SYNTHESIS AND BIOLOGICAL EVALUATION OF A NOVEL SERIES OF 2-(2'-ISOPROPYL-5'-METHYLPHENOXY) ACETYL AMINO ACIDS AND DIPEPTIDES

Rajiv Dahiya*, Devender Pathak and Sunita Bhatt

Rajiv Academy for Pharmacy, Chattikara, Mathura-281 001, India

(Received August 17, 2005; revised January 17, 2006)

ABSTRACT. A series of new 2-(2'-isopropyl-5'-methylphenoxy)acetyl amino acids and peptides have been synthesized by coupling the 2-(2'-isopropyl-5'-methylphenoxy)acetic acid with amino acid methyl esters/dipeptides using DCC as coupling agent and TEA as base. The structures were elucidated by elemental analyses as well as FTIR, ¹H NMR, ¹³C NMR and MS spectral data. The newly synthesized compounds were also evaluated for antibacterial and antifungal activities. Compounds (2, 6 and 15) were found to exhibit potent antibacterial activity against *Pseudomonas aeruginosa* and *Staphylococcus aureus* and compounds (13, 14 and 16) were found to be potent antifungal agents against pathogenic *Candida albicans*.

KEY WORDS: Phenoxy acetic acid, Amino acids, Dipeptides, Antibacterial activity, Antifungal activity.

INTRODUCTION

Phenoxy acetic acid is among the most vital moieties which are associated with potent antifungal activities. Much work has been done on synthesis of potent phenoxy acetic acid derivatives with diverse bioactivities and also reports have been received regarding attachment of phenoxy acetic acid derivatives with peptides [1-6]. The review of literature has suggested that incorporation of amino acids and peptides into the aromatic and heterocyclic congeners have resulted in compounds with potent bioactivities [7-10]. Thus keeping in view the biological potency of phenoxy acetic acids as well as taking advantage of biodegradability and biocompatibility of amino acids and peptides, a novel series of 2,5-disubstitutedphenoxy acetic acid derivatives of amino acids and peptides have been synthesized with an anticipation to get potent agents of more therapeutic efficacy with negligible side effects.

Chemistry

2-(2'-Isopropyl-5'-methylphenoxy)acetic acid (1) was prepared by phenoxylation of thymol by using chloroacetic acid in alkaline conditions. Dipeptides Boc-Gly-Gly-OMe, Boc-Pro-Pro-OMe and Boc-Ala-Leu-OMe were prepared from the corresponding amino acid methyl esters and Boc-amino acids using DCC as the coupling agent. 2-(2'-Isopropyl-5'-methylphenoxy)acetyl amino acid esters (2-6) and dipeptides esters (7-9) were prepared by coupling (1) with amino acid methyl ester hydrochlorides/dipeptides which were hydrolysed to get 2-(2'-isopropyl-5'-methylphenoxy)acetyl amino acids (10-14) and dipeptides (15-17) [Scheme A].

Structures of all the newly synthesized compounds were confirmed by FTIR and ¹H NMR. ¹³C NMR and Mass spectra were recorded for selected representative samples. Elemental analysis of the novel compounds was performed for carbon, hydrogen and nitrogen content.

^{*}Corresponding author. E-mail: rajivdahiya77@rediffmail.com

Scheme A

Pharmacology

All the synthesized compounds were screened for *in vitro* antimicrobial activity against gram positive bacteria *Bacillus subtilis* and *Staphylococcus aureus*, gram negative bacteria *Pseudomonas aeruginosa* and *Escherichia coli*, cutaneous fungi *Microsporum audouinii* and *Trichophyton mentagrophytes*, diamorphic fungi *Candida albicans* using modified Kirby-Bauer disk diffusion method [11]. The results are shown in Table 1.

237

Compound	Zone of inhibition (in mm)						
No.	B. sub.	E. coli	S. aur.	P. aeru.	M. audo.	T. menta.	C. alb.
(1)	8	7	9	10	10	9	10
(2)	7	10	20	26	11	10	11
(3)	-	9	10	14	9	-	12
(4)	-	9	-	13	-	9	10
(5)	9	-	8	15	10	8	12
(6)	10	11	19	28	11	9	11
(7)	-	10	-	12	9	8	10
(8)	7	8	7	13	10	7	11
(9)	-	8	-	10	9	7	11
(10)	9	10	-	13	11	12	13
(11)	-	7	8	-	10	-	11
(12)	8	-	7	-	-	8	12
(13)	8	10	9	14	13	12	25
(14)	10	9	7	17	11	11	20
(15)	-	12	21	25	12	12	13
(16)	-	10	7	15	12	11	23
(17)	9	11	_	10	13	11	_
Ciprofloxacin	18	22	19	20	-	-	-
Griseofulvin	_	_	_	_	15	14	16

Table 1. Antimicrobial activity data (at 50 µg/mL level).

EXPERIMENTAL

General

All the coupling reactions requiring anhydrous conditions were conducted in oven-dried apparatus. Melting points were determined by open capillary method and are uncorrected. Amino acids, di-tert-butylpyrocarbonate (Boc₂O), dicyclohexylcarbodiimide (DCC), trifluoroacetic acid (TFA) and triethylamine (TEA) were obtained from Spectrochem Limited, Mumbai, India. IR spectra were recorded on Shimadzu 8700 Fourier Transform infrared spectrophotometer using a thin film supported on KBr pellets for all synthesized compounds. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AC NMR spectrometer (300 MHz) using CDCl₃ as solvent and TMS as internal standard. Mass spectra were recorded on Jeol JMS DX 303 Mass spectrometer operating at 70 eV. Elemental analyses of all compounds were performed on Elementar vario EL III. Optical rotation was measured on Polarimeter (Optics Technology) in a 2 dm tube at 25 °C using sodium lamp. Purity of all the compounds was checked by TLC on precoated silica gel G plates.

