MULTI-COMPONENT REACTIONS OF CYCLOHEXAN-1,3-DIONE TO SYNTHESIZE HETEROCYCLIC DERIVATIVES WITH c-MET ENZYMATIC ACTIVITY, ANTI-PROSTATE, ANTI-PROLIFERATIVE AND TYROSINE KINASE ACTIVITIES

Rafat Milad Mohareb ${ }^{1^{*}}$, Rehab Ali Ibrahim ${ }^{2}$ and Ensaf Sultan Alwan ${ }^{1,3}$
${ }^{1}$ Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt ${ }^{2}$ Higher Institute of Engineering and Technology, El-Tagammoe El-Khames, New Cairo, Egypt
${ }^{3}$ Department of Quality Assurance, Yemen Drug Company for Industry and Commerce (YEDCO), Sana'a, Yemen

(Received January 24, 2022; Revised February 1, 2022; Accepted February 3, 2022)

Abstract

We are aiming in this work to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from aryl hydrazones of cyclohexan-1,3-dione followed by its heterocyclization reactions to produce anticancer molecules. The multi-component reactions of the arylhydrazocyclohexan-1,3-dione derivatives $\mathbf{3 a - c}$ produced the $1,4,5,6,7,8$-hexahydroquinoline derivatives $\mathbf{6 a - r}$ and the $4,5,6,8$-tetrahydrochromeno[2,3-c]pyrazole derivatives $\mathbf{1 0 a}$-c. Other multi-component reactions were demonstrated. The anti-proliferative activity of the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. In addition the c-Met enzymatic activities and inhibition toward the prostate cancer cell PC-3 were measured. The results obtained in most cases, indicated that the presence of electronegative Cl group through the molecule favour the inhibitions.

KEY WORDS: Multi-component reactions, Cyclohexan-1,3-dione, Chromene, Chromeno[2,3-c]pyrazole, Cytotoxicity

INTRODUCTION

Heterocycles constitute the largest diversity of organic molecules of chemical, biomedical, and industrial significance [1, 2]. They are also among the most frequently encountered scaffolds in numerous drugs and pharmaceutically relevant substances [3-6]. In the past several decades, a significant number of efforts have been made on the discovery and development of more efficient pharmaceuticals, pesticides, insecticides, rodenticides, and weed killers by following well studied natural models and biochemical pathways in living cells [7, 8]. In addition, a series of libraries consisting of heterocycles have been successfully established for the structure activityrelationship studies (SAR) for drug design and synthesis [9]. Meanwhile, the diversity-oriented synthesis (DOS) continues to be an area of importance at the interface of organic synthesis and chemical biology [10-12]. While DOS plays an important role in searching for new bioactive small molecules with functional and stereochemical diversity [13], more efficient multicomponent domino reactions (MDRs) for the synthesis of a series of heterocycles, particularly functionalized multi-heterocycles, have been in high demand. In the past several years, the development of new multi-component domino reactions has become an active and challenging topic in modern organic chemistry [14], they can readily provide greater atom-economic access to a diverse spectrum of compounds and their libraries for screening. In addition, hydrazones and their derivatives constitute a versatile class of compounds in organic chemistry. These compounds showed biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculous, antitumor, anti-HIV and antimicrobial activity [15, 16]. Hydrazones are important
*Corresponding author. E-mail: raafat_mohareb@yahoo.com
This work is licensed under the Creative Commons Attribution 4.0 International License
compounds for heterocyclic synthesis due to the presence of $\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bonding where the carbon atom of the hydrazone group has both electrophilic and nucleophilic [17]. Due to the large mentioned applications of multi-component reactions together with the chemical reactivity of hydrazones in this context, herein we report on the synthesis and the spectroscopic, structural, and physicochemical characterization of new heterocyclic derivatives incorporating cyclohexanone moiety starting from the arylhydrazono derivatives of cyclohexan-1,3-diones. The antiproliferative activity of the synthesized compounds toward different cancer cell lines was also explored. This was followed by studying the inhibitions of the most active compounds toward tyrosine kinases and Pim-1 kinase.

