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ABSTRACT. Composites of reduced graphene oxide (rGO) and conducting polymers synthesized from 8-
amino-2-naphthalene sulfonic acid (8-ANSA), 5-amino-1-naphthalene sulfonic acid (5-ANSA), 2-amino-1-
naphthalene sulfonic acid (2-ANSA), and 4-amino-1-naphthalene sulfonic (4-ANSA) were prepared for use as an 
electrocatalyst in oxygen reduction reaction (ORR). The electrocatalytic activities were examined in oxygen 
saturated 0.1 M KOH solution using cyclic and linear sweep voltammetry. The best performing polymer 
composite was found to be GC/poly(8-ANSA)/rGO, with an enhanced electrocatalytic activity over the rGO only 
and poly(8-ANSA) only films. More than 100 mV positive shift in the onset potential and 1.6 times increase in 
current density were observed. The catalytic activity of 2-ANSA, 4-ANSA, 5-ANSA, and 8-ANSA was also 
validated by density functional theory (DFT). Our calculations predict a much better catalytic activity for 8-ANSA 
than that of 2-ANSA, 4-ANSA, and 5-ANSA. 
  
KEY WORDS: Poly(amino naphthalene sulfonic acid), Reduced graphene oxide, Oxygen reduction reaction, 
Electrocatalyst 

INTRODUCTION 
 
Oxygen reduction reaction (ORR) is one of the most important reactions in a fuel cell, metal-air 
batteries, chloroalkali electrolyzer, metal corrosion, sensors, industrial electrolytic process and 
electro-organic reactions [1-3]. However, ORR is kinetically sluggish, involves several steps 
and many intermediates which makes challenging for researchers in the field. The most efficient 
catalyst generally considered so far for ORR are noble metals such as platinum (Pt) and its 
alloy. Nevertheless, these catalysts have a high price, scarce, poor durability, poor tolerance for 
CO poisoning and methanol crossover. In order to overcome these challenges researchers 
explore and develop non-precious metals or metal-free catalysts for ORR [1, 4-6]. 

 Graphene is becoming a promising candidate for ORR electrocatalysts due to their excellent 
conductivity, unique specific surface area, and customized surface chemistry [7, 8]. Graphite 
oxide has become the most common precursor for the cost-effective and mass production of 
graphene-based materials. Graphene oxide (GO) needs reduction to restore the disrupted π 
system/sp2 hybridized network using chemical or electrochemical reduction or thermal 
annealing. The electrochemical reduction method is advantageous over the other in that it is 
simple, fast, and doesn't require the use of any toxic reducing agents. Reduced graphene oxide 
(rGO) sheet shows low dispersibility in solvents and tends to restack as a graphite-like structure 
due to the removal of most of the oxygen functionalities. This aggregation of the rGO sheets 
reduces the available surface area, limits electron and ion transport which resulted in poor 
electrochemical performance. One applied strategy to solve this problem is the composite 
formation of rGO with conducting polymers. The most commonly used conducting polymers 
are polypyrrole, polyaniline, polythiophene and their derivatives [9-12].    

 In recent years, graphene composited with poly(3,4-ethylenedioxythiophene): 
poly(styrenesulfonate) (PEDOT:PSS) [13], polypyrrole [14], polyaniline [15, 16] has been 
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reported as an electrocatalyst for ORR. In this work, composite films of amino-substituted 
naphthalene sulfonic acid based polymers and graphene layers were synthesized for metal-free 
electrocatalyst for oxygen reduction reaction in alkaline media. Enhanced durability for metal-
free over metal catalysts is observed in alkaline media [17]. 

 We previously reported [18] 4-amino-3-hydroxy naphthalene sulfonic acid (AHNSA) for use 
in catalyzing the oxygen reduction reaction in acidic solution.  However, to the best of our 
knowledge, graphene oxide composited with amino substituted naphthalene sulfonic acids have 
never been prepared and examined for electrocatalysis in the oxygen reduction reaction. 
 

