A CONFORMATIONAL STUDY OF PROLINE DERIVATIVES

M.E. Kamwaya ${ }^{*}$ and F.N. Ngassapa
Chemistry Department, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania

(Received December 10, 2001; revised June 13, 2002)

Abstract

From the study of the structures and molecular conformations of a number of proline derivatives, some conclusions were drawn. The widening effect of angle $\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$ is caused by steric repulsion between a hydrogen atom at C^{α} of the preceding prolyl residue with any other at either C^{α} or C^{δ} of the pyrrolidine ring cis to it. This effect is influenced by the distance between the said hydrogen atoms: the nearer this distance is, the greater is the steric repulsion and the wider is the angle of steric repulsion. The ratio of the angle of steric repulsion to the distance between C^{α} and the following C^{α} (or C^{8}) cis to it is approximately 40 and 41 for peptides with trans and cis configurations, respectively. The torsion angle ranges for $\chi_{1}, \chi_{3}, \chi_{4}, \theta$ and φ in these derivatives are widened more than usual. The highest vibration, which more often takes place at either the C^{β} or C^{γ} of the pyrrolidine ring, does so not necessarily at the one that is puckered. A $\Delta \Psi$-relationship is established, for the determination of α-helixity or collageneity, also in small peptides and amino acids that contain proline. The $\Delta \Psi$-relationship is versatile and gives about $+180^{\circ}$ and -180° for the two categories, respectively. The distance between the carbonyl and hydroxyl (or otherwise) terminal end atoms is minimal ($2.2 \AA$) and constant, for all peptides. The ratios of the angles at the carbonyl carbons ($\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$) or ($\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$) to this distance is also constant: 56 and 57 for the cis and trans confirgurations, respectively; i.e. a proline $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$ - (or $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$)-test, hereinafter called the CT-test, has been established for the determination of cis and trans configurations. It is also established in these proline derivatives, that whereas puckering takes place at C^{β} for the C_{s} form, it does so at C^{\Downarrow} for the C_{2} form.

KEY WORDS: Molecular conformations, Proline derivatives, Peptides, Amino acids

INTRODUCTION

When the cyclic amino acid proline appears along a polypeptide chain, it causes unfavourable steric interactions for the next sequence of the neighbouring amino acids, notably, that of its C^{β} CH_{2} group [1]. For this reason, proline has been regarded as a helix breaker. To study the cause of these neighbouring-group effects along a polypeptide chain after and before the position of a proline residue, it is essential to study peptides containing proline with different side residues at the amino and carboxyl terminal of proline.

The model systems, which were used in the conformational studies, were t-butyloxycarbonylalanylproline (t-BocAlaPro) [2], t-butyloxycarbonylglycylproline (t-BocGlyPro) [3], t-butyloxycarbonylprolyproline (t-BocProPro) [4], N-propionylproline [5] and the benzyl ester of proline hydrochloride [6].

EXPERIMENTAL

The crystals were grown from acetyl acetate [2, 3], ethyl acetate with a few drops of petroleum ether added [4, 5], and from methanol [6]. Approximate cell dimensions and space-group information were obtained from Weissenberg photographs. The $\theta-2 \theta$ mode (scan range $3^{\circ}-70^{\circ}$) with the five-measurements technique was adopted [7, 8]. Independent reflexions were collected

[^0]from small crystals of diameter $<0.8 \mathrm{~mm}$. Reflexions with $\mathrm{I}<2 \sigma(\mathrm{I})$ were considered unobserved. Ni-filtered CuK_{α} radiation was used ($\lambda=1.5418 \mathrm{X}$). No absorption correction was applied.