RESULTS AND DISCUSSION

As a continued work through the uses of cyclohexan-1,3-dione to produce heterocyclic compounds characterized by their high anti-proliferative activities. In the present work, we demonstrated the use cyclohexan-1,3-dione to synthesis arylhydrazone derivatives. Thus, the reaction of cyclohexan-1,3-dione (1) with either benzene diazoniumchloride (2a), 4-methylbenzene diazonium chloride (2b) or 4-chlorobenzene diazonium chloride (2c) gave the corresponding arylhydrazone derivatives 3a-c [18]. Initially 2-arylhydrazonocyclohexan-1,3dione was chosen as the model substrate for the synthesis of fused heterocyclic compounds through studying its multi-component reactions with aromatic aldehydes and cyanomethylene reagents to give biologically active fused pyridine derivatives. The multi-component reactions of either $\mathbf{3 a}, \mathbf{3 b}$ or $\mathbf{3 c}$ with either of benzaldehyde (4a), 4-chlorobezaldehyde (4b) or 4-methoxybenzaldehyde ($\mathbf{4 c}$) and either malononitrile (5a) or ethyl cyanoacetate ($\mathbf{5 b}$) in 1,4-dioxane solution containing ammonium acetate gave the $1,4,5,6,7,8$-hexahydroquinoline derivatives $\mathbf{6 a - r}$ (Scheme 1). The chemical structures of new compounds were assured by spectral data (IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR, MS). Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 a}$ (as an example) showed (beside the expected signals) a singlet at $\delta 4.58$ ($\mathrm{D}_{2} \mathrm{O}$ exchangeable) confirming the presence of the NH_{2} group and a singlet at $\delta 5.13 \mathrm{ppm}$ corresponding to the pyridine $H-4$ In addition, the ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 38.3,41.6$ for the two CH_{2} groups, a signal at $\delta 48.8$ for the pyridine $\mathrm{C}-4$, a signal at $\delta 117.0$ corresponding to the CN group and two signals at $\delta 166.3,167.5$ equivalent to the $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ groups, respectively.

Next, we studied the multi-component reactions of the arylhydrazone derivatives 3a-c with benzaldehyde (4a) and ethyl benzoylacetate (7) in ethanol solution containing triethylamine gave the $5,6,7,8$-tetrahydro- 4 H -chromene derivatives 8a-c. Moreover, the multi-component reactions of the arylhydrazone derivatives 3a-c with benzaldehyde (4a) and 3-methyl-1 H -pyrazol-5(4H)one (9) in ethanol solution containing triethylamine gave the 4,5,6,8-tetrahydrochromeno[2,3c] pyrazole derivatives 10a-c (Scheme 2). The structures of the latter compounds were based on their respective analytical and spectral data. Thus the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0 a}$ showed (beside the expected signals), a singlet at $\delta 2.80 \mathrm{ppm}$ for the CH_{3} group and a singlet at $\delta 5.13$ ppm indicating the pyran $\mathrm{H}-4$. Moreover, the ${ }^{13} \mathrm{C}$ NMR spectrum revealed the presence of a signal at $\delta 35.8$ corresponding for the CH_{3} group, two signals at $\delta 37.4,41.5$ corresponding to the two CH_{2} groups, a signal at $\delta 50.7$ assigning to the pyran $\mathrm{C}-4$, four signals at $\delta 130.0,130.6,131.4$, 132.7 for the pyran carbons and three signals at $\delta 164.5,165.2,168.9$ for the two $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ groups.

The high yields of such multi-component reaction products encouraged us for further reactions using the arylhydrazone derivatives 3a-c. Thus, the reaction of either compound $\mathbf{3 a}, \mathbf{3 b}$ or $\mathbf{3 c}$ with benzaldehyde (4a) and 3-oxo- N,3-diphenylpropanamide (11) in 1,4-dioxane containing triethyl amine gave the 5,6,7,8-tetrahydro-4 H -chromene-3-carboxamide derivatives 12a-c. The analytical and spectral data of $\mathbf{1 2 a - c}$ were in agreement with the proposed structures (see experimental section). On the other hand, the multi-component reactions of either 3a, 3b or 3c with benzaldehyde (4a) and either 2-cyanoacetamide (13a) or 2-cyanoethanethioamide (13b) in 1,4-
dioxane solution containing triethylamine gave surprisingly the $1,4,5,6,7,8$-hexahydroquinoline3 -carbonitrile derivatives $\mathbf{1 4 a} \mathbf{- f}$ not as the expected chromene derivative (Scheme 3).