EXPERIMENTAL 
 

Reagents and apparatus 
 

Sodium nitrate, potassium chloride, nitric acid, 8-amino-2-naphthalene sulfonic acid (8-ANSA), 
5-amino-1-naphthalene sulfonic acid (5-ANSA), 2-amino-1-naphthalene sulfonic acid (2-
ANSA) and 4-amino-1-naphthalene sulfonic (4-ANSA) were purchased from Sigma Aldrich. 
Sulfuric acid and hydrochloric acid were obtained from Carlo Erba Reagents. Potassium 
permanganate and potassium hydroxide were obtained from BDH Chemicals Ltd. Hydrogen 
peroxide, potassium nitrate, potassium hexacyanoferrate(III) and graphite was purchased from 
Riedel de Haen. Nitrogen and oxygen gases were purchased in cylinders from Chora Gas & 
Chemical Product Factory. 
 X-ray diffraction spectra were prepared on MiniFlex X-ray diffractometer using Cu-K� 
radiation (λ = 0.15406 nm).  PerkinElmer Spectrum 65 FT-IR Spectrometer was used to record 
the infrared spectra. 
 A potentiostat/galvanostat (Autolab PGSTAT 128N) connected to a computer with general 
purpose electrochemical system (GPES v 4.9) and Nova (version 1.9.16) software is used to 
characterize the electrochemical properties of the electrocatalysts using a rotating disk glassy 
carbon (RDGC) working electrode (0.196 cm2). Rotating ring-disk electrode (RRDE) 
measurements were carried out at room temperature on a Pine bipotentiostat (model AFCBP1) 
connected to a computer with aftermath (version 1.2.5033) software. Glassy carbon disk 
electrode (0.2472 cm2) surrounded by a Pt ring (0.1859 cm2) were used for RRDE 
measurements. Silver/silver chloride (Ag/AgCl, 3 M KCl) and a platinum wire served as 
reference and counter electrodes, respectively.  Pine rotation speed controller (AFMSRCE 2957) 
was used during the rotating disk electrode (RDE) and RRDE measurements. 
 

Synthesis of GO 
 

Graphene oxide was synthesized from graphite powder using modified Hummer’s method [19].  
Specifically, graphite powder (1 g) and sodium nitrate (0.5 g) were mixed together and added to 
concentrated sulphuric acid (23 mL) in a beaker under constant stirring at room temperature.  
The beaker was put in an ice bath for cooling to 0 oC under constant stirring for one hour, and 
potassium permanganate (3 g) was added gradually to the mixture while keeping the 
temperature less than 20 oC. The mixture was stirred in a water bath at 35 oC for 6 hours to form 
a thick paste and the resulting solution was diluted by adding 500 mL of water under vigorous 
stirring. Subsequently, the suspension was further treated with 30% H2O2 solution (5 mL) to 
terminate the reaction. The resulting mixture was washed with 1:10 HCl aqueous solution 
followed by filtration. The collected solid material was dried in a vacuum oven to obtain GO. 
 

Electrochemical reduction of GO 
 

Five mg GO was dispersed in 10 mL deionized water and ultrasonicated for 1 h.  20 µL of the 
graphene oxide dispersion (0.5 mg mL-1) was drop-casted onto the pre-polished glassy carbon 
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electrode (GC) or on polymer modified GC (GC/poly(ANSA)) and was left to dry slowly in air.  
After drying, 3 µL 0.05 wt.% Nafion solution was applied to the surface of the resulting 
electrode to improve the adhesion of the film to the electrode surface. The electrochemical 
reduction of GO to rGO was carried out with cyclic voltammetry in the potential range 0 to -1.5 
V vs Ag/AgCl at a scan rate of 50 mV s-1 in N2 saturated 0.1 M Na2SO4 for 20 cycles [10, 20]. 
 
Electropolymerization 
 
Electropolymerization of 2 mM of the monomers (8-ANSA, 2-ANSA, 4-ANSA and 5-ANSA) 
on bare glassy carbon electrode (GC) or on GC/rGO in 0.1 M HNO3 was performed using cyclic 
voltammetry by scanning the potential between -0.8 V and 2.0 V vs Ag/AgCl at a scan rate of 
100 mV s-1 for 16 cycles.  Then, the modified electrode was stabilized for 24 cycles in monomer 
free 0.5 M H2SO4 until a stable cyclic voltammogram was obtained [18]. 
 
Electrochemical measurements 
 
The oxygen reduction currents were recorded in oxygen saturated 0.1 M KOH. Cyclic and linear 
sweep voltammograms were recorded at a scan rate of 20 mV s-1. For the RRDE measurement, 
the disk and ring currents were recorded as a function of the disk potential scanned between -0.7 
V and 0.1 V vs. Ag/AgCl at 10 mV s-1 at one rotation speed (1600 rpm). The ring electrode 
potential was held at +1 V vs. Ag/AgCl [13]. The collection efficiency (N) was determined 
using 1 M KNO3 and 10 mM K3Fe(CN)6 deaerated with pure nitrogen. The measured collection 
efficiency was found to be 38±1.5%. 
 The oxygen reduction currents were normalized to the geometric area of the electrode and 
corrected for the background electrode current recorded in pure nitrogen saturated 0.1 M KOH 
solution [21]. 
 