RESULTS AND DISCUSSION

The crystals were found to be orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$ with $\mathrm{Z}=4$. Final $\mathrm{R}=0.039$ for t-BOC-Ala-Pro, $\mathrm{R}=0.040$ for t-BOC-Gly-Pro, $\mathrm{R}=0.036$ for t-BOC-Pro-Pro, $\mathrm{R}=0.051$ for N propionylproline and $\mathrm{R}=0.032$ for the benzyl ester of proline hydrochloride. Molecules in the BOC-amino acids and in N-propionylproline are joined by hydrogen bonds. In addition there is a molecule of water in t-BOC-Ala-Pro, rendering high stability for the crystal packing. The absolute configuration of the non-centrosymmetric structures and molecular conformations were determined by anomalous dispersion. The groups $\mathrm{N}^{1} \mathrm{C}^{\alpha} \mathrm{C}^{\gamma} \mathrm{C}^{\delta}$ (C_{S}-form) of the five-membered ring for the BOC-amino acids and N -propionylproline on the one hand, and $\mathrm{N}^{1} \mathrm{C}^{\beta} \mathrm{C}^{\delta}\left(\mathrm{C}_{2}\right.$-form) for the benzyl ester of proline hydrochloride on the other, are fairly planar. Whereas it is C^{β} which is readily displaced from the mean plane in the first case, it is C^{γ} which is puckered in the benzyl ester of proline hydrochloride. The average deviation from the plane is about $0.523 \AA$ which is in agreement with investigations in other proline derivatives [9-15]. The torsion angle χ_{1} about the pyrrolidine ring takes positive values for the derivatives, indicating that they all belong to conformation B . Whereas there seem to exist two shiftal conformations for the BOCamino acids of the form $\mathrm{C}_{\mathrm{S}}-\mathrm{C}^{\gamma}$-endo (C^{β}-exo), $\mathrm{C}_{\mathrm{S}}-\mathrm{C}^{\gamma}$-exo (C^{β}-exo) (preferably the former), and $\mathrm{C}_{\mathrm{s}}-\mathrm{C}^{\gamma}-\operatorname{exo}\left(\mathrm{C}^{\beta}\right.$-endo), $\mathrm{C}_{\mathrm{s}}-\mathrm{C}^{\gamma}-\operatorname{endo}\left(\mathrm{C}^{\beta}-\right.$ exo $)$ (preferably the former) for N -propionylproline, there is only one shiftal conformation found in the benzyl ester of proline hydrochloride, the $\mathrm{C}_{2}-\mathrm{C}^{\gamma}-$ endo (C^{β}-endo). The C^{α} atom of the preceding prolyl residue in t-BOC-Ala-Pro and in t-BOC-Gly-Pro is in the trans configuration, while it is in the cis and trans configurations in t-BOC-Pro-Pro and only in the cis in N-propionylproline. The negative values of Ψ in t-BOC-Gly-Pro, t-BOC-Pro-Pro and N -propionylproline imply that they belong to the α-helix type of proline compounds, while t-BOC-Ala-Pro shows a collagenlike Ψ value of 161°. The range for the torsion angles in benzyl ester of proline hydrochloride and t-BOC-Pro-Pro in particular is by far wider than usual (Figure 1).

The angles $\mathrm{O}_{1}-\mathrm{C}_{5}{ }^{\prime}-\mathrm{N}_{1}{ }^{\prime}$ and $\mathrm{C}_{6}{ }^{\alpha}-\mathrm{C}_{10}{ }^{\prime}-\mathrm{N}_{2}{ }^{\prime}$ in the t-BOC-Pro-Pro are 109° and 119°, respectively, showing the angle-widening effect (steric repulsion) in the latter angle, caused by the hydrogen atom at $\mathrm{C}_{6}{ }^{\alpha}$ of the first ring with another at $\mathrm{C}_{14}{ }^{\delta}$ cis to it of the second ring. This effect seems to be influenced not only by the sum of the hydrogen atoms at the $\mathrm{C}^{\alpha_{1}} \mathrm{~s}$ and $\mathrm{C}^{\delta_{1}} \mathrm{~s}$ cis to each other, but more so by the distance between them: the nearer this distance is, the greater is the steric repulsion and the larger is the angle of steric repulsion $\left(119^{\circ}\right)$. The ratio of the angle of steric repulsion to the distance between C^{α} and the following C^{α} or C^{δ} cis to it is approximately 40 for peptides with a trans configuration and more than 41 for those with a cis configuration. The situation in the benzyl ester of proline hydrochloride can be likened to conformation A of DL-proline-hydrochloride [11] (Table 1).

