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ABSTRACT. A new and efficient methodology to synthesize N-substituted pyrrole derivatives by Clauson Kaas 
reaction employing Oxone as catalyst was developed. The transformation was performed in acetonitrile under 
microwave irradiation. This procedure has several advantages such as high yield, clean product formation, and 
short reaction time. 
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INTRODUCTION 
 
The study of heterocyclic compounds is an evergreen field in organic chemistry. It always 
attracts the attention of scientists working not only in the area of natural compounds but also in 
synthetic organic chemistry, specifically with Nitrogen containing heterocyclic structural unit 
exhibits a wide range of biological activities through effective binding to enzyme receptor site. 

As per the present research reports, thousands of new heterocyclic compounds either 
isolated from natural sources or synthesized in the laboratories are added to the literature every 
year. Many of these compounds have drawn the attention in various fields like natural product 
synthesis, functional materials, ligands, biological and pharmacological activities [1-6]. Among 
nitrogen containing five-member heterocycles, pyrrole is one of the modest class of heterocyclic 
compounds possessing wide range of biological activities, such as antimicrobial [7-8], antiviral 
[9], antitumor [10], anti-inflammatory [11] and antioxidant [12]. In addition, there is a growing 
interest in the synthesis of substituted pyrroles in the area of materials chemistry [13-14].  

The Clauson-Kaas reaction between primary amines and 2,5-dimethoxytetrahydrofuran 
remains as an attractive possibility [15-18], which has received great attention because it allows 
the synthesis of pyrroles without substituents on the carbon atoms of the heterocycle. Different 
catalysts and reaction conditions for this reaction have been published during the last decade 
[19-24]. 

EXPERIMENTAL 
 
Melting points of the synthesized compounds were determined in open capillary tubes and were 
uncorrected. Reaction progress was observed by TLC plates, Bruker 400 MHz instrument was 
used to record 1H NMR and 100 MHz for 13C NMR spectra in DMSO using TMS as internal 
standard. Chemical shifts (δ) are expressed in ppm. The mass spectra were measured on a 
GC/MS-QP1000EX (EI, 70 eV) mass spectrometer. Elemental analyses were performed on a 
PerkinElmer 240 CHN analyser.  
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General procedure for the synthesis of 1-substituted aryl-pyrroles (3a-h) 
 
Oxone (0.09 g, 0.30 mmol) was added to a solution of the aromatic primary amines (2.5 mmol) 
and 2,5-dimethoxytetrahydrofuron (3.0 mmol) in a solvent (5 mL) was further added (Scheme 
1). The reaction mixture was heated under microwave irradiation for 10 min at 110 ± 10 oC. The 
reaction mixture was irradiated until total consumption of the amine was verified by TLC. 
Water was added and the products were extracted with EtOAc (3x20 mL). The organic phase 
was dried over anhydrous MgSO4 and the solvent was removed under reduced pressure. The 
product was purified on a silica gel column chromatography eluted with mixture of ethyl 
acetate/hexane (1:4) to afford the product.  
 

 
Scheme 1 

 
Characteristic data of synthesised compounds  
 
1-Phenyl-1H-pyrrole (3a). M.P. 58-60 oC; 1H NMR (DMSO-d6, 400 MHz, δ in ppm): 7.38–7.35 
(m, 4H), 7.24–7.17 (m, 1H), 7.08 (m, 2H), 6.35–6.33 (m, 2H). 13C NMR (DMSO-d6, 100 MHz, 
δ in ppm): 140.7, 129.5, 125.5, 120.4, 119.2, 110.3. MS, m/z (%), 143 (M+). Anal. calcd. for 
C10H9N; C, 83.88; H, 6.34; N, 9.78. Found: C, 82.50; H, 6.30; N, 9.52.  
 
1-p-Tolyl-1H-pyrrole (3b). M.P. 80-82 oC; 1H NMR (DMSO-d6, 400 MHz, δ in ppm): 7.27 (d, J 
= 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 7.06–7.04 (m, 2H), 6.34–6.32 (m, 2H), 2.36 (s, 3H). 13C 
NMR (DMSO-d6, 100 MHz, δ in ppm): 138.4, 135.2, 130.0, 120.4, 119.2, 110.0, 20.8. MS, m/z 
(%), 158 (M+). Anal. calcd. for C11H11N; C, 84.04; H, 7.05; N, 8.91. Found: C, 83.50; H, 6.85; 
N, 8.25. 
 
1-(4-Methoxy phenyl)-1H-pyrrole (3c). M.P. 108–110 oC; 1H NMR (DMSO-d6, 400 MHz, δ in 
ppm): 7.30 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 7.10–6.99 (m, 2H), 6.33–6.31 (m, 2H), 
3.82 (s, 3H). 13C NMR (DMSO-d6, 100 MHz, δ in ppm): 157.5, 134.4, 122.1, 119.6, 114.6, 
109.8, 55.4. MS, m/z (%), 173 (M+). Anal. calcd. for C11H11NO; C, 76.28; H, 6.40; N, 8.08. 
Found: C, 75.85; H, 6.05; N, 7.95. 
 
(4-Nitrophenyl)-1H-pyrrole (3d). M.P. 182–183 oC; 1H NMR (DMSO- d6, 400 MHz, δ in ppm): 
8.31 (d, J = 8.9 Hz, 2H), 7.51 (d, J = 8.9 Hz, 2H), 7.18–7.17 (m, 2H), 6.43–6.42 (m, 2H). 13C 
NMR (DMSO-d6, 100 MHz, δ in ppm): 144.5, 143.8, 125.4, 119.3, 118.8, 112.2. MS, m/z (%), 
188 (M+). Anal. calcd. for C10H8N2O2; C, 63.82; H, 4.28; N, 14.89. Found: C, 63.25; H, 4.20; N, 
14.35. 
 