Computational details 
 
All calculations were carried out with the Gaussian 16 program package [22]. The B3LYP 23-
25] functional together with the 6-311++G(d,p) basis sets [26] were used. Solvent effects were 
corrected by using the polarizable continuum model (PCM) in its integral equation formalism 
[27] together with water as a solvent. Vibrational frequency analyses were performed to verify 
that the optimized structures are minima without an imaginary frequency and to obtain the free 
energies of the dimers and their complexes. The natural bond orbital (NBO) analysis [28-29] 
was used to explore the charges on the atoms before and after the adsorption of the molecular 
oxygen on the dimers.  

RESULTS AND DISCUSSION 
 
The XRD spectra of graphite and GO were recorded in order to verify the structural changes 
occurring during the conversion of graphite to GO and are shown in Figure 1A. The intense 
sharp peak (2θ = 26.6o) for graphite powder (Figure 1A(a)) corresponding to the (0 0 2) [30] 
reflection plane disappeared and shifted to a lower 2θ angle of 11.4o after being oxidized to GO 
(Figure 1A(b)). The shift is attributed to the intercalation of oxygen-containing groups during 
oxidation with KMnO4 [31]. An interlayer distance of ~0·78 nm was calculated using Bragg's 
equation for GO, which is larger than that of graphite powder (~0.34 nm). The small peak 
(Figure 1A(b)) at 2 = 42.6o is corresponding to the (100) in plane hexagonal atom arrangement 
[32]. 
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Figure 1. (A) XRD patterns of (a): graphite, (b): GO and (B) FT-IR spectra of GO. 
 
 The FTIR spectra of GO (Figure 1B) shows several characteristic peaks. A broad and 
intense peak at 3414 cm�� attributed to O-H stretching of carboxyl groups, a weak peak at 
1735 cm�� assigned to C=O stretching of carbonyl groups, an intense peak at 
1632 cm�� corresponds to C=C stretching, a sharp peak at 1399 cm�� and a broad peak at 1065 
cm-1 are assigned to C-O stretching vibration of carboxyl and alkoxy group, respectively [30, 32, 
33]. 
 Figure 2a shows a typical cyclic voltammograms for the electropolymerization of 8-ANSA 
on a polished glassy carbon rotating disk electrode. During the first cycle, anodic and cathodic 
peaks at 0.78 V and -0.0811 V, respectively, were observed. In the successive scans, three new 
anodic peaks appeared at 0.251 V, 0.332 V, and 0.6139 V. Unlike the peak at 0.78 V which is 
due to the redox activity of the monomer [34], all the peaks increase with increasing number of 
cycles which shows the formation of polymer film on the surface of the glassy carbon electrode 
(GC) [18]. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Cyclic voltammograms obtained for the electropolymerization of (a) 8-ANSA on GC 

and (b) 8-ANSA on GC/rGO from a solution containing 2 mM 8-ANSA monomer in 
0.1 M HNO3 at a scan rate of 100 mV s-1 for 16 scans between -0.8 V to 2.0 V vs 
Ag/AgCl. 

 
 Peak currents for the potentiodynamic polymerization of 8-ANSA onto rGO (Figure 2b) 
coated electrodes are higher than those on the surface of the glassy carbon electrode since 
modification by rGO leads to a larger electroactive surface area.  
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Figure 3. Comparison of the background corrected (a) cyclic voltammogramms and (b) linear 

sweep voltammograms of (+) GC/rGO, (⋆) GC/poly(5-ANSA)/rGO, (●) GC/poly(4-
ANSA)/rGO, (□)GC/poly(2-ANSA)/rGO, and (�) GC/poly(8-ANSA)/rGO (c) linear 
sweep voltammograms of (+) GC/rGO, (∇) GC/poly(8-ANSA), (□) GC/poly(8-
ANSA)/rGO, and (●) GC/rGO/poly(8-ANSA) electrodes in 0.1 M KOH at a scan rate 
of 20 mV s-1in 0.1 M KOH. Rotational rate for LSV measurements were1600 rpm. 