$\mathbf{6}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	$\mathbf{1}$	\mathbf{m}	\mathbf{n}	$\mathbf{0}$	\mathbf{p}	\mathbf{q}	\mathbf{r}
X	H	H	H	H	H	H	CH_{3}	CH_{3}	CH_{3}	CH_{3}	CH_{3}	CH_{3}	Cl	Cl	Cl	Cl	Cl	Cl
Y	H	H	Cl	Cl	OCH_{3}	OCH_{3}	H	H	Cl	Cl	OCH_{3}	OCH_{3}	H	H	Cl	Cl	OCH_{3}	OCH_{3}
R^{\prime}	NH_{2}	OH																

Scheme 1. Synthesis of compounds 3a-c and 6a-r.

Scheme 2. Synthesis of compounds 8a-c and 10a-c.

3a, $X=H$
b, $\mathrm{X}=\mathrm{CH}_{3}$
c, $\mathrm{X}=\mathrm{Cl}$

Scheme 3. Synthesis of compounds 12a-c and 14a-f.

Cell proliferation assay

The anti-proliferative activities of the newly synthesized compounds (Table 1) were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460 using the standard MTT assay in vitro, with foretinib as the positive control [19-21]. The cancer cell lines were cultured in minimum essential medium (MEM) supplemented with 10% fetal bovine serum (FBS). Approximate 4×10^{3} cells, suspended in MEM medium, were plated onto each well of a 96 -well plate and incubated in $5 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$ for 24 h . The compounds tested at the indicated final concentrations were added to the culture medium and the cell cultures were continued for 72 h . Fresh MTT was added to each well at a terminal concentration of $5 \mu \mathrm{~g} / \mathrm{mL}$, and incubated with cells at $37^{\circ} \mathrm{C}$ for 4 h . The formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO each well, and the absorbency at 492 nM (for absorbance of MTT formazan) and 630 nM (for the reference wavelength) was measured with an ELISA reader. All of the compounds were tested three times in each cell line and the results expressed as IC_{50} (inhibitory concentration 50\%) were the averages of three determinations and calculated by using the Bacus Laboratories Incorporated Slide Scanner (Bliss) software.

The mean values of three independent experiments, expressed as IC_{50} values, were presented in Table 1. Most of the synthesized compounds exhibited potent anti-proliferative activity with IC_{50} values less than $30 \mu \mathrm{M}$. Generally, the variations of substituent's within the heterocyclic ring being attached have a notable influence on the anti-proliferative activity.

Structure activity relationship

Table 1 showed the cytotoxicity of most of the synthesized compounds toward the six cancer cell lines A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721. The reaction of cyclohexan-1,3-

Table 1. In vitro growth inhibitory effects $\mathrm{IC}_{50} \pm \mathrm{SEM}(\mu \mathrm{M})$ of the newly synthesized compounds against cancer cell lines.