Figure 1. Schematic drawing of t-BOC-Pro-Pro showing the angle-widening effect $\left(119^{\circ}\right)$, caused by steric repulsion of a hydrogen atom at $\mathrm{C}_{6}{ }^{\alpha}$ of the first ring with another at $\mathrm{C}_{14}{ }^{\delta}$ of the second ring cis to it. The two rings are folded, in which $\mathrm{C}_{7}{ }^{\beta}$ and $\mathrm{C}_{12}{ }^{\beta}$ are displaced from their best plane by 0.4471 and $-0.5682 \AA$, respectively.

Table 1. Steric repulsion is influenced by the distance between the hydrogen atom at C^{α} and any other at the following C^{α} (or C^{δ}) cis to it: the nearer this distance is, the larger is the angle of repulsion. The ratio of the angle of steric repulsion to the distance between C^{α} and the following C^{α} (or C^{δ}) cis to it is about 40 for peptides with a trans configuration and above 41 for those with a cis configuration.

	$\mathrm{O}_{2}{ }^{\prime}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$ $\mathrm{C}^{\mathrm{o}}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$	cis $\mathrm{C}^{\alpha}-\mathrm{C}^{\mathrm{o}}$ cis $\mathrm{C}^{\mathrm{o}}-\mathrm{C}^{\delta}$	Ratio	Configuration
t-BOC-Pro-Pro [4]	124.9°	$2.98 \AA$	41	cis
	118.7°		40	trans
t-BOC-Ala-Pro [2]	118.04°	$2.97 \AA$	40	trans
N-propionylproline [5]	117.4°	$2.90 \AA$	41	cis
t-BOC-Gly-Pro [3]	116.9°	$2.897 \AA$	40	trans

It may be generalized that the torsion angle ranges for $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \theta$ and Ψ in these derivatives are widened more than usual, being 40 to $-35^{\circ},-30$ to $-41^{\circ}, 40$ to $-35^{\circ}, 7$ to $-40^{\circ},-30$ to 30°, and -45 to -95°, respectively. The ω-values for the two rings in t-BOC-Pro-Pro suggest cis and trans configurations, respectively, (Table 2a, Figure2). The ω-values given in the literature are $\pm 0^{\circ}$ and $\pm 180^{\circ}$ for the cis and trans configurations, respectively.
Table 2a. Conformational dihedral (torsion) angles.

	χ_{1}	χ_{2}	χ_{3}	χ_{4}	θ	φ	ω	ω-test
t-BOC-Ala-Pro [2]	29	-33	24	-6	-14	-72	170	trans
t-BOC-Gly-Pro [3]	29	-36	28	-10	-12	-71	178	trans
t-BOC-Pro-Pro [4]	$\begin{aligned} & \hline 27 \\ & 38 \end{aligned}$	$\begin{array}{r} -31 \\ \text { to }-36 \end{array}$	$\begin{array}{r} 23 \\ \text { to } 19 \end{array}$	$\begin{array}{rr} \hline & -5 \\ \text { to } 6 \end{array}$	$\begin{array}{r} -13 \\ \text { to }-28 \end{array}$	$\begin{aligned} & \hline-67 \\ & -95 \end{aligned}$	$\begin{array}{r} -7 \\ -176 \\ \hline \end{array}$	cis trans
N-propionylproline[5]	37	-39	26	-3	-21	-75	-8	cis
Benzyl ester of proline hydrochloride [6]	2	-25	39	-39	25	-57		
Oligo-peptides [11]	$\begin{array}{r} 20 \\ \text { to }-40 \end{array}$	$\begin{array}{r} -30 \\ \text { to }-40 \end{array}$	$\begin{array}{r} 20 \\ \text { to }-35 \end{array}$	$\begin{array}{cc} \hline & -5 \\ \text { to } & -20 \end{array}$	$\begin{array}{r} -15 \\ \text { to } \quad 15 \end{array}$	-45		
DL-proline hydrochloride [11]	-35	23	-3.8	-184	33.7			