 
After the electrosynthesis of all the monomers (8-ANSA, 2-ANSA, 4-ANSA, and 5-ANSA) 

on bare RDGC electrode under similar conditions, electrochemical reduction of GO on polymer 
modified GC electrodes were performed. Cyclic (CV) and linear sweep(LSV) voltammetry 
measurements were performed in O2-saturated 0.1 M KOH to compare the electrocatalytic 
activity of the four different amino substituted naphthalene sulfonic acid polymers composited 
with rGO. rGO modified GC electrode was also used in the comparison as a reference. The 
results are depicted in Figure 3a,b. The ORR activity for all the polymers-rGO modified GC 
electrode was found to be higher than that of GC/rGO. The onset potentials of GC/poly(2-
ANSA)/rGO and GC/poly(8-ANSA)/rGO were more positive compared to that of GC/poly(4-
ANSA)/rGO and GC/poly(5-ANSA)/rGO composite films. In terms of the current density, 
GC/poly(8-ANSA)/rGO has the highest value among all the polymers. Thus, GC/poly(8-
ANSA)/rGO composite was chosen for further analysis. 
 The reaction mechanism of oxygen reduction involves diffusion in the bulk of the electrolyte 
and the conducting films, adsorption process, and electron transfer [35]. Any of these processes 
might be rate controlling and can be one of the criteria for the catalytic activity of materials. To 
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explain the catalytic activity of poly(5-ANSA), poly(4-ANSA), poly(2-ANSA), and poly(8-
ANSA), quantum-chemical calculations of the electronic structure for all the amino substituted 
naphthalene sulfonic acid and their adsorption complexes with molecular oxygen were 
performed using density functional theory (DFT). The dimers (Figure 4) and their adsorption 
complexes with oxygen were used for all the calculations. To identify the adsorption sites, we 
used the natural charges from the natural bond orbital (NBO) analysis. From the results in Table 
1, the maximum negative change are concentrated on carbon atoms in positions C3, C4, C8, C9, 
C14, C15, C17, and C18. Each carbon atoms can in principle be an adsorption site for oxygen 
binding, however, the carbon atoms with larger negative charges are more preferable for the 
oxygen adsorption. The results listed in Table 1 show a clear increase in the negative charge on 
O2 (from 0.0 to −0.367; see the last two rows of Table 1), and a positive charge on the 
adsorption sites (C8-C9) in the complexes (2-ANSA–O2, 4-ANSA–O2, 5-ANSA–O2, and 8-
ANSA–O2), indicating the adsorption of O2 on the dimers. 
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Figure 4. Dimers of (a) 2-ANSA, (b) 4-ANSA, (c) 5-ANSA, and (d) 8-ANSA molecular cluster. 

Hydrogen atoms were omitted for clarity.  
 
 The Gibbs free energy of formation (Δ��) (Table 2) between the oxygen atoms and the 

carbon atoms in the positions 8 and 9 are lower for all ANSA-O2 complexes than for other 
carbon atoms (e.g, C14 and C15). This clearly shows that positions 8 and 9 are the most 
preferable O2 adsorption sites.  
 The electron density transferred to O2 and occupies the antibonding MO’s of O2 (adsorbed) 
which is responsible for the destabilization of the O–O bond in O2. This is evident from the O–O 
bond length which is elongated to 1.498, 1.5, 1.497 and 1.492 Å for 2-ANSA–O2, 4-ANSA–O2, 
5-ANSA–O2, and 8-ANSA–O2, respectively, from that of 1.21 Å for the bare O2 molecule. The 
O-Cx and O-Cy bond lengths also show the adsorption of the O2 molecule. Thus, chemisorbed 
O2 molecules have a fairly high degree of activation and can be easily reduced, which accounts 
for the catalytic activity of the ANSA polymers. Furthermore, 8-ANSA followed by 2-ANSA, 
with lowest Δ�� and more possible adsorption sites, are the best electrocatalytic materials for 

oxygen reduction reaction. This is in agreement with the experimental observation (Figure 3a.b). 
 
 



Amino-substituted naphthalene sulfonic acid/graphene composite as metal-free catalysts  

Bull. Chem. Soc. Ethiop. 2019, 33(2) 

365

Table 1. Natural charges obtained from the natural bond orbital (NBO) analysis in the dimers and dimer-O2 
complexes (where the binding site in all dimers is C8-C9), calculated using B3LYP/6-
311++G(d,p)/PCM/water calculations. Other possible binding sites are also shown in bold-italic 
fonts. 