Preparation of dipeptides

Amino acid methyl ester hydrochloride/dipeptide methyl ester (10 mmol) was dissolved in $CHCl_3$ (20 mL). To this, TEA (21 mmol) was added at 0 °C and the reaction mixture was stirred for 15 min. Boc-amino acid (10 mmol) in $CHCl_3$ (20 mL) and DCC (10 mmol) were added with stirring. After 24 h, the reaction mixture was filtered and the residue was washed with $CHCl_3$ (30 mL) and added to the filtrate. The filtrate was washed with 5% NaHCO₃ and saturated NaCl solutions. The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated in vacuum. The crude product was recrystallized from a mixture of chloroform and petroleum ether followed by cooling at 0 °C. Resulting Boc-dipeptide methyl ester (10 mmol) was

dissolved in CHCl₃ (15 mL) and treated with trifluoroacetic acid (20 mmol). The mixture was stirred at room temperature for 1 h and washed with saturated NaHCO₃ solution. The resulting organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Finally, crude product was purified by recrystallization with CHCl₃ and petroleum ether to get the deprotected dipetide methyl ester.

For protecting the amino group of L-amino acids, Boc₂O was used. The carboxyl group of L-amino acids was protected by esterification with methanol using SOCl₂. Peptides were prepared by Bodanszky method with certain modifications [12]. Furthermore, trifluoroacetic acid was used for the removal of Boc group and ester group was removed by alkaline hydrolysis with lithium hydroxide.

^tButyloxycarbonylglycylglycine methyl ester

Semisolid mass, yield 73%. ¹H NMR (CDCl₃, 300 MHz) δ : 7.5 (1H, br s, -NH), 6.22 (1H, br s, -NH), 4.25-4.24 (2H, d, J = 4.8 Hz, CH₂ of Gly²), 3.70-3.68 (2H, d, J = 4.7 Hz, CH₂ of Gly¹), 3.5 (3H, s, OCH₃), 1.55 (9H, s, ¹Butyl group). Anal. calcd. for C₁₀H₁₈N₂O₅: C, 48.77; H, 7.37; N, 11.38. Found: C, 48.64; H, 7.85; N, 11.24.

^tButyloxycarbonylprolylproline methyl ester

Semisolid mass, yield 69%. ¹H NMR (CDCl₃, 300 MHz) δ : 4.18-4.08 (2H, m, α -protons of Pro² and Pro¹), 3.63 (3H, s, OCH₃), 3.60-3.52 (2H, t, J = 5.9 Hz, δ -protons of Pro²), 3.25-3.20 (2H, t, J = 5.8 Hz, δ -protons of Pro¹), 2.60-2.52 (2H, m, β -protons of Pro¹), 2.10-1.95 (4H, m, β - and γ -protons of Pro²), 1.93-1.85 (2H, m, γ -protons of Pro¹), 1.5 (9H, s, ^tbutyl group). Anal. calcd. for C₁₆H₂₆N₂O₅: C, 58.86; H, 8.03; N, 8.58. Found: C, 58.87; H, 8.34; N, 8.57.

^tButyloxycarbonylalanylleucine methyl ester

Semisolid mass, yield 70%. ¹H NMR (CDCl₃, 300 MHz) δ : 7.0 (1H, br s, -NH), 6.75 (1H, br s, -NH), 4.62-4.52 (1H, q, α -H of Ala), 4.14-4.05 (1H, m, α -H of Leu), 3.6 (3H, s, OCH₃), 1.55 (9H, s, ^tbutyl group), 1.54-1.44 (1H, m, γ -H of Leu), 1.34-1.32 (3H, d, J = 7.4 Hz, β -protons of Ala), 1.28-1.22 (2H, t, β -protons of Leu), 0.95-0.93 (6H, d, J = 7.1 Hz, γ -CH₃ of Leu). Anal. calcd. for C₁₅H₂₈N₂O₅: C, 56.94; H, 8.92; N, 8.85. Found: C, 56.64; H, 9.03; N, 8.86.

Preparation of 2-(2'-isopropyl-5'-methylphenoxy)acetic acid (1)

Thymol (0.024 mol) was dissolved in 20 mL of 33% NaOH solution (0.165 mol). To the above mixture, 15 mL of 50% chloroacetic acid solution (0.079 mol) was added. The reaction mixture was refluxed on gently boiling water bath for 1 h. After cooling, water (50-60 mL) was added and whole mixture was acidified to congo red with dil. HCl and finally extracted with ether (150 mL). Etheral extract was washed with water (50 mL) and shaken twice with 5% Na₂CO₃ solution (75 mL). Crude acid was precipitated out by acidifying the Na₂CO₃ extract with dil. HCl. The separated solid was collected by filtration, washed with cold water and finally crystallized from aq. ethanol to get the title compound.

Light brown crystals, m.p. 135-136 °C, yield 68%. IR (KBr) cm⁻¹: 3288-2495 (m/br, -OH str, -COOH), 3077, 3043 (w, -CH str, arom. ring), 2962, 2928 (m, -CH str, asym, CH₃ and CH₂), 2870 (m, -CH str, sym, CH₃), 1715 (m, -C=O str, -COOH), 1594, 1487 (m, skeletal bands, arom. ring), 1464 (m, -CH bend (scissoring), CH₂), 1407 (m, C-O-H bend, -COOH), 1385, 1372 (s, -CH bend, isopropyl group), 1262 (s, C–O–C str, asym), 1125, 1112 (m, -CH bend, in plane, arom. ring), 1062 (s, C–O–C str, sym), 925 (w, CH₃ rocking, isopropyl group), 887, 805 (s, -CH

bend, out-of-plane, arom. ring). ¹H NMR (CDCl₃, 300 MHz) δ: 7.06 (1H, s, -COOH), 7.00-6.97 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 6.90 (1H, s, *o*-H of phenoxy ring), 6.54-6.51 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.39 (2H, s, -OCH₂CO-), 3.12-2.98 (1H, m, *o*-(α-H) of phenoxy ring), 1.99 (3H, s, *m*-CH₃ of phenoxy ring), 1.12-1.10 (6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring) ppm. Anal. calcd. for $C_{12}H_{16}O_3$: C, 69.21; H, 7.74. Found: C, 69.15; H, 7.76.