Compound No.	$\mathrm{IC}_{50} \pm$ SEM ($\mu \mathrm{M}$)					
	A549	H460	HT29	MKN-45	U87MG	SMMC-7721
3a	6.26 ± 2.86	8.36 ± 3.24	5.69 ± 1.39	6.58 ± 1.37	9.62 ± 3.15	6.43 ± 2.25
3b	0.28 ± 0.12	0.33 ± 0.18	0.53 ± 0.13	0.33 ± 0.17	0.61 ± 0.28	0.52 ± 0.16
3c	0.43 ± 0.31	0.51 ± 0.25	0.49 ± 0.28	0.63 ± 0.39	0.82 ± 0.27	0.93 ± 0.39
6b	1.36 ± 0.89	1.61 ± 0.85	0.63 ± 0.25	2.46 ± 0.93	1.53 ± 0.68	1.36 ± 0.27
6c	7.72 ± 2.67	8.25 ± 3.86	6.63 ± 2.34	9.04 ± 1.92	8.62 ± 2.23	9.68 ± 3.25
6d	0.40 ± 0.26	0.36 ± 0.19	0.64 ± 0.28	0.33 ± 0.23	0.23 ± 0.53	0.36 ± 0.13
6f	0.62 ± 0.28	0.83 ± 0.38	0.65 ± 0.26	0.59 ± 0.28	0.62 ± 0.29	0.26 ± 0.28
6 g	8.34 ± 2.42	9.56 ± 3.67	7.38 ± 2.42	8.47 ± 2.42	7.28 ± 2.25	8.48 ± 3.82
6h	0.25 ± 0.13	0.30 ± 0.09	0.52 ± 0.17	0.37 ± 0.19	0.34 ± 0.21	0.53 ± 0.17
6 i	0.42 ± 0.35	0.60 ± 0.29	0.39 ± 0.28	0.42 ± 0.26	0.64 ± 0.23	0.57 ± 0.23
61	0.82 ± 0.40	0.77 ± 0.68	0.83 ± 0.26	0.59 ± 0.29	0.53 ± 0.17	0.46 ± 0.18
6m	1.32 ± 0.60	1.15 ± 0.08	2.29 ± 1.02	1.52 ± 0.86	2.28 ± 1.21	1.26 ± 0.84
6n	5.48 ± 1.28	6.79 ± 1.05	5.84 ± 1.69	7.49 ± 2.64	8.09 ± 2.36	6.94 ± 1.68
60	0.40 ± 0.23	0.32 ± 0.15	0.42 ± 0.20	0.30 ± 0.19	0.73 ± 2.14	0.32 ± 0.19
6p	0.23 ± 0.15	0.33 ± 0.12	0.25 ± 0.19	0.25 ± 0.13	0.42 ± 0.18	0.33 ± 0.21
6q	8.41 ± 2.28	6.35 ± 1.28	9.41 ± 2.16	8.50 ± 2.38	7.42 ± 2.26	8.53 ± 2.29
8a	6.64 ± 1.84	5.26 ± 1.43	6.54 ± 1.71	5.26 ± 1.14	6.28 ± 1.48	6.28 ± 1.32
8b	4.91 ± 1.56	5.41 ± 1.28	3.52 ± 1.15	3.30 ± 1.86	5.02 ± 2.80	4.69 ± 1.38
8c	0.26 ± 0.16	0.32 ± 0.17	0.24 ± 0.19	0.31 ± 0.13	0.36 ± 0.25	0.28 ± 0.19
10a	6.33 ± 1.59	8.40 ± 1.29	6.32 ± 2.17	5.63 ± 0.23	8.53 ± 2.21	5.61 ± 1.26
10b	8.38 ± 3.16	7.26 ± 1.14	9.28 ± 3.19	6.28 ± 1.08	7.89 ± 2.63	9.39 ± 2.37
10c	0.26 ± 0.15	0.49 ± 0.23	0.26 ± 0.09	0.38 ± 0.18	0.27 ± 0.14	0.28 ± 0.08
12a	8.64 ± 2.61	10.3 ± 3.5	7.32 ± 2.83	8.41 ± 2.60	9.38 ± 3.51	8.40 ± 2.62
12b	7.39 ± 2.50	5.48 ± 1.42	5.62 ± 1.63	6.31 ± 1.59	8.13 ± 2.59	5.86 ± 1.52
12c	0.24 ± 0.13	0.28 ± 0.12	0.30 ± 0.16	0.34 ± 0.11	0.25 ± 0.12	0.42 ± 0.15
14a	6.23 ± 1.39	4.23 ± 1.16	4.31 ± 1.18	3.29 ± 1.46	2.61 ± 1.30	3.69 ± 1.13
14b	1.36 ± 0.86	1.06 ± 0.74	2.03 ± 0.88	1.35 ± 0.93	0.79 ± 0.43	1.03 ± 0.39
14c	2.28 ± 0.69	1.32 ± 0.58	1.20 ± 0.68	1.32 ± 0.75	1.24 ± 0.72	0.80 ± 0.42
14d	2.51 ± 1.21	2.16 ± 1.05	1.80 ± 0.79	2.33 ± 1.15	1.60 ± 0.85	0.63 ± 0.27
14e	0.26 ± 0.18	0.36 ± 0.13	0.26 ± 0.15	0.27 ± 0.16	0.39 ± 0.22	0.25 ± 0.13
14f	0.19 ± 0.06	0.20 ± 0.05	0.26 ± 0.13	0.30 ± 0.20	0.35 ± 0.16	0.28 ± 0.15
Foretinib	0.08 ± 0.01	0.18 ± 0.03	0.15 ± 0.023	0.03 ± 0.0055	0.90 ± 0.13	0.44 ± 0.062