 
Atom 2-ANSA 2-ANSA-O2 4-ANSA 4-ANSA-O2 5-ANSA 5-ANSA-O2 8-ANSA 8ANSA-O2 

C1 -0.047 -0.060 -0.065 -0.030 -0.081 -0.049 -0.084 -0.089 
C2 -0.097 -0.073 -0.085 -0.051 -0.060 -0.029 -0.066 -0.102 
C3 -0.123 -0.123 0.175 0.186 0.182 0.190 -0.165 -0.211 
C4 -0.232 -0.219 -0.301 -0.294 -0.240 -0.236 -0.227 -0.198 
C5 0.239 0.228 0.280 0.284 -0.202 -0.201 0.155 0.106 
C6 -0.370 -0.333 0.117 0.088 -0.202 -0.234 -0.217 -0.202 
C7 -0.152 -0.235 -0.187 -0.234 0.189 0.139 0.177 0.244 
C8 -0.207 0.077 -0.219 0.071 -0.270 0.077 -0.252 0.098 
C9 -0.222 0.072 -0.201 0.096 -0.186 0.078 -0.207 0.081 
C10 -0.168 -0.122 -0.202 -0.164 -0.248 -0.213 -0.226 -0.205 
C11 -0.079 -0.082 -0.072 -0.075 -0.071 -0.077 -0.070 -0.068 
C12 -0.050 -0.051 -0.051 -0.051 -0.043 -0.046 0.013 0.009 
C13 -0.208 -0.208 -0.201 -0.193 -0.265 -0.260 0.185 0.192 
C14 -0.195 -0.193 -0.170 -0.183 -0.174 -0.190 -0.243 -0.254 
C15 -0.236 -0.234 -0.204 -0.202 -0.206 -0.207 -0.173 -0.170 
C16 -0.162 -0.161 -0.191 -0.176 -0.149 -0.137 -0.217 -0.225 
C17 -0.170 -0.140 -0.231 -0.231 0.205 0.202 -0.147 -0.148 
C18 -0.217 -0.237 -0.205 -0.207 -0.250 -0.255 -0.205 -0.206 
C19 0.172 0.180 0.318 0.322 -0.169 -0.168 -0.302 -0.304 
C20 0.077 0.068 0.120 0.116 -0.224 -0.231 -0.175 -0.175 
O43 - -0.327 - -0.336 - -0.329 - -0.345 
O44 - -0.335 - -0.331 - -0.322 - -0.367 

 
Table. 2. Change in Gibbs free energy of formation, ΔGf (kcal/mol), equilibrium interatomic distances (Å) 

between the oxygen atoms, r(O=O), between the oxygen atoms and the carbon atoms, r(O-C), in 
the dimers and dimer-O2 complexes.  

 
 Binding site (Cx-Cy) ΔGf r(O=O) r(O-Cx) r(O-Cy) 