Preparation of 2-(2'-isopropyl-5'-methylphenoxy)acetyl amino acid and peptide methyl esters

2-(2'-Isopropyl-5'-methylphenoxy)acetyl amino acid and peptide methyl esters were prepared by coupling 2-(2'-isopropyl-5'-methylphenoxy)acetic acid (1) with amino acid methyl ester hydrochlorides/ peptide methyl esters in the presence DCC, TEA and DMF by following the same procedure as that adopted for dipeptide synthesis to get the compounds (2-9) which were hydrolysed with LiOH to get the corresponding free acids (10-17). For deprotection of the carboxyl group, protected peptide derivative (10 mmol) was dissolved in THF:H₂O (1:1) and LiOH (15 mmol) was added to the solution at 0 °C. The resulting mixture was stirred at room temperature for 1 h and then acidified to pH 3.5 with 1 N H₂SO₄. The aqueous layer was extracted with Et₂O (2 x 15 mL) and the combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure to get the deprotected compound.

2-(2'-Isopropyl-5'-methylphenoxy)acetylphenylalanine methyl ester (2)

Light brown solid, m.p. 167-168 °C, $[\alpha]_D +7.8^\circ$, yield 72%. IR (KBr) cm⁻¹: 3125 (m, -NH str, amide), 3073, 3052 (w, -CH str, arom. rings), 2965, 2927 (m, -CH str, asym, CH₃ and CH₂), 2871, 2854 (m, -CH str, sym, CH₃ and CH₂), 2825 (m, -CH str, OCH₃), 1745 (s, -C=O str, ester), 1642 (s, -C=O str, 2° amide), 1588, 1480 (m, skeletal bands, arom. rings), 1535 (m, -NH bend, 2° amide), 1463 (m, -CH bend (scissoring), CH₂), 1382, 1371 (s, -CH bend, isopropyl group), 1270 (s, C–O str, ester), 1244 (s, C–O–C str, asym), 1035 (s, C–O–C str, sym), 905, 811 (s, -CH bend, out-of-plane, tri substi. ring), 725, 689 (s, -CH bend, out-of-plane, mono substi. ring). ¹H NMR (CDCl₃, 300 MHz) &: 7.3 (1H, br. s, -NH), 7.23-7.20 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 7.13-7.07 (1H, t, J = 7.2 Hz, *p*-H of Phe), 7.02-6.98 (2H, tt, *m*-protons of Phe), 6.86-6.84 (2H, dd, *o*-protons of Phe), 6.68 (1H, s, *o*-H of phenoxy ring), 6.46-6.44 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.74-4.67 (1H, m, α -H of Phe), 4.45 (2H, s, -OCH₂CO-), 3.54 (3H, s, OCH₃), 3.15-2.80 (3H, m, *o*-(α -H) of phenoxy ring and β -protons of Phe), 1.96 (3H, s, *m*-CH₃ of phenoxy ring), 1.12-1.10 (6H, d, J = 6.9 Hz, *o*-(α -CH₃) of phenoxy ring) ppm. Anal. calcd. for C₂₂H₂₇NO₄: C, 71.52; H, 7.37; N, 3.79. Found: C, 71.25; H, 7.45; N, 3.85.

2-(2'-Isopropyl-5'-methylphenoxy)acetylvaline methyl ester (3)

Brown crystals, m.p. 124-125 °C, $[α]_D$ -4.5°, yield 69%. IR (KBr) cm⁻¹: 3138 (m, -NH str, amide), 3068 (w, -CH str, arom. ring), 2997, 2993 (m, -CH str, -CH), 2962, 2925 (m, -CH str, asym, CH₃ and CH₂), 2872 (m, -CH str, sym, CH₃), 2812 (m, -CH str, OCH₃), 1742 (s, -C=O str, ester), 1639 (s, -C=O str, 2° amide), 1594, 1489 (m, skeletal bands, arom. ring), 1528 (m, -NH bend, 2° amide), 1380, 1362 (s, -CH bend, isopropyl group), 1282 (s, C–O str, ester), 1258 (s, C–O–C str, asym), 921 (w, -CH bend (rocking), isopropyl group), 895, 805 (s, -CH bend, out-of-plane, tri substi. ring), 486 (w, C–C bend, aliphatic). ¹H NMR (CDCl₃, 300 MHz) δ: 7.24-7.21 (1H, d, J = 6.7 Hz, *m*-H of phenoxy ring), 6.99 (1H, br s, -NH), 6.70 (1H, s, *o*-H of phenoxy ring), 6.48-6.46 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.60 (2H, s, -OCH₂CO-), 4.12-4.07 (1H, t, J = 5.9 Hz, α-H of Val), 3.48 (3H, s, OCH₃), 3.10-2.98 (1H, m, *o*-(α-H) of phenoxy ring), 2.23-2.09 (1H, m, β-H of Val), 2.97 (3H, s, *m*-CH₃ of phenoxy ring), 1.10-1.08

(6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring), 0.80-0.78 (6H, d, J = 6.2 Hz, β-CH₃ of Val). Anal. calcd. for $C_{18}H_{27}NO_4$: C, 67.26; H, 8.47; N, 4.36. Found: C, 66.94; H, 8.85; N, 4.34.

2-(2'-Isopropyl-5'-methylphenoxy)acetylisoleucine methyl ester (4)