dione (1) with the aryldiazonium salts $\mathbf{2 a - c}$ produced the arylhydrazono derivatives $\mathbf{3 a - c}$, respectively. The two compounds $\mathbf{3 b}\left(\mathrm{X}=\mathrm{CH}_{3}\right)$ and $\mathbf{3 c}(\mathrm{X}=\mathrm{Cl})$ showed the highest cytotoxicity among the three compounds toward the six cancer cell lines. The multi-component reactions of either of 3a-c with either of the arylaldehydes $\mathbf{4 a - c}$ and either malononitrile or ethyl cyanoacetate to give the $1,4,5,6,7,8$-hexahydroquinoline derivatives 6a-r, respectively. Thirty-one compounds were selected from such series to be tested toward the six cancer cell lines where these showed from moderate to high inhibitions. Compounds $\mathbf{6 b}\left(X=Y=H, R^{\prime}=O H\right), \mathbf{d d}(X=H, Y=C l, R$ ' $=\mathrm{OH}), \mathbf{6 f}\left(\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{OCH}_{3}, \mathrm{R}^{\prime}=\mathrm{OH}\right), \mathbf{6 h}\left(\mathrm{X}=\mathrm{CH}_{3}, \mathrm{Y}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OH}\right)$ and $\mathbf{6 i}\left(\mathrm{X}=\mathrm{CH}_{3}, \mathrm{Y}=\right.$ $\left.\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{NH}_{2}\right), \mathbf{6 l}\left(\mathrm{X}=\mathrm{CH}_{3}, \mathrm{Y}=\mathrm{OCH}_{3}, \mathrm{R}^{\prime}=\mathrm{OH}\right), \mathbf{6 o}\left(\mathrm{X}=\mathrm{Y}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{NH}_{2}\right)$, and $\mathbf{6 p}(\mathrm{X}=\mathrm{Y}=$ $\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{OH}$) were the most cytotoxic compounds among such series of compounds. However, compounds $\mathbf{6 m}, \mathbf{6 n}$ and $\mathbf{8 b}$ showed moderate inhibitions and compounds $\mathbf{6 g}, \mathbf{6 q}, \mathbf{8 a}, \mathbf{1 0 a}$ and $\mathbf{1 0 b}$ expressed low inhibitions toward the six cancer cell lines. Considering the 5,6,7,8-tetrahydro- 4 H chromene derivatives $\mathbf{8 a - c}$ and the 4,5,6,8-tetrahydrochromeno[2,3-c]pyrazole derivatives 10a-c it is clear from table 1 that compounds $\mathbf{8 a}(\mathrm{X}=\mathrm{H}), \mathbf{8 b}\left(\mathrm{X}=\mathrm{CH}_{3}\right), \mathbf{1 0 a}(\mathrm{X}=\mathrm{H})$ and $\mathbf{1 0 b}\left(\mathrm{X}=\mathrm{CH}_{3}\right)$ decline the inhibitions while compounds $8 \mathbf{c}(\mathrm{X}=\mathrm{Cl})$ and $\mathbf{1 0 c}(\mathrm{X}=\mathrm{Cl})$ revealed the highest inhibitions among the three compounds and this is attributed to the presence of the electronegative

Cl group within both compounds. Considering the $5,6,7,8$-tetrahydro- 4 H -chromene-3carboxamide derivatives $\mathbf{1 2 a - c}$ where compound 12c exhibited the highest inhibitions. Surprisingly the inhibitions of the 1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile derivatives 14af through such series compounds $\mathbf{1 4 b}, \mathbf{1 4 c}$ and $\mathbf{1 4 d}$ exhibited moderate inhibitions while compounds $\mathbf{1 4 e}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Y}^{\prime}=\mathrm{OH}\right)$ and $\mathbf{1 4 f}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Y}^{\prime}=\mathrm{SH}\right)$ exhibited the highest inhibitions. It clear from Table 1 that compounds 3b, 3c, 6b, 6d, 6f, 6h, 6i, 6l, 60, 6p, 8c, 10c, 12c, 14e and $\mathbf{1 4 f}$ were the most cytotoxic among the tested compounds toward the six cancer cell line.

HTRF kinase assay

The c-Met kinase activity of all compounds was evaluated using homogeneous time-resolved fluorescence (HTRF) assay as previously reported [22, 23]. In addition, the most active compounds were further evaluated against other five tyrosine kinase (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR) using the same screening method. The experimental procedure applied for the HTRF kinase tests were as reported procedure [24].