Further, a second $\Psi_{1}-\Psi_{2}$ relationship is established for the determination of collageneity and α-helixity also in small peptides and amino acids that contain proline. The $\Psi_{1}-\Psi_{2}$ relationship, where Ψ_{1} is the torsion angle containing the double-bond part of the carboxyl group of the pyrrolidine ring ($\mathrm{N}_{1}{ }^{\prime}-\mathrm{C}_{6} \alpha-\mathrm{C}_{10}{ }^{\prime}-\mathrm{O}_{3}{ }^{\prime}$ in t-BOC-Pro-Pro) and Ψ_{2} being that of the hydroxyl group or any other (here $\mathrm{N}_{1}{ }^{\prime}-\mathrm{C}_{6}{ }^{\alpha}-\mathrm{C}_{10}{ }^{\prime}-\mathrm{N}_{2}$) can be useful as a quick check for collageneity or α-helixity. The $\Psi_{1}-\Psi_{2}$ relationship gives about $+180^{\circ}$ and -180° for the collagenlike and α-helix type of compounds, respectively. The other hitherto known test is that the torsion angle Ψ_{1} is normally negative for the α-helix and very large $\left(150^{\circ}\right.$ to $\left.180^{\circ}\right)$ for the collagenlike type of compounds (cf. t-BOC-Ala-Pro with $\Psi_{1}=161^{\circ}$). The $\Psi_{1}-\Psi_{2}$ relationship is in complete agreement for the BOC-amino acids and N-propionylproline, where $\Psi_{1}-\Psi_{2}$ equals about $+180^{\circ}$ for t-BOC-Ala-Pro and about -180° for t-BOC-Gly-Pro, t-BOC-Pro-Pro and N -propionylproline, respectively. It must be admitted here that the rings of t-BOC-Pro-Pro behave differently since they are folded $\left(C_{7}{ }^{\beta}\right.$ and $C_{12}{ }^{\beta}$ are displaced from their best plane by 0.4471 and $-0.5682 \AA$, respectively). In the benzyl ester of proline hydrochloride, too, this generalization (of $\Psi_{1}-\Psi_{2}$) is not so obvious. The $\Delta \Psi$ relationship is thus $\Psi_{1}-\Psi_{2}$ for the preceding prolyl residue and $\Psi_{2}-\Psi_{1}$ for the following prolyl residue, indicating the versatile behaviour of proline along a polypeptide chain (Table 2b, Figure 2, Table 2c).

Figure 2. The molecule of t-BOC-Ala-Pro [2].
Table 2b. Conformational dihedral (torsion) and bond angles. The $\Delta \Psi$ relation gives about $+180^{\circ}$ for the collagenlike type of peptides and -180° for the α-helix type.

Bull. Chem. Soc. Ethiop. 2002, 16(2)

	$\Psi\left({ }^{\circ}\right)$	Angle at $\mathrm{C}_{\mathrm{i}}{ }^{\prime}\left({ }^{\circ}\right.$)	angle at $\mathrm{C}_{1}{ }^{\alpha}\left({ }^{\circ}\right.$)
t-BOC-Ala-Pro [2]	161 -21 (OH group)	118	112
t-BOC-Gly-Pro [3]	$\begin{gathered} \hline-25 \\ 156 \\ \text { (OH group) } \\ \hline \end{gathered}$	117.4	111
t-BOC-Pro-Pro [4]	-39 141 (ON group) 12 -169 (OH group)	$\begin{aligned} & 109 \\ & 119 \end{aligned}$	$\begin{aligned} & 110 \\ & 111 \end{aligned}$
N-propionylproline [5]	$\begin{gathered} \hline-6 \\ 176 \\ \text { (OH group) } \\ \hline \end{gathered}$	116.9	111
Benzylester ofproline hydrochloride [6]	$\begin{gathered} \hline 5 \\ -176 \\ \text { (OC group) } \\ \hline \end{gathered}$		
Oligopeptides [15]		$\begin{array}{r} 114 \\ \text { to } 118 \\ \hline \end{array}$	110
DL-prolineHydrochloride [11]	$\begin{gathered} 11 \\ -168 \\ \hline \end{gathered}$		

Table 2c. Conformational torsion angles (${ }^{\circ}$) of particular interest in t-BOC-Ala-Pro [2]. Values in parantheses refer to standard deviations.