Light brown crystals, m.p. 140-142 °C, $[\alpha]_D$ -12.5°, yield 73%. IR (KBr) cm⁻¹: 3145 (m, -NH str, amide), 3072, 3055 (w, -CH str, arom. ring), 2995 (m, -CH str, -CH), 2959, 2932 (m, -CH str, asym, CH₃ and CH₂), 2869, 2852 (m, -CH str, sym, CH₃ and CH₂), 2815 (m, -CH str, OCH₃), 1755 (s, -C=O str, ester), 1644 (s, -C=O str, 2° amide), 1599, 1480 (m, skeletal bands, arom. ring), 1533 (m, -NH bend, 2° amide), 1466 (m, -CH bend (scissoring), CH₂), 1449 (m, -CH bend, CH₃), 1382, 1360 (s, -CH bend, isopropyl group), 1282 (s, C–O str, ester), 1262 (s, C–O C str, asym), 898, 810 (s, -CH bend, out-of-plane, tri substi. ring), 496, 489 (w, C–C bend, aliphatic). ¹H NMR (CDCl₃, 300 MHz) & 7.23-7.20 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 6.69 (1H, s, *o*-H of phenoxy ring), 6.45-6.43 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 6.2 (1H, br s, -NH), 4.5 (2H, s, -OCH₂CO-), 4.24-4.20 (1H, t, J = 8.3 Hz, α-H of Ile), 3.50 (3H, s, OCH₃), 3.13~2.99 (1H, m, *o*-(α-H) of phenoxy ring), 2.07-1.94 (1H, m, β-H of Ile), 1.98 (3H, s, *m*-CH₃ of phenoxy ring), 0.97-0.90 (6H, m, β-CH₃ and γ-CH₃ of Ile) ppm. Anal. calcd. for C₁₉H₂₉NO₄: C, 68.03; H, 8.71; N, 4.18. Found: C, 67.65; H, 8.85; N, 4.14.

$2-(2'-Isopropyl-5'-methylphenoxy)acetyl(N_4-nitro)arginine methyl ester (5)$

Brown solid, m.p. 125-127 °C, $[α]_D$ +14.6°, yield 68%. ¹H NMR (CDCl₃, 300 MHz) δ: 7.22-7.19 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 7.15 (1H, br s, -NH), 6.66 (4H, s, *o*-H of phenoxy ring and imino protons of guanidino group), 6.46-6.44 (1H, d, J = 6.7 Hz, *p*-H of phenoxy ring), 4.45 (2H, s, -OCH₂CO-), 4.35-4.24 (1H, m, α-H of N₄-nitro(Arg)), 3.87-3.83 (2H, t, J = 8.0 Hz, δ-protons of N₄-nitro(Arg)), 3.65 (3H, s, OCH₃), 3.10-2.96 (1H, m, *o*-(α-H) of phenoxy ring), 1.99 (3H, s, *m*-CH₃ of phenoxy ring), 1.96-1.60 (4H, m, β- and γ-protons of N₄-nitro(Arg)), 1.09-1.07 (6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring) ppm. Mass: m/z (relative intensity) 15 (1.1), 29 (8.7), 31 (7.8), 39 (8.9), 41 (11.7), 43 (10.4), 51 (24.2), 59 (14.8), 77 (35.4), 88 (1.9), 103 (11.2), 149 (2.8), 163 (100), 191 (4.9), 320 (5.3), 335 (5.7), 364 (15.3), 392 (23.5), 423 (M⁺, 8.4), 424 (M⁺+1, 0.8). Anal. calcd. for C₁₉H₂₉N₅O₆: C, 53.89; H, 6.90; N, 16.54. Found: C, 53.74; H, 7.14; N, 16.55.

2-(2'-Isopropyl-5'-methylphenoxy)acetyltryptophan methyl ester (6)

Light brown solid, m.p. 130 °C, $[\alpha]_D$ -61.5°, yield 72%. ¹H NMR (CDCl3, 300 MHz) δ : 8.95 (1H, s, α -NH of Try), 7.52 (1H, s, β -H of Try), 7.22-7.19 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 7.17-7.01 (4H, m, δ -, ε -, ζ -, η -protons of Try), 6.67 (1H, s, *o*-H of phenoxy ring), 6.50-6.48 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 6.31 (1H, br s, -NH), 4.98-4.91 (1H, m, γ -(β '-H) of Try), 4.44 (2H, s, -OCH₂CO-), 3.58 (3H, s, OCH₃), 3.27-2.97 (3H, m, *o*-(α -H) of phenoxy ring and γ -(α '-CH₂) of Try), 1.99 (3H, s, *m*-CH₃ of phenoxy ring), 1.10-1.08 (6H, d, J = 6.9 Hz, *o*-(α -CH₃) of phenoxy ring) ppm. ¹³C NMR (CDCl₃, 300 MHz) δ : 176.3 (s, C=O, amide), 170.5 (s, C=O, ester), 156.2 (s, C1, phenoxy ring), 138.1 (s, C5, phenoxy ring), 136.3 (s, C2, phenoxy ring), 136.0 (s, C8, Try), 127.5 (s, C3, Try), 122.8 (s, C1, Try), 122.2 (s, C4, phenoxy ring), 121.9 (s, C6, Try), 119.5 (s, C5, Try), 118.4 (s, C7, Try), 68.5 (s, -OCH₂-), 53.0 (s, α -C, Try), 50.3 (s, -OCH₃, ester), 27.4 (s, 2-(α -C), phenoxy ring), 23.1 (s, 2-(β -2C), phenoxy ring), 21.4 (s,

5-(CH₃), phenoxy ring), 18.8 (s, β -C, Try) ppm. Anal. calcd. for C₂₄H₂₈N₂O₄: C, 70.57; H, 6.91; N, 6.86. Found: C, 70.34; H, 7.16; N, 6.84.

2-(2'-Isopropyl-5'-methylphenoxy)acetylglycylglycine methyl ester (7)

Light brown solid, m.p. 170-172 °C, $[\alpha]_D$ -116°, yield 81%. ¹H NMR (CDCl₃, 300 MHz) & 8.84 (1H, br s, -NH), 8.63 (1H, br s, -NH), 7.21-7.18 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 6.70 (1H, s, *o*-H of phenoxy ring), 6.46-6.44 (1H, d, J = 6.7 Hz, *p*-H of phenoxy ring), 4.59 (2H, s, -OCH₂CO-), 4.04-4.02 (2H, d, J = 4.8 Hz, CH₂ of Gly²), 3.92-3.90 (2H, d, J = 4.7 Hz, CH₂ of Gly¹), 3.52 (3H, s, OCH₃), 3.10-2.97 (1H, m, *o*-(α -H) of phenoxy ring), 1.98 (3H, s, *m*-CH₃ of phenoxy ring), 1.12-1.10 (6H, d, J = 6.9 Hz, *o*-(α -CH₃) of phenoxy ring). ¹³C NMR (CDCl₃, 300 MHz) & 172.8 (s, C=O, amide), 169.6 (s, C=O, ester), 165.6 (s, C=O, amide), 156.9 (s, C1, phenoxy ring), 140.5 (s, C5, phenoxy ring), 134.3 (s, C2, phenoxy ring), 122.2 (s, C4, phenoxy ring), 118.6 (s, C3, phenoxy ring), 115.6 (s, C6, phenoxy ring), 68.3 (s, -OCH₂-), 52.4 (s, -OCH₃, ester), 40.3 (s, CH₂, Gly²), 39.6 (s, CH₂, Gly¹), 27.3 (s, 2-(α -C), phenoxy ring), 22.9 (s, 2-(β -2C), phenoxy ring), 21.4 (s, 5-(CH₃), phenoxy ring) ppm. Anal. calcd. for C₁₇H₂₄N₂O₅: C, 60.70; H, 7.19; N, 8.33. Found: C, 60.45; H, 7.35; N, 8.32.

