3,3 &
(5.3)
ar aN  dr
o o

A substitution of egs. (3.9), (3.10) and (5.3) into eq. (5.2) yields

dr wDTr,
c = .._.___E 1_ f‘] oy -1) (5.4)
Fé RT lra
The numerical factor w is introduced here to account for the approximations
due to the consideration of a system of nearly identical clusters in the calculation
of the thermodynamic driving force of Ostwald ripening. It will be determined
later.

Eg. (5.4) is to be considered as a description of the time-dependence of the
mean size of the ensemble of clusters in the stage of Ostwald ripening. It has
to be supplemented by a second equation for the description of the time-evolution
of the number of clusters.

This second equation can be obtained from eq. (3.8) or by a derivation of
eq. (3.7) with respect to time. It reads

dt

NA
4 fn { 23] =< 1. [1n(r§)]
dt A y dt (5.5)

ID—

The system of equation (5.4) and (5.5) gan be solved numerically in a relatively
simple way. In the asymptotic region y = tends to zero and we obtain as
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asymptotic solutions

3=3 wDT'"K

T, . sy A= 3%
Iy KT (5.6)
' 5.7
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o 2 o
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In the asymptotic region, the mass or the surface area of the liquid phase is
nearly constant (the right-hand side of eq.(5.5) tends to zero). The value of
this constant can be determind from the Gibbs-Thomson equation, which in
the asymptotic region is given approximately by

bg - ¥’ =0 (5.8)

A Taylor expansion of Mgresults in

Nn
UB = u - r —_t_x i‘.'l'_ (5-9)
n ar
and we obtain
N = Al - u') 1
3 A
s e @ (5.10)

Thus N depends on time as N~ +"2/3 gop ditfusion limited growth and as M t~1
for interface kinetic limited growth, where the constant of proportionality
is easily obtained from eqs. (5.6), (5.7) and (5.10).

Applying the method of Lifshitz and Slyozov (16) to eq.(4.4) with I‘B-—-I"we
get for diffusion limited growth the following asymptotic solution

P 4 Dxrt (5.11)
9

Since for the asymptotic region the results of Lifshitz and Slyozov are accurate,
we set

27 (5.12)

to get an agreement with our approach for this limiting case.
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DISCUSSION

Our investigations confirm the result of Koch et. al. (9), that for kinetic limited
growth under isothermal conditigns the mean size of the clusters in the stage
of Ostwald ripening grows as r’n t in the asymptotic region. Moreover, our
investigations also give an explanation for its initially slow increase, since in
the \ilcmxty of the highest point of the valley of AF (dashed curve in Fig.
5) y ~ is nearly equal to minus one and the time derivative of r, is small (see
eq.(5.4).
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