In vitro enzymatic assays

All the newly synthesized quinoline and chromene derivatives were evaluated for their inhibitions toward c-Met enzyme using a homogeneous time-resolved fluorescence (HTRF) assay. Taking foretinib as the positive control, the results expressed as IC_{50} were summarized in Table 2. The IC_{50} values are the average of at least three independent experiments. As illustrated in Table 1, all the tested compounds displayed potent $\mathrm{c}-\mathrm{Met}$ enzymatic activity with IC_{50} values ranging from 0.03 to 18.29 nM . Compared with foretinib $\left(\mathrm{IC}_{50}=1.16 \mathrm{nM}\right)$, seventeen of them ($\mathbf{3 c}, \mathbf{6 c}, \mathbf{6 e}, \mathbf{6 f}$, $\mathbf{6 j}, \mathbf{6 n}, \mathbf{6 r}, \mathbf{8 c}, 10 \mathrm{a}, 10 \mathrm{c}, 12 \mathrm{c}, 14 \mathrm{a}, \mathbf{1 4 b}, 14 \mathrm{c}, 14 \mathrm{~d}, 14 \mathrm{e}$ and 14 f) exhibited equivalent or higher potency with IC_{50} values less than 1.30 nM . On the other hand, compounds $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 c}, \mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}$, $\mathbf{6 e}, \mathbf{6 f}, \mathbf{6 h}, \mathbf{6 j}, \mathbf{6 n}, \mathbf{6 0}, \mathbf{6 p}, \mathbf{6 r}, \mathbf{8 c}, \mathbf{1 0 a}, \mathbf{1 0 b}, \mathbf{1 0 c}, \mathbf{1 2 b}, 12 \mathrm{c}$ and $\mathbf{1 4 a - f}$ showed higher inhibitions toward the PC-3 cell line than the reference SGI-1776 ($\left.\mathrm{IC}_{50} 4.86 \mathrm{nM}\right)$. Analyzing the data demonstrated through Table 2 revealed that many compounds displayed potent c-Met enzymatic activity and inhibitions toward the prostate cancer cell line PC-3. Considering the arylhydrazone derivatives 3a-c, compound 3c exhibited the highest inhibitions toward c-Met and PC-3 with IC_{50} 's 0.03 and 0.02 nM . For the $1,4,5,6,7,8$-hexahydroquinoline derivatives $\mathbf{6 a - r}$, where compounds $\mathbf{6 b}, \mathbf{6 c}, \mathbf{6 d}, \mathbf{6 f}, \mathbf{6 j}, \mathbf{6 n}$ and $\mathbf{6 r}$ exhibited the highest inhibitions toward c-Met and PC3. It was found that compounds $\mathbf{6 e}$ and $\mathbf{6 h}$ showed high inhibitions toward c -Met with $\mathrm{IC}_{50} 1.02$, 1.42 nM but low inhibitions toward PC-3 cell line with $\mathrm{IC}_{50} 3.42$ and 3.53 nM , respectively. On the other side, compound $\mathbf{6 p}$ expressed high inhibition toward PC-3 cell line with $\mathrm{IC}_{50} 0.02 \mathrm{nM}$ but decline inhibition toward $\mathrm{c}-\mathrm{Met} \mathrm{IC}_{50} 2.40 \mathrm{nM}$. For the $5,6,7,8$-tetrahydro- 4 H -chromene derivatives $\mathbf{8 a - c}$ and the 4,5,6,8-tetrahydrochromeno[2,3-c]pyrazole derivatives 10a-c where compounds $8 \mathbf{c}$ and 10c showed the highest inhibitions toward c-Met and PC-3 but compounds $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ exhibited higher inhibitions than that of $\mathbf{8 a}$ and $\mathbf{8 b}$. On the other hand for compounds 12a-c, compound 12c exhibited the highest inhibitions toward c-Met kinase and PC-3 cell line. Surprisingly, the five compounds $\mathbf{1 4 a}, \mathbf{1 4} \mathbf{c}, \mathbf{1 4 d}, 14 \mathrm{e}$ and $\mathbf{1 4 f}$ exhibited high inhibitions toward cMet kinase and PC-3 cell line.
Structures of the most active compounds toward Inhibition against c-Met kinase

Table 2. c-Met enzymatic activity of the newly synthesized compounds.