2-(2'-Isopropyl-5'-methylphenoxy)acetylprolylproline methyl ester (8)

Brown solid, m.p. 205 °C, $[α]_D + 123^\circ$, yield 89%. ¹H NMR (CDCl₃, 300 MHz) δ: 7.22-7.19 (1H, d, J = 6.9 Hz, *m*-H of phenoxy ring), 6.66 (1H, s, *o*-H of phenoxy ring), 6.48-6.46 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.57 (2H, s, -OCH₂CO-), 4.32-4.20 (2H, m, α-protons of Pro¹ and Pro²), 3.75-3.70 (2H, t, J = 6.1 Hz, δ-protons of Pro²), 3.59 (3H, s, OCH₃), 3.50-3.45 (2H, t, J = 6.0 Hz, δ-protons of Pro¹), 3.15-3.01 (1H, m, *o*-(α-H) of phenoxy ring), 2.70-2.64 (2H, q, β-protons of Pro¹), 2.10-1.86 (6H, m, β-protons of Pro² and γ-protons of Pro¹ and Pro²), 1.99 (3H, s, *m*-CH₃ of phenoxy ring), 1.10-1.08 (6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring). Mass: m/z (relative intensity) 15 (1.5), 29 (9.2), 31(8.8), 39 (8.9), 41 (12.3), 43 (11.2), 51 (29.3), 59 (13.7), 77 (37.3), 149 (3.4), 163 (100), 191 (4.6), 261 (15.2), 288 (7.7), 358 (17.8), 387 (6.1), 416 (M⁺, 7.2), 417 (M⁺+1, 0.4). Anal. calcd. for C₂₃H₃₂N₂O₅: C, 66.32; H, 7.74; N, 6.73. Found: C, 68.09; H, 8.01; N, 6.85.

2-(2'-Isopropyl-5'-methylphenoxy)acetylalanylleucine methyl ester (9)

Light brown crystals, m.p. 166-167 °C, $[\alpha]_D$ -92.4°, yield 68%. IR (KBr) cm⁻¹: 3145 (m, -NH str, amide), 3066, 3045 (w, -CH str, arom. ring), 2994, 2990 (m, -CH str, -CH), 2959, 2929 (m, -CH str, asym, CH₃ and CH₂), 2872, 2853 (m, -CH str, sym, CH₃ and CH₂), 2815 (m, -CH str, OCH₃), 1748 (s, -C=O str, ester), 1642, 1635 (s, -C=O str, 2° amide), 1605, 1493 (m, skeletal bands, arom. ring), 1538 (m, -NH bend, 2° amide), 1388, 1367 (s, -CH bend, isopropyl group), 1285 (s, C–O str, ester), 1269 (s, C–O–C str, asym), 1022 (s, C–O–C str, sym), 922 (w, CH₃ rocking, isopropyl group), 898, 803 (s, -CH bend, out-of-plane, arom. ring), 495, 486 (w, C–C bend, aliphatic). ¹H NMR (CDCl₃, 300 MHz) δ : 7.92 (1H, br s, -NH), 7.25-7.22 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 6.67 (1H, s, *o*-H of phenoxy ring), 6.46-6.44 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 5.82 (1H, br s, -NH), 4.60 (2H, s, -OCH₂CO-), 4.43-4.37 (1H, m, α-H of Ala), 3.61 (3H, s, OCH₃), 3.57-3.46 (1H, m, α-H of Leu), 3.09-2.95 (1H, m, *o*-(α-H) of phenoxy ring), 1.98 (3H, s, *m*-CH₃ of phenoxy ring), 1.50-1.47 (3H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring), 0.94-0.92 (6H, d, J = 7.1 Hz, γ -CH₃ of Leu). Anal. calcd. for C₂₂H₃₄N₂O₅: C, 65.00; H, 8.43; N, 6.89. Found: C, 64.93; H, 8.56; N, 6.84.

2-(2'-Isopropyl-5'-methylphenoxy)acetylphenylalanine (10)

Light brown crystals, m.p. 154-155 °C, $[\alpha]_D +9.0^\circ$, yield 68%. IR (KBr) cm⁻¹: 3290-2498 (m/br, -OH str, -COOH), 3128 (m, -NH str, amide), 3072, 3054 (w, -CH str, arom. rings), 2967, 2925 (m, -CH str, asym, CH₃ and CH₂), 2872, 2857 (m, -CH str, sym, CH₃ and CH₂), 1720 (m, -C=O str, -COOH), 1640 (s, -C=O str, 2° amide), 1590, 1484 (m, skeletal bands, arom. rings), 1528 (m, -NH bend, 2° amide), 1462 (m, -CH bend (scissoring), CH₂), 1402 (m, C-O-H bend, -COOH), 1382, 1371 (s, -CH bend, isopropyl group), 1241 (s, C–O–C str, asym), 1152, 1125 (s, -CH bend, in plane, arom. rings), 1035 (s, C–O–C str, sym), 908, 812 (s, -CH bend, out-of-plane, tri substi. ring), 724, 689 (s, -CH bend, out-of-plane, mono substi. ring). ¹H NMR (CDCl₃, 300 MHz) & 12.05 (1H, s, -COOH), 7.23-7.20 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 7.10-6.92 (5H, m, *o*-, *m*- and *p*-protons of Phe), 6.70 (1H, s, *o*-H of phenoxy ring), 6.55 (1H, br s, -NH), 6.50-6.45 (1H, d, J = 6.9 Hz, *p*-H of phenoxy ring), 4.90-4.83 (1H, m, α-H of Phe), 4.45 (2H, s, -OCH₂CO-), 3.10-2.83 (3H, m, *o*-(α-H) of phenoxy ring and β-protons of Phe), 2.01 (3H, s, *m*-CH₃ of phenoxy ring), 1.11-1.09 (6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring). Anal. calcd. for C₂₁H₂₅NO₄: C, 70.96; H, 7.09; N, 3.94. Found: C, 70.93; H, 7.16; N, 3.83.