O2 - - 1.205 - - 
2ANSA-O2 C8-C9 10.73 1.498 1.490 1.467 

C14-C15 10.89 1.499 1.495 1.467 
4ANSA-O2 C8-C9 12.99 1.500 1.489 1.467 

C14-C15 14.94 1.497 1.484 1.466 
5ANSA-O2 C8-C9 14.90 1.497 1.484 1.466 

C14-C15 12.68 1.497 1.484 1.466 
8ANSA-O2 C8-C9 10.71 1.492 1.545 1.455 

C14-C15 11.14 1.497 1.535 1.455 

 
 The electrocatalytic activities for ORR of GC/rGO, GC/poly(8-ANSA), GC/poly(8-
ANSA)/rGO and GC/rGO/poly(8-ANSA) were studied using linear sweep voltammetry (LSV) 
in N2 and O2 saturated 0.1 M KOH solution and compared with each other in Figure 3c.  
Background corrected polarization curves (Figure 3c) at 1600 rpm shows GC/poly(8-
ANSA)/rGO has the highest current density and more positive onset potential than GC/poly(8-
ANSA) as well as GC/rGO, which demonstrate the good electrocatalytic activity of GC/poly(8-
ANSA)/rGO. GC/rGO/poly(8-ANSA) composite exhibits lower electrocatalytic activity towards 
ORR. At -0.6 V for instance, the current density recorded for ORR on the GC/poly(8-
ANSA)/rGO is 2.27 mA cm−2 which is much higher than GC/rGO/poly(8-ANSA)(1.44 mA 
cm−2). This is attributed to oxidation potential applied to electropolymerized 8-ANSA on 
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GC/rGO to produce GC/rGO/ poly(8-ANSA) which could also possibly oxidize the previously 
synthesized rGO forming less conductive graphene oxide (GO).  
 The kinetics of the ORR activity of GC/poly(8-ANSA)/rGO were further investigated at 
different electrode rotational rates from 400 to 2500 rpm in 0.1 M KOH as shown in Figure 5a.  
The onset of the O2 reduction wave on GC/poly(8-ANSA)/rGO begins at a potential close to      
-0.21 V (vs Ag/AgCl). The current density increased when the rotational rates were increased 
from 400 rpm to 2500 rpm, indicating that the ORR is controlled by mass diffusion [13].  
 Koutecky-Levich (K-L) equation was applied in mixed kinetic -diffusion controlled region 
in order to estimate the transferred electron number per oxygen molecule involved in the ORR.  
The K–L equation can be represented as follows: 
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where J is the measured current density, JK and JL are the kinetic and diffusion-limiting current 
densities, ω is the angular velocity of the disk (in rpm), n is the overall number of electrons 
transferred in oxygen reduction, F is the Faraday constant (F = 96485 C mol−1), C0 is the bulk 
concentration of O2 (1.2 × 10−3 M), D0

 is the diffusion coefficient of oxygen (1.9 × 10 -5 cm2 s−1), 
ν is the kinematic viscosity of the electrolyte (ν = 0.01 cm2 s−1), ���

 is the electron transfer rate 

constant, �� is the heterogeneous rate constant, and Γ is the surface coverage of the catalyst on 

GC electrode as given in Table 3. The surface coverage Γ can be evaluated from the equation    
Γ = Q/nFA, where Q is the charge obtained by integrating the cathodic peak under the 
background correction at low scan rate from Figure 3a [2, 36].  

K-L plots (��� vs  ���/�) for GC/poly(8-ANSA)/rGO (Figure 5b) are parallel and linear, 
confirming that ORR follows first-order kinetics with respect to O2 molecule. Furthermore, the 
plots do not pass through the origin indicating a mixed kinetic -diffusion controlled mechanism 
[15, 29]. The number of electrons transferred (n) and JK can be obtained from the slope and 
intercept of the K-L plots [30]. The heterogeneous rate constants (kf) for the reduction of oxygen 
were calculated from JK and reported in Table 3. The ORR occurs either via direct four electrons 
pathway where O2 is reduced to ���or 2-electron reduction pathway, where O2 is reduced to 
HO�

� [4]. The electron transfer number were calculated using K-L plots over the potential region 
of -0.36 to -0.43 V to be 2.8 - 2.5 for GC/poly(8-ANSA)/rGO, 2-2.13 for GC/rGO, and 1.8-2.5 
for GC/poly(8-ANSA). These result demonstrated that the ORR process at the GC/poly(8-
ANSA) and GC/rGO composite proceed with two electrons (2e−) pathway with the formation of 
HO�

� but a mixture of HO�
� and ��� for GC/poly(8-ANSA)/rGO [4]. The direct, green and in 

situ electroreduction of O2 dissolved in alkaline media to ���
� on GC/rGO and GC/poly(8-

ANSA) electrodes is an attractive alternative to the current anthraquinone-based industrial 
production of H2O2, which produces a large number of chemical pollutants in a multistep energy 
intensive processes [39]. 
 The RRDE was used further to evaluate the ORR pathway by monitoring the intermediate 
peroxide species of HO�

� generated at the disk electrode in the alkaline medium during the ORR 
process at the GC/poly(8-ANSA)/rGO, GC/rGO, and GC/poly(8-ANSA) electrodes. As shown 
in Figure 5d, all three catalysts generate ring currents over the potential range from −0.2 to −0.7 
V for ORR. The electron transfer numbers (n) derived from RRDE result using equation 2 [5] 
over the potential range of -0.36 to -0.43 V to be 2.1 - 2.18 for GC/poly(8-ANSA), 2.14 - 2.15 
for GC/rGO, and 2.76 - 2.82 for GC/poly(8-ANSA)/rGO, being consistent with the RDE results.  
Hence, the HO�

� yields determined using equation 3 [5] for GC/poly(8-ANSA)/rGO (57%) 
significantly lower than GC/rGO (93%), and GC/poly(8-ANSA) (92%). All these values 
demonstrate the synergistically enhanced electrocatalytic efficiency of the composite 
(GC/poly(8-ANSA/rGO). 
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Figure 5. (a): Linear sweep voltammograms of GC/poly(8-ANSA)/rGO at different rotation 
speeds at a scan rate of 20 mV s-1, (b): K-L plots (J-1 vs �-1/2) at different electrode 
potentials in 0.1 M KOH,(c): Electron transfer number as a function of potential of 
GC/rGO, GC/poly(8-ANSA), and GC/poly(8-ANSA)/rGO, and (d) RRDE 
voltammograms of GC/rGO, GC/poly(8-ANSA), and GC/poly(8-ANSA)/rGO  at 1600 
rpm. The ring current was polarized at + 1.0 V. 
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where N is the collection efficiency of the rotation ring disk electrode (RRDE), and id and ir are 
the disk and ring electrode currents, respectively. 
 The logarithm of Jk was plotted against the potential to analyze the Tafel behavior for 
GC/poly(8-ANSA)/rGO, GC/poly(8-ANSA), and GC/rGO catalysts.  The reaction kinetics can 
be evaluated using Tafel equation (5) [40]: 

���  �� = −
�

�
(E − ��) + ���  ��,                                  (5) 

b= 
�:�����

���
  ......                                                               (6) 

where E is the measured potential of the working electrode, E0 is the equilibrium open-circuit 
potential, b is the Tafel slope, R is gas constant (8.314 J mol-1 K-1); T is the Kelvin temperature 
(298.15 K), Jk is the kinetics current density, and J0 is the exchange current density. 
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  Using equation 5, the high value of J0 and low value of b will give high Jk value under same 
overpotential (E–E0). J0 is a key parameter which reflects intrinsic rates of electron transfer 
between the solution and the electrode. It can be used to judge the catalytic efficiency of 
materials [40, 41]. 
 The Tafel plots clearly show the electrocatalytic activity differences among the electrode 
materials. At -0.36 V, for instance, the kinetic current density of ORR on the GC/poly(8-
ANSA)/rGO is 7.53 mA cm-2, which is significantly higher than GC/rGO (0.58 mA cm-2) and 
GC/poly(8-ANSA) (0.82 mA cm-2). Tafel slopes and exchange current density were estimated 
from the linear portion of the Tafel plot at low current density region (Figure 6a) and presented 
in Table 3. Therefore, incorporation of 8-ANSA between GC and rGO reduces the Tafel slope 
from 74 mV dec-1 to 68 mV dec-1 indicating more favorable kinetics for ORR [42]. The exchange 
current densities (Jo) were estimated from the intercept of a linear portion of the Tafel plots [41]. The 
Jo values for GC/8-ANSA/rGO much higher than that of GC/rGO and GC/8-ANSA showing an 
improved catalytic efficiency of the composite for ORR. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. (a) Tafel plots for the ORR at GC/poly(8 ANSA)/rGO(▲), GC/poly(8-ANSA) (♦), and 
GC/rGO (■) at an electrode rotation rate of 1600 rpm.(b)reaction order plot for oxygen 
reduction reaction on GC/rGO, GC/poly(8-ANSA), and GC/poly(8-ANSA)/rGO (the slope 
stands for the reaction order number). 

 
 The reaction order (m) of ORR on GC/rGO, GC/poly(8-ANSA), and GC/poly(8-ANSA)/rGO 
catalysts was checked further by plotting log i versus log[(i-i/id)] [43]. From Figure 6b and Table 
3, the first order dependence of the kinetics of the ORR was performed on GC/rGO, GC/poly(8-
ANSA), and GC/poly(8-ANSA)/rGO. 
 
Table 3. Tafel slopes and exchange current densities for the ORR at GC/rGO, GC/8-ANSA, and GC/8-

ANSA/rGO. 