Compound No.	X	Y/Y ${ }^{\prime}$	R'	$\begin{gathered} \mathrm{IC}_{50}(\mathrm{nM}) \\ \mathrm{c}-\mathrm{Met} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{IC}_{50}(\mathrm{nM}) \\ \mathrm{PC}-3 \end{gathered}$
3a	H	-	-	1.89 ± 0.76	2.39 ± 1.06
3b	CH_{3}	-	-	4.37 ± 1.28	3.52 ± 1.32
3c	Cl	-	-	0.03 ± 0.006	0.02 ± 0.01
6 a	H	H	NH_{2}	6.80 ± 2.49	5.72 ± 2.59
6b	H	H	OH	1.32 ± 0.64	1.63 ± 0.89
6c	H	Cl	NH_{2}	0.52 ± 0.29	0.32 ± 0.22
6d	H	Cl	OH	0.90 ± 0.36	0.69 ± 0.41
6 e	H	OCH_{3}	NH_{2}	1.02 ± 0.39	3.42 ± 0.69
6 f	H	OCH_{3}	OH	0.92 ± 0.43	0.62 ± 0.15
6 g	CH_{3}	H	NH_{2}	3.72 ± 1.14	6.42 ± 2.49
6h	CH_{3}	H	OH	1.42 ± 0.88	3.53 ± 1.29
6 i	CH_{3}	Cl	NH_{2}	5.27 ± 1.83	7.33 ± 2.82
6 j	CH_{3}	Cl	OH	0.23 ± 0.17	0.36 ± 0.15
6k	CH_{3}	OCH_{3}	NH_{2}	15.31 ± 4.26	12.42 ± 4.28
61	CH_{3}	OCH_{3}	OH	10.31 ± 3.62	4.09 ± 1.36
6m	Cl	H	NH_{2}	4.28 ± 1.53	6.82 ± 2.41
6n	Cl	H	OH	0.29 ± 0.15	0.49 ± 0.26
60	Cl	Cl	NH_{2}	1.83 ± 0.67	2.66 ± 1.56
6p	Cl	Cl	OH	2.40 ± 0.53	0.02 ± 0.004
6q	Cl	OCH_{3}	NH_{2}	12.56 ± 4.70	8.38 ± 4.72
6r	Cl	OCH_{3}	OH	1.28 ± 0.98	2.80 ± 1.63
8a	H	-	-	12.32 ± 4.72	8.29 ± 3.52
8b	CH_{3}	-	-	18.29 ± 6.31	10.17 ± 3.69
8c	Cl	-	-	0.39 ± 0.25	0.21 ± 0.13
10a	H	-	-	1.28 ± 0.52	2.27 ± 0.84
10b	CH_{3}	-	-	3.61 ± 1.80	2.13 ± 0.83
10c	Cl	-	-	0.13 ± 0.06	0.32 ± 0.16
12a	H	-	-	8.35 ± 2.71	12.52 ± 3.82
12b	CH_{3}	-	-	10.40 ± 2.64	1.63 ± 0.92
12c	Cl	-	-	0.24 ± 0.15	0.22 ± 0.13
14a	H	OH	-	0.98 ± 0.41	0.84 ± 0.36
14b	H	SH	-	1.23 ± 0.53	3.62 ± 1.62
14c	CH_{3}	OH	-	0.96 ± 0.42	0.70 ± 0.31
14d	CH_{3}	SH	-	1.16 ± 0.68	1.38 ± 0.92
14e	Cl	OH	-	0.21 ± 0.04	0.13 ± 0.06
14f	Cl	SH	-	0.59 ± 0.23	0.48 ± 0.21
		-	-	$\begin{aligned} & \text { Foretinib } \\ & 1.16 \pm 0.17 \end{aligned}$	$\begin{gathered} \hline \text { SGI-1776 } \\ 4.86 \pm 0.16 \end{gathered}$