2-(2'-Isopropyl-5'-methylphenoxy)acetylvaline (11)

Brown solid, m.p. 110-112 °C, $[α]_D$ -2.7°, yield 77%. IR (KBr) cm⁻¹: 3303-2519 (m/br, -OH str, -COOH), 3140 (m, -NH str, amide), 3067 (w, -CH str, arom. ring), 2997, 2992 (m, -CH str, -CH), 2963, 2924 (m, -CH str, asym, CH₃ and CH₂), 2872 (m, -CH str, sym, CH₃), 1719 (m, -C=O str, -COOH), 1640 (s, -C=O str, 2° amide), 1594, 1490 (m, skeletal bands, arom. ring), 1530 (m, -NH bend, 2° amide), 1402 (m, C-O-H bend, -COOH), 1382, 1360 (s, -CH bend, isopropyl group), 1259 (s, C–O–C str, asym), 922 (w, -CH bend (rocking), isoproyl group), 898, 803 (s, -CH bend, out-of-plane, tri substi. ring), 488 (w, C–C bend, aliphatic). ¹H NMR (CDCl₃, 300 MHz) δ: 11.09 (1H, s, -COOH), 7.49 (1H, br s, -NH), 7.21-7.18 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 7.01 (1H, s, *o*-H of phenoxy ring), 6.50-6.48 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.47 (2H, s, -OCH₂CO-), 4.33-4.28 (1H, t, J = 6.0 Hz, α-H of Val), 3.11-2.97 (1H, m, *o*-(α-H) of phenoxy ring), 2.35-2.23 (1H, m, β-H of Val), 2.01 (3H, s, m-CH₃ of phenoxy ring), 1.14-1.12 (6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring), 0.90-0.88 (6H, d, J = 5.9 Hz, β-CH₃ of Val). Anal. calcd. for C₁₇H₂₅NO₄: C, 66.43; H, 8.20; N, 4.56. Found: C, 66.34; H, 8.22; N, 4.52.

2-(2'-Isopropyl-5'-methylphenoxy)acetylisoleucine (12)

Light brown solid, m.p. 141-142 °C, $[\alpha]_D$ -112°, yield 80%. IR (KBr) cm⁻¹: 3300-2545 (m/br, -OH str, -COOH), 3152 (m, -NH str, amide), 3056 (w, -CH str, arom. ring), 2998 (m, -CH str, -CH), 2961, 2938 (m, -CH str, asym, CH₃ and CH₂), 2872, 2855 (m, -CH str, sym, CH₃ and CH₂), 1722 (m, -C=O str, -COOH), 1648 (s, -C=O str, 2° amide), 1599, 1482 (m, skeletal bands, arom. ring), 1540 (m, -NH bend, 2° amide), 1469 (m, -CH bend (scissoring), CH₂), 1450 (m, -CH bend, CH₃), 1402 (m, C-O-H bend, -COOH), 1380, 1361 (s, -CH bend, isopropyl group), 1262 (s, C–O–C str, asym), 899, 808 (s, -CH bend, out-of-plane, tri substi. ring), 496, 490 (w, C–C bend, aliphatic). ¹H NMR (CDCl₃, 300 MHz) & 12.50 (1H, s, -COOH), 7.21-7.18 (1H, d, J = 6.7 Hz, *m*-H of phenoxy ring), 6.71 (1H, s, *o*-H of phenoxy ring), 6.59 (1H, br s, -NH), 6.48-6.46 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.42 (2H, s, -OCH₂CO-), 4.18-4.13 (1H, t, J = 8.2 Hz, α-H of Ile), 3.11-2.96 (1H, m, *o*-(α-H) of phenoxy ring), 2.18-2.05 (1H, m, β-H of Ile), 1.97 (3H, s, *m*-CH₃ of phenoxy ring), 1.69-1.34 (2H, m, γ-protons of Ile), 1.11-1.09 (6H, d, J =

6.9 Hz, o-(α-CH₃) of phenoxy ring), 0.95-0.89 (6H, m, β-CH₃ and δ-protons of Ile). Anal. calcd. for $C_{18}H_{27}NO_4$: C, 67.26; H, 8.47; N, 4.36. Found: C, 67.23; H, 8.44; N, 4.48.