Backbone conformational angles

$\mathrm{O}_{1}-\mathrm{C}_{5}-\mathrm{N}_{1}-\mathrm{C}_{6}{ }^{\alpha}$	$179.9(3)$	$\omega \mathrm{Ala}$
$\mathrm{C}_{5}-\mathrm{N}_{1}-\mathrm{C}_{6}{ }^{\alpha}-\mathrm{C}_{8}{ }^{\prime}$	$-95.4(3)$	φ Ala
$\mathrm{N}_{1}-\mathrm{C}_{6}{ }^{\alpha}-\mathrm{C}_{8}{ }^{\prime}-\mathrm{N}_{2}{ }^{\prime}$	$153.6(3)$	ψ Ala
$\mathrm{C}_{6}{ }^{\alpha}-\mathrm{C}_{8}{ }^{\prime}-\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}$	$170.4(3)$	ω Pro
$\mathrm{C}_{8}{ }^{\prime}-\mathrm{N}_{2}^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{13}{ }^{\prime}$	$-71.8(3)$	φ Pro
$\mathrm{N}_{2}^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{13}{ }^{\prime}-\mathrm{O}_{4}^{\prime}$	$160.9(3)$	ψ_{1} Pro
$\mathrm{N}_{2}^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{13}{ }^{\prime}-\mathrm{O}_{5}^{\prime}$	$-21.8(3)$	ψ_{2} Pro

Pyrrolidine ring dihedral angles

$\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{11}{ }^{\beta}-\mathrm{C}_{10}{ }^{\gamma}$	$28.5(3)$	χ_{1}
$\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{11}{ }^{\beta}-\mathrm{C}_{10}{ }^{\gamma}-\mathrm{C}_{9}{ }^{\delta}$	$-33.1(4)$	χ_{2}
$\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{11}{ }^{\beta}-\mathrm{C}_{10}{ }^{\gamma}-\mathrm{N}_{2}{ }^{\prime}$	$24.2(4)$	χ_{3}
$\mathrm{C}_{10}{ }^{\gamma}-\mathrm{C}_{9}{ }^{\delta}-\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}$	$-5.8(4)$	χ_{4}
$\mathrm{C}_{9}{ }^{\delta}-\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{11}{ }^{\beta}$	$-14.3(3)$	$\chi_{5}=\theta$
$\mathrm{C}_{13}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{11}{ }^{\beta}-\mathrm{C}_{10}{ }^{\gamma}$	$-91.8(3)$	θ^{I}
$\mathrm{C}_{13}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{9}{ }^{\delta}$	$105.5(3)$	θ^{II}
$\mathrm{C}_{8}{ }^{\prime}-\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{9}{ }^{\delta}-\mathrm{C}_{10}{ }^{\gamma}$	$171.2(3)$	$\theta^{\text {III }}$
$\mathrm{C}_{8}{ }^{\prime}-\mathrm{N}_{2}{ }^{\prime}-\mathrm{C}_{12}{ }^{\alpha}-\mathrm{C}_{11}{ }^{\beta}$	$168.4(3)$	θ^{IV}

It is observed in t-BOC-Ala-Pro that atom $\mathrm{C}_{11}{ }^{\beta}$ is readily displaced from the best plane $\left(\mathrm{N}_{2} \mathrm{C}_{12}{ }^{\alpha} \mathrm{C}_{10}{ }^{\gamma} \mathrm{C}_{9}{ }^{\delta}\right)$ of the five-membered ring and deviates by $0.489 \AA$ (Table 2d, plane 3).

Table 2d. Least-squares planes and deviations (\AA) of atoms from best plane in t-BOC-Ala-Pro [2] calculated according to Schomaker, Waser, Marsh and Bergman [16]. Values in paranthes refer to standard deviations.

Plane 1: $\mathrm{C}_{4}, \mathrm{O}_{1}, \mathrm{C}_{5}, \mathrm{~N}_{1}$ and $\mathrm{C}_{6}{ }^{\alpha} \quad(0.594 \mathrm{x}+0.330 \mathrm{y}+0.734 \mathrm{z}=16.694)$

C_{1}	$-0.045(1)$	O_{1}	$0.014(6)$
C_{5}	$0.041(5)$	O_{2}	$0.003(6)$
N_{1}	$0.014(2)$	$\mathrm{C}_{6}{ }^{\alpha}$	$-0.028(8)$