 
Catalyst m 

 
n 

K-L    RRDE 
� 
 

b 
(mV dec-1) 

�� 
(mA cm-2) 

Γ 
(mol cm-2) 

�� 

(cm s-1) 
GC/rGO 1 2.04       2.01 0.8 74 1.76 x 10-5 1.87 x 10−8 2.7 x 10−3 
GC/8-ANSA 1 2.3         2.12 0.81 73 1.78 x 10-5 2.01 x 10−8 3.8 x 10−3 
GC/8-NSA/rGO 1 2.7         2.8 0.87 68 9.58 x 10-5 2.36 x 10−8 3.5 x 10−2 

  
The value of kf depends on the intrinsic activity of the catalyst sites and the surface 

concentration of catalyst sites [37]. In the present work, the surface coverage of all the catalyst 
films have the same order of magnitude (10−8 mol cm−2) therefore the surface concentration of 
the catalysts assumed to be constant. GC/rGO, GC/poly(8-ANSA), and GC/poly(8-ANSA)/rGO 
yielded a slope of 74, 73, and 68 mV dec-1, respectively, at low current density and the Tafel 
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slopes increase at a higher current density. A Tafel slope of 60 mV dec- 1 at 25 oC would suggest 
a fast electron transfer reaction followed by a rate-determining chemical step. Furthermore, an 
increase in Tafel slope at more negative potential in alkaline solution would also attribute to the 
chemical rate-determining step [37, 44]. A mechanistic scheme that is consistent with these 
results is as follows: 

GC/Q   +   ��→ GC/Q �                                     (7) 

GC/Q �    + O2   → GC/Q−��     
�                            (8) 

GC/Q−��     
�  + H2O + ��→ GC/Q  + H��     

� + OH �                     (9) 

H��     
� + H2O +2��→3 OH �                                                       (10) 

where, GC/Q is glassy carbon modified with rGO, poly(8-ANSA) or poly(8-ANSA)/rGO. 
Reaction 8 is the rate determining slow chemical step occurred after a fast electron transfer step 
(reaction 7). 
 The specific performance of GC/poly(8-ANSA)/rGO is compared with similar other values 
reported in the literature in Table 4. 
 
Table 4. Comparison of materials and specific performance of the catalyst in 0.1 M KOH. 

 
Catalyst Peak potential  

(vs. Ag/AgCl) (V) 
b (mv dec-1) � Jo (mA cm-2) Reference 

rGO-DAB -0.28 62 - - 5 
PEDOT:PSS/rGO -0.27 - - - 13 
Py-EGO -0.28  - - - 7 
Fe-N/ rGOHN500 - 88 0.67 2x10-5 31 
Fe-N/rGOsonic - 86 0.69 2x10-5 31 
(G-dye-FeP)n MOF -0.23  - - - 36 
CNx/graphene -0.19  - - - 45 
PPy/rGO -0.30  - - - 45 
N -doped graphene -0.32  - - - 46 
GC/poly(8ANSA)/rGO -0.29  68 0.87 9.58 x 10-5 This work 

-DAB-1,4-diaminobutane, -Py-EGO-pyridine functionalized graphene nanosheets, -HN500- thermal annealed 
under H2–N2 atmosphere at 500 °C, -Sonic-ultrasonication, -(G-dye-FeP)n MOF-dye functionalized rGO- 
iron−porphyrin metal-organic framework, -Carbon-nitrogen (x = 0.15), -PPy –polypyrrole.  

 

CONCLUSION 
 
We applied quantum mechanical (QM) calculations to evaluate the catalytic activity of poly(8-
amino-2-naphthalene sulfonic acid), poly(2-amino-1-naphthalene sulfonic acid, poly(5-amino-1-
naphthalene sulfonic acid), and poly(4-amino-1-naphthalene sulfonic acid). Our investigations 
have shown that the existence of electrocatalytic activity for oxygen reduction reaction on 
different amino substituted naphthalene sulfonic acid. QM calculations predict a much better 
catalytic activity for poly(8-amino-2-naphthalene sulfonic acid). The preparation and 
characterization of 8-ANSA, 2-ANSA, 5-ANSA, and 4-ANSA with rGO as composite 
electrocatalytic material for oxygen reduction reaction were investigated electrochemically. The 
polymerization of all monomer and conversion of GO to rGO was done using cyclic 
voltammetry. The composites of poly(8-ANSA) and rGO was found as a promising material for 
oxygen reduction reaction due to its better electrocatalytic performance. Analysis of the 
electrochemical reduction of oxygen at GC/poly(8-ANSA)/rGO exhibits enhanced catalytic 
activity with high exchange current density and high kinetic current towards oxygen reduction 
reaction in alkaline solution compared to GC/rGO and GC/poly(8-ANSA). GC/rGO and 
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GC/poly(8-ANSA) have good applicability in catalyzing the reduction of oxygen for in situ 
production of H2O2.  
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