$2-(2'-Isopropyl-5'-methylphenoxy)acetyl(N_4-nitro)arginine (13)$

Brown crystals, m.p. 181-183 °C, $[α]_D$ +77.7°, yield 79%. ¹H NMR (CDCl₃, 300 MHz) δ: 8.05 (4H, s, imino protons of guanidino group and -COOH), 7.44 (1H, br s, -NH), 7.21-7.18 (1H, d, J = 6.8 Hz, m-H of phenoxy ring), 6.69 (1H, m, *α*-H of phenoxy ring), 6.48-6.46 (1H, d, J = 6.9 Hz, *p*-H of phenoxy ring), 4.59-4.54 (1H, m, *α*-H of N₄-nitro(Arg)), 4.41 (2H, s, -OCH₂CO-), 3.84-3.80 (2H, t, J = 8.1 Hz, δ-protons of N₄-nitro(Arg)), 3.11-2.97 (1H, m, *α*-(*α*-H) of phenoxy ring), 2.11-1.78 (2H, m, β-protons of N₄-nitro(Arg)), 1.99 (3H, s, *m*-CH3 of phenoxy ring), 1.63-1.54 (γ-protons of N₄-nitro(Arg)), 1.10-1.08 (6H, d, J = 6.9 Hz, *α*-(*α*-CH₃) of phenoxy ring). ¹³C NMR (CDCl₃, 300 MHz) δ: 180.2 (s, C=O, acid), 170.0 (s, C=O, amide), 159.6 (s, C=NH, guanidino group), 156.9 (s, C1, phenoxy ring), 138.1 (s, C5, phenoxy ring), 137.3 (s, C2, phenoxy ring), 123.2 (s, C4, phenoxy ring), 119.4 (s, C3, phenoxy ring), 115.3 (s, C₆, phenoxy ring), 66.5 (s, -OCH₂-), 52.3 (s, *α*-C, N₄-nitro(Arg)), 39.3 (s, δ-C, N₄-nitro(Arg)), 27.7 (s, β-C, N₄-nitro(Arg)), 27.3 (s, 2-(*α*-C), phenoxy ring), 21.4 (s, 5-(CH₃), phenoxy ring). Anal. calcd. for C₁₈H₂₇N₅O₆: C, 52.80; H, 6.65; N, 17.10. Found: C, 52.74; H, 6.63; N, 17.14.

2-(2'-Isopropyl-5'-methylphenoxy)acetyltryptophan (14)

Light brown solid, m.p. 197-198 °C, $[\alpha]_D$ -74.3°, yield 72%. ¹H NMR (CDCl₃, 300 MHz) δ : 10.50 (1H, s, -COOH), 10.47 (1H, s, α -NH of Try), 7.58 (1H, s, β -H of Try), 7.25-7.18 (3H, m, *m*-H of phenoxy ring and ε -, η -protons of Try), 7.10-7.04 (1H, t, ζ -H of Try), 6.98-6.96 (1H, d, J = 8.4 Hz, δ -H of Try), 6.68 (1H, s, *o*-H of phenoxy ring), 6.50-6.48 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 6.42 (1H, br s, -NH), 5.18-5.11 (1H, m, γ -(β '-H) of Try), 2.00 (3H, s, *m*-CH₃ of phenoxy ring), 1.10-1.08 (6H, d, J = 6.9 Hz, *o*-(α -CH₃) of phenoxy ring) ppm. Mass: m/z (relative intensity) 15 (0.8), 29 (9.9), 39 (9.7), 41 (12.6), 43 (9.8), 45 (1.8), 51 (32.4), 77 (37.9), 117 (3.7), 130 (45.8), 149 (3.5), 163 (100), 191 (5.3), 219 (2.3), 278 (6.4), 349 (8.3), 381 (15.5), 394 (M⁺, 5.7), 395 (M⁺+1, 0.4). Anal. calcd. for C₂₃H₂₆N₂O₄: C, 70.03; H, 6.64; N, 7.10. Found: C, 70.07; H, 6.68; N, 7.04.

2-(2'-Isopropyl-5'-methylphenoxy)acetylglycylglycine (15)

Brown crystals, m.p. 118 °C, $[\alpha]_D$ -40.8°, yield 70%. ¹H NMR (CDCl₃, 300 MHz) δ : 11.61 (1H, s, -COOH), 8.83 (1H, br s, -NH), 8.14 (1H, br s, -NH), 7.21-7.18 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 6.69 (1H, s, *o*-H of phenoxy ring), 6.48-6.46 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.60 (2H, s, -OCH₂CO-), 4.19-4.17 (2H, d, J = 4.7 Hz, CH₂ of Gly²), 3.94-3.93 (2H, d, J = 4.8 Hz, CH₂ of Gly¹), 3.11-2.97 (1H, m, *o*-(α -H) of phenoxy ring), 1.99 (3H, s, *m*-CH₃ of phenoxy ring), 1.12-1.10 (6H, d, J = 6.9 Hz, *o*-(α -CH₃) of phenoxy ring). Anal. calcd. for C₁₆H₂₂N₂O₅: C, 59.62; H, 6.88; N, 8.69. Found: C, 59.61; H, 6.84; N, 8.63.

2-(2'-Isopropyl-5'-methylphenoxy)acetylprolylproline (16)

sym, CH₂), 1710 (m, -C=O str, -COOH), 1675, 1664 (s, -C=O str, 3° amide), 1608, 1503 (m, skeletal bands, arom. ring), 1455, 1459 (m, -CH bend (scissoring), cyclic CH₂), 1423 (m, C-O-H bend, -COOH), 1384, 1368 (s, -CH bend, isopropyl group), 1270 (s, C–O–C str, asym), 1115, 1106 (s, -CH bend, in plane, arom. ring), 1062 (s, C–O–C str, sym), 894, 802 (s, -CH bend, out-of-plane, tri substi. ring). ¹H NMR (CDCl3, 300 MHz) δ: 10.49 (1H, s, -COOH), 7.22-7.19 (1H, d, J = 6.7 Hz, *m*-H of phenoxy ring), 6.70 (1H, s, *o*-H of phenoxy ring), 6.46-6.44 (1H, d, J = 6.8 Hz, *p*-H of phenoxy ring), 4.59 (2H, s, -OCH₂CO-), 4.48-4.37 (1H, t, J = 5.9 Hz, α-protons of Pro²), 4.10-4.08 (1H, t, J = 6.0 Hz, α-protons of Pro¹), 3.74-3.69 (2H, t, J = 6.2 Hz, δ-protons of Pro²), 3.50-3.45 (2H, t, J = 6.1 Hz, δ-protons of Pro¹), 3.11-2.97 (1H, m, *o*-(α-H) of phenoxy ring), 2.70-2.64 (2H, q, β-protons of Pro¹), 2.08-1.89 (9H, m, β-protons of Pro², γ-protons of Pro¹ and Pro², *m*-CH₃ of phenoxy ring), 1.11-1.09 (6H, d, J = 6.9 Hz, *o*-(α-CH₃) of phenoxy ring) ppm. Anal. calcd. for C₂₂H₃₀N₂O₅: C, 65.65; H, 7.51; N, 6.96. Found: C, 65.63; H, 7.56; N, 6.93.