Inhibitions of the most active compounds towards tyrosine kinases
The most active compounds $\mathbf{3 c}, \mathbf{6 c}, \mathbf{6 d}, \mathbf{6 e}, \mathbf{6 f}, \mathbf{6 j}, \mathbf{6 n}, \mathbf{6 r}, \mathbf{8 c}, \mathbf{1 0 a}, \mathbf{1 0 c}, \mathbf{1 2 c}, \mathbf{1 4 a}, \mathbf{1 4 b}, \mathbf{1 4 c}, \mathbf{1 4 d}$, $\mathbf{1 4 e}$ and $\mathbf{1 4 f}$ towards c-Met enzymatic activity were further evaluated against the five tyrosine kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR) using the same screening method (Table 3). These receptor tyrosine kinases (RTKs) have been implicated in vascular development by affecting the proliferation and migration of endothelial cells or pericytes. Among them, VEGF is a major regulator of tumor angiogenesis via endothelial cell proliferation and blood vessel permeability $[25,26]$. It is clear from Table 3 that compounds $\mathbf{3 c}, \mathbf{6 c}, \mathbf{6 e}, \mathbf{6 f}, \mathbf{6 j}, \mathbf{6 n}, \mathbf{6 r}, \mathbf{8 c}, \mathbf{1 0 c}$, $\mathbf{1 2 c}, \mathbf{1 4 c}, \mathbf{1 4 d}, \mathbf{1 4 e}$ and $\mathbf{1 4 f}$ were the most potent towards the five tyrosine kinases. Compound $\mathbf{6 n}$ showed high potency towards the four kinases VEGFR-2 with $\mathrm{IC}_{50} 0.72 \mathrm{nM}$, while it showed
moderate inhibition towards c-Kit, Flt-3 and EGFR kinases with IC so $^{\prime}$'s $1.07,1.25$ and 1.83 nM . Compound 14b showed moderate inhibitions toward c-Kit and Flt-3 kinases with IC ${ }_{50}$'s 1.68 and 1.29 nM , respectively, while it showed high inhibitions toward VEGFR-2, EGFR and PDGFR kinases with IC_{50} 's $0.51,0.26$ and 0.38 nM , respectively. It is clear that compounds $\mathbf{6 j}$ and $\mathbf{1 4 e}$ exhibited the highest inhibitions among the tested compounds.

Table 3. Inhibitions toward tyrosine kinases [Enzyme IC $50(\mathrm{nM})$] of selected compounds.

Compound	c-Kit	Flt-3	VEGFR-2	EGFR	PDGFR
$\mathbf{3 c}$	0.21	0.34	0.23	0.46	0.29
$\mathbf{6 c}$	0.30	0.26	0.31	0.28	0.34
$\mathbf{6 e}$	0.30	0.26	0.41	0.53	0.19
$\mathbf{6 f}$	0.28	0.23	0.31	0.38	0.41
$\mathbf{6 j}$	0.14	0.21	0.54	0.39	0.21
$\mathbf{6 n}$	1.07	1.25	0.72	1.83	2.50
$\mathbf{6 r}$	0.32	0.29	0.38	0.26	0.33
$\mathbf{8 c}$	0.25	0.24	0.19	0.31	0.35
$\mathbf{1 0}$	1.26	1.84	2.63	1.52	1.26
$\mathbf{1 2 c}$	0.23	0.38	0.14	0.37	0.51
$\mathbf{1 4 b}$	1.68	1.29	0.51	0.26	0.38
$\mathbf{1 4 c}$	0.42	0.26	0.31	0.24	0.53
$\mathbf{1 4 d}$	0.52	0.21	0.53	0.80	0.46
$\mathbf{1 4 e}$	0.19	0.28	0.27	0.31	0.28
$\mathbf{1 4 f}$	0.33	0.24	0.19	0.32	0.25

Inhibitions of the selected compounds towards Pim-1 kinase

Compounds $\mathbf{3 c}$, $\mathbf{6 c}, \mathbf{6 e}, \mathbf{6 f}, \mathbf{6 j}, \mathbf{6 n}, \mathbf{6 r}, \mathbf{8 c}, \mathbf{1 0} \mathbf{c}, \mathbf{1 2 c}, \mathbf{1 4 c}, \mathbf{1 4 d}, \mathbf{1 4 e}$ and $\mathbf{1 4 f}$ were selected to examine their Pim-1 kinase inhibition activity at a range of 10 concentrations and the IC_{50} values were calculated (Table 4). Compounds $\mathbf{3 c}, \mathbf{6 c}, \mathbf{6 e}, \mathbf{6 f}, \mathbf{6