 (4-Chlorophenyl)-1H-pyrrole (3e). M.P. 86–88 oC; 1H NMR (DMSO-d6, 400 MHz, δ in ppm): 
7.39 (d, J = 9.2 Hz, 2H), 7.31 (d, J = 9.2 Hz 2H), 7.04 (m, 2H), 6.35 (m, 2H). 13C NMR 
(DMSO-d6, 100 MHz, δ in ppm): 139.2, 130.9, 129.5, 121.5, 119.2, 110.8. MS, m/z (%), 179 
(M+). Anal. calcd. for C10H8N2O2; C, 67.62; H, 4.54; N, 7.89; Found: C, 61.25; H, 4.30; N, 7.49. 
 
4-((1H-pyrrol-1-yl) sulfonyl) aniline (3g). M.P. 247-250 oC; 1H NMR (DMSO-d6, 400 MHz, δ 
in ppm): 7.98 (d, J = 8.9 Hz, 2H), 7.74 (d, J = 8.9 Hz, 2H), 7.39 (2H), 6.61 (s, 2H), 6.35 (t, J = 
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2.4 Hz, 2H); 13C NMR (DMSO-d6, 100 MHz, δ in ppm): 143.9, 141.6, 128.8, 120.2, 119.9, 
112.3. MS, m/z (%), 222 (M+). Anal. calcd. for C10H10N2O2S; C, 54.04; H, 4.54; N, 12.60; 
Found: C, 53.95; H, 4.30; N, 12.19. 
 
1-(4-Nitrophenyl sulfonyl)-1H-pyrrole (3h). M.P. 137-139 oC; 1H NMR (DMSO-d6, 400 MHz, δ 
in ppm): 8.34 (d, J = 8.7 Hz, 2H), 8.02 (d, J = 8.7 Hz, 2H), 7.16 (t, J = 2.3 Hz, 2H), 6.35 (t, J = 
2.3 Hz, 2H); 13C NMR (DMSO-d6, 100 MHz, δ in ppm): 150.6, 144.4, 128.1, 124.6, 121.0, 
114.8. MS m/z (%), 252 (M+). Anal. calcd. for C10H8N2O4S; C, 47.61; H, 3.20; N, 11.11; Found: 
C, 47.05; H, 3.02; N, 10.89. 
 
Table 1. Compounds and yields. 
 

Entry Compound Time (min) Yield (%) 

3a 

 

10 80 

3b 

 

16 78 

3c  
 

18 76 

3d 

 

15 75 

3e 

 

16 72 

3f 

 

19 70 

3g 

 

22 68 

3h 

 

20 65 

3i 
 
 

18 70 

3j 

  

14 65 
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RESULTS AND DISCUSSION 
 

In the present work, a new methodology for the synthesis of 1-aryl pyrroles 3 has been 
described by a Clauson-Kaas reaction employing three-component synthesis of pyrrole 
derivatives by using catalytic amount of Oxone. The catalyst Oxone (2KHSO5·KHSO4·K2SO4) 
is a transition-metal-free, mild and easy to handle, not toxic, cheap and stable commercial 
product and used various organic transformations [25-28]. In the present study, the catalyst 
Oxone involving in the efficient synthesis of aryl pyrroles is shown by mechanism in Figure 1. 
The reaction was performed in acetonitrile at 110 oC under microwave irradiation.  
 

 
 

Figure 1. Possible mechanism for Oxone supported synthesis of 1-substituted aryl-pyrroles. 
 

In order to establish the best conditions, the investigation started with the reaction of 
primary amines (2.5 mmol) and 2,5-dimethoxytetrahydrofuran (3.0 mmol). The influence of 
various solvents and amount of catalyst were verified. Running the reaction with 0.30 mmol of 
Oxone in the solvent free conditions gave 60% yield of 3a after 20 min (Table 1, entry 5). Use 
of ethanol as solvent improved the yields to 75% (Table 2, entry 1), employing water afforded 
55% of 3a (Table 2, entry 6). Better yields were observed in acetonitrile (80%) which also 
shortened the reaction time to 10 min (Table 2, entry 2). Therefore, the latter was selected as the 
solvent of choice. Next, effect of the nature and quantity of catalyst added on the reaction 
performance were evaluated. The reaction was performed under microwave irradiation, which 
furnished comparable yields in shorter times (Table 1, entries 3a-j). These results suggested that 
the best condition required is use of 0.30 mmol of Oxone in refluxing acetonitrile. In order to 
find out the scope and limitations of the method, the reaction was extended to other amines 
employing the optimized conditions (Table 2). The aromatic amines furnished the products in 
good to excellent yields after 10-22 min of reaction under microwave irradiation.  

 
Table 2. Optimization of reaction conditions. 
 

Entry Solvent  Oxone® Time (min) Yield (%) 
1 Ethanol 0.09 g 12 75 
2 Acetonitrile 0.09 g 10 80 
3 DMF 0.09 g 13 70 
4 THF 0.09 g 16 72 
5 Solvent free 0.09 g 20 60 
6 H2O 0.09 g 22 55 



A facile synthesis of 1-aryl pyrroles by Clauson-Kaas reaction using Oxone as a catalyst  

Bull. Chem. Soc. Ethiop. 2019, 33(1) 

147

CONCLUSION 
 
It has been shown that Oxone is a highly convenient catalyst for the Clauson-Kaas reaction of  
2,5-dimethoxytetrahydrofuran with aryl amines, cleanly furnishing excellent yields of N-aryl 
pyrroles, under microwave irradiation in short reaction times. In conclusion, a new protocol has 
been developed for the synthesis of pyrroles using microwave irradiation and Oxone as catalyst. 
The products were obtained in high yields and with shorter reaction times. 
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