2-(2'-Isopropyl-5'-methylphenoxy)acetylalanylleucine (17)

Light brown crystals, m.p. 135-136 °C, $[\alpha]_D$ -38.2°, yield 72%. IR (KBr) cm⁻¹: 3290-2500 (m/br, -OH str, -COOH), 3150 (m, -NH str, amide), 3074, 3044 (w, -CH str, arom. ring), 2995, 2990 (m, -CH str, -CH), 2960, 2930 (m, -CH str, asym, CH₃ and CH₂), 2871, 2853 (m, -CH str, sym, CH₃ and CH₂), 1712 (m, -C=O str, -COOH), 1640, 1634 (s, -C=O str, 2° amide), 1601, 1498 (m, skeletal bands, arom. ring), 1534 (m, -NH bend, 2° amide), 1405 (m, C-O-H bend, -COOH), 1384, 1367 (s, -CH bend, isopropyl group), 1270 (s, C–O–C str, asym), 926 (w, CH₃ rocking, isopropyl group), 899, 801 (s, -CH bend, out-of-plane, arom. ring), 495, 485 (w, C–C bend, aliphatic). ¹H NMR (CDCl₃, 300 MHz) δ : 12.52 (1H, s, -COOH), 7.94 (1H, br s, -NH), 7.23-7.20 (1H, d, J = 6.8 Hz, *m*-H of phenoxy ring), 6.69 (1H, s, *o*-H of phenoxy ring), 6.47-6.45 (1H, d, J = 6.7 Hz, *p*-H of phenoxy ring), 5.71 (1H, br s, -NH), 5.47-5.38 (1H, m, *α*-H of Ala), 4.58 (2H, s, -OCH₂CO-), 3.70-3.63 (1H, m, *α*-H of Leu), 3.12-2.98 (1H, m, *o*-(*α*-H) of phenoxy ring), 2.00 (3H, s, *m*-CH₃ of phenoxy ring), 1.97-1.83 (1H, m, *γ*-H of Leu), 1.59-1.28 (5H, m, *α*-CH₃ of Ala and β-CH₂ of Leu), 1.11-1.09 (6H, d, J = 6.9 Hz, *o*-(*α*-CH₃) of phenoxy ring), 0.96-0.94 (6H, d, J = 7.1 Hz, *γ*-CH₃ of Leu). Anal. calcd. for C₂₁H₃₂N₂O₅: C, 64.26; H, 8.22; N, 7.14. Found: C, 64.23; H, 8.21; N, 7.16.

RESULTS AND DISCUSSION

Synthesis of all novel compounds was carried out successfully with good yields. DCC was found to be a good coupling agent both economically as well as quantitatively. FTIR spectra of synthesized compounds showed characteristic absorption bands of the -CO-NH- moiety and ¹H NMR spectra were found to be in agreement with respective structures. MS spectra showed molecular ion (M^+) peak at m/z values which were in consistent with the molecular formulas. Almost all the synthesized compounds were found to be more potent than standard drug Ciprofloxacin against bacteria *Pseudomonas aeruginosa* and *Staphylococcus aureus*. Compounds (13), (14) and (16) were found to be more potent than standard drug Griseofulvin against pathogenic fungus *Candida albicans*. Comparison of antimicrobial data has suggested that amino acid methyl ester derivatives (2-6) are more potent than dipeptide ester derivatives (7-9). Furthermore, derivatives of amino acids and peptides (10-17) were found to be more potent antifungal agents than their corresponding methyl ester derivatives (2-9). On passing

toxicity tests, these derivatives may prove good candidate for clinical studies and can be new antibacterial and antifungal agents of tomorrow.

ACKNOWLEDGEMENTS

The authors are thankful to Prof. M.V. Ramana, Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, Mangalore (India) and Dr. Srikala, Department of Microbiology, Kasturba Medical College, Mangalore (India) for antibacterial and antifungal screening. We are also thankful to Mr. Gajender Saini for his valuable spectral suggestions and U.S.I.C., DU, Delhi (India) for carrying out the spectral and elemental analyses.

REFERENCES

- 1. Artico, M.; Ross, W.C. Biochem. Pharmacol. 1968, 17, 873.
- 2. Krajewska, M.; Palanowski, R. Acta Pol. Pharm. 1973, 30, 115.
- Takeda, Y.; Kawagoe, K.; Yokomizo, A.; Yokomizo, Y.; Hosokami, T.; Shimoto, Y.; Tabuchi, Y.; Ogihara, Y.; Honda, Y.; Kawarabayashi, K.; Iseri, M.; Yokohama, S. <u>Chem.</u> *Pharm. Bull. (Tokyo).* **1999**, 47, 755.
- Borowitz, I.J.; Borowitz, G.B.; Li, V.; Readio, J.D.; Lewis, A.; Karcnik, T. J. Incl. Phenom. 1990, 9, 227.
- Aaglawe, M.J.; Dhule, S.S.; Bahekar, S.S.; Wakte, P.S.; Shinde, D.B. <u>J. Korean Chem. Soc.</u> 2003, 47, 133.
- 6. Borowitz, G.B.; Borowitz, I.J.; Wang, Y.; Yang, D.; Toupence, R.; Persaud, N.A. J. Incl. Phenom. 2000, 38, 207.
- Himaja, M.; Rajiv; Ramana, M.V.; Poojary, B.; Satyanarayana, D.; Subrahmanyam, E.V.S.; Bhat, K.I. *Boll. Chim. Farm.* 2003, 142, 450.
- 8. Atta, F.M. J. Chem. Technol. Biotechnol. 1994, 61, 225.
- Zaher, M.R.; Kora, F.A.; Hussein, M.E.; El-Sayed, R.A.; El-Naggar, A.M. Farmaco [Sci]. 1986, 41, 729.
- 10. El-Naggar, A.M.; Ahmed, F.S.; Badie, M.F.; Kamel, K.M. Int. J. Pept. Protein Res. 1983, 22, 251.
- 11. Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Am. J. Clin. Path. 1966, 45, 493.
- 12. Bodanszky, M.; Bodanszky, A. *The Practice of Peptide Synthesis*, Springer-Verlag: New York; **1984**; p 78.