Plane 2: $\mathrm{C}_{12}{ }^{\prime}, \mathrm{C}_{13}{ }^{\prime}, \mathrm{O}_{4}{ }^{\prime}$ and $\mathrm{O}_{5}{ }^{\prime} \quad(0.605 \mathrm{x}-0.793 \mathrm{y}-0.078 \mathrm{z}=4.775)$

$\mathrm{C}_{12}{ }^{\alpha}$	$0.003(8)$	$\mathrm{C}_{13}{ }^{\prime}$	$-0.013(6)$
$\mathrm{O}_{4}{ }^{\prime}$	$0.005(2)$	$\mathrm{O}_{5}{ }^{\prime}$	$0.004(6)$
$\mathrm{N}_{2}{ }^{\prime}$	$-0.466(1)$	$\mathrm{C}_{11}{ }^{\beta}$	$1.436(7)$

Plane 3: $\mathrm{C}_{9}{ }^{\delta}, \mathrm{C}_{10}{ }^{\gamma}, \mathrm{C}_{12}{ }^{\alpha}$ and $\mathrm{N}_{2}{ }^{\prime}(0.259 \mathrm{x}+0.341 \mathrm{y}-0.904 \mathrm{z}=6.099)$
$\mathrm{C}_{9}{ }^{\delta} \quad 0.029(7) \quad \mathrm{C}_{10}{ }^{\gamma} \quad-0.018(1)$
$\mathrm{C}_{12}{ }^{\alpha} \quad 0.019(4) \quad \mathrm{N}_{2}{ }^{\prime} \quad-0.032(1)$
$\mathrm{C}_{11}{ }^{\beta} \quad 0.488(9) \quad \mathrm{C}_{13}{ }^{\prime} \quad-1.346(7)$
Plane 4: $\mathrm{C}_{6}{ }^{\alpha}, \mathrm{C}_{8}{ }^{\prime}, \mathrm{O}_{3}{ }^{\prime}, \mathrm{N}_{2}{ }^{\prime}$ and $\mathrm{C}_{12}{ }^{\alpha}(0.294 \mathrm{x}+0.447 \mathrm{y}-0.845 \mathrm{z}=7.639)$

$\mathrm{C}_{6}{ }^{\alpha}$	$-0.051(4)$	$\mathrm{C}_{8}{ }^{\prime}$	$0.036(3)$
$\mathrm{O}_{3}{ }^{\prime}$	$0.060(4)$	$\mathrm{N}_{2}{ }^{\prime}$	$0.069(1)$
$\mathrm{C}_{12}{ }^{\alpha}$	$-0.060(4)$	$\mathrm{C}_{9}{ }^{\delta}$	$0.159(9)$
N_{1}	$0.464(4)$		

The highest vibration which more often takes place at either C^{β} or C^{α} of the pyrrolidine ring, occurs, as a rule, at one of these atoms that lies in the best plane of the ring (this can be recognized through its large equivalent thermal parameter) and not necessarily at one that is puckered (Table 3).

Table 3. Puckering seems to occur, as a rule, at atom C^{β} for the C_{S}-form, and at atom C^{γ} for the $C_{2}-$ form.

	N	C^{α}	C^{β}	C^{γ}	C^{δ}	Form
	$\mathrm{B}_{\mathrm{eq}}(\AA)^{2}$					4.6
t-BOC-Ala-Pro [2]	3.1	3.1	4.6 (puckering)	6.4 (highest vibration)	C_{S}	
t-BOC-Pro-Pro [4]	5.0	4.9	7.9 (puckering)	9.4 (highest vibration)	7.3	C_{S}
N-propionyl proline [5]	3.5	3.7	4.8 (puckering)	5.1 (highest vibrations)	4.2	C_{S}
Benzyl ester of proline hydrochloride [6]	3.2	3.1	4.8 (highest vibration)	4.6 (puckering)	3.9	C_{2}
t-BOC-Gly-Pro [3]	4.8	5.1	7.3 (puckering) (highest vibration)	7.1	5.9	C_{S}

It appears from Table 3 that there is a correlation between puckering and vibration of highest magnitude on the one hand, and the conformational C_{S} and C_{2} forms on the other. It can be concluded in these derivatives, that puckering takes place at C^{β} for the C_{S} form and at C^{γ} for the C_{2} form. This effect may be referred to as the conformational correlation for the C_{S} and C_{2}
forms. And besides, the non-contact distance between the carboxyl oxygens (or otherwise terminal end atoms) is minimal ($2.2 \AA$) and constant for all peptides, maintaining this as a universal stable property of the carboxyl group, while the angle between them is reduced for the cis configuration. The ratio of the angle at the carbonyl carbon to this distance is also a constant (it is 56 and 57 for the cis and trans configurations, respectively). This is another method for the determination of cis and trans configurations without resorting to the rather tedious torsion angle calculations. It may be referred to as the proline CT-test (Table 4).

