Synthesis, characterization and density functional theory study of low cost hydrazone sensitizers

  • A. G. Al-Sehemi
  • A. Irfan
  • A. M. Asiri
  • Y. A. Ammar
Keywords: Dye-sensitized solar cells, HOMO, LUMO, Absorption, FTIR spectra

Abstract

The 2-{4-[2-benzylidenehydrazino]phenyl}ethylene-1,1,2-tricarbonitrile (System 1), 2-{4-[2-(1-naphthylmethylene)hydrazino]phenyl}ethylene-1,1,2-tricarbonitrile (System 2) and 2-{4-[2-(9-anthrylmethylene)- hydrazino]phenyl}ethylene-1,1,2-tricarbonitrile (System 3) were synthesized by direct tricyanovinylation of hydrazones. The bathochromic shift in absorption spectra has been observed by increasing the solvent polarity. The FTIR spectra of these new dyes exhibited three important absorption bands. The first band centered near 3260 cm-1 in System 1 while 3208 cm-1 and 3211 cm-1 in System 2 and System 3 for the nNH absorption, respectively. The second band is a sharp absorption band in the region of 2212-2209 cm-1, which was attributed to the cyano group absorption. The third is an absorption band in the region of 1611-1603 cm-1 ascribed for the C=N. Density functional theory (DFT) calculation of relative energies, relative enthalpies and free energies shows that E isomers are the most stable except System 3 in which the most stable is Z isomers. The conformational energy profile shows two maxima near (-90 and 90o) while three local minima observed at (-180, 0 and 180) for N1-N2-C1-C2 torsional angle. The highest occupied molecular orbitals (HOMOs) are localized on the whole molecules while lowest unoccupied molecular orbitals (LUMOs) are distributed on the tricarbonitrile.

 

KEY WORDS: Dye-sensitized solar cells, HOMO, LUMO, Absorption, FTIR spectra

 

Bull. Chem. Soc. Ethiop. 2015, 29(1), 137-148

DOI: http://dx.doi.org/10.4314/bcse.v29i1.13

Published
2015-01-18
Section
Articles

Journal Identifiers


eISSN: 1726-801X
print ISSN: 1011-3924