Table 4. Conformational data at the carbonyl carbon of proline and the proline CT-test and are in complete agreement with the conformational data in Table 1.

	$\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$ $\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$\mathrm{O}^{\prime} \ldots . . \mathrm{N}^{\prime}$ $\mathrm{O}^{\prime} \ldots . . \mathrm{O}^{\prime}$	Ratio	CT-test
t-BOC-Ala-Pro [2]	124.3°	$2.2 \AA$	57	trans
t-BOC-Gly-Pro [3]	124.7°	$2.2 \AA$	57	trans
t-BOC-Pro-Pro [4]	122.6°	$2.2 \AA$	56	cis
	124.7°	$2.2 \AA$	57	trans
N-propionylproline [5]	124.0°	$2.2 \AA$	56	cis
Benzylester of proline hydrochloride [6]	124.4°	$2.2 \AA$	57	trans

CONCLUSION

The observations made about the angle of steric repulsion (Table 1), the ω-test (Table 2a) and the proline CT-test (Table 4) can be used to determine the cis and trans configurations of small peptides that contain the amino acid proline, on the one hand, while the $\Delta \psi$ relation decides the collagenlike or α-helix type of polypeptides, on the other (Table 2b). Further, it is also established in these proline derivatives, that whereas puckering takes place at C^{β} for the C_{S} form, it does so at C^{γ} for the C_{2} form (Table 3).

REFERENCES

1. Schimmel, P.R.; Flory, P.J. J. Mol. Biol. 1968, 34, 105.
2. Kamwaya, M.E.; Oster, O.; Bradaczek, H.; Ponnuswamy, M.N.; Parthasarathy, S.; Nagaraj, R.; Balaram, P. Acta Cryst. 1982, B38, 172.
3. Kamwaya, M.E. Bull. Phys. Malaysia 1981, $2,228$.
4. Kamwaya, M.E.; Oster, O.; Bradaczek, H. Acta Cryst. 1981, B37, 1564.
5. Kamwaya, M.E.; Oster, O.; Bradaczek, H. Acta Cryst. 1981, B37, 364.
6. Kamwaya, M.E.; Oster, O.; Bradaczek, H. Acta Cryst. 1981, B37, 1391.
7. Dreissig, W. Dissertation, Freie University, Berlin, 1969.
8. Allen, F.H.; Rogers, D.; Troughton, P.G.H. Acta Cryst. 1971, B27, 1325.
9. Kilpatrick, J.K.; Pitzer,K.S.; Spitzer, R. J. Am. Chem. Soc. 1947, 69, 2483.
10. Pitzer,K.S.; Donath, W.E. J. Am. Chem. Soc. 1947, 81, 3212.
11. Mitsui, Y.; Tsuboi, M.; Iitaka, Y. Acta Cryst. 1969, B25, 2182.
12. Sabesan, M.N.; Venkatesan, K. Z. Krist. 1971, 134, 230.
13. Balasubramaniam, R.; Lakshminarayanan, A.V.; Sabesan, M.N.; Tegoni, G.; Venkatesan, K.; Ramachandran, G.N. Int. Prot. Res. 1971, 3, 25.
14. Deslauriers, R.; Smith, I.C.P. J. Biol. Chem. 1974, 249, 7006.
15. Ashida, T.; Kakudo, M. Bull. Chem. Soc. Jpn. 1974, 47, 119.
16. Schomaker, V.; Waser, J.; Marsh, R.E.; Bergman, G. Acta Cryst. 1959, 12, 600.

[^0]: *Corresponding author. E-mail: kamwaya@chem.udsm.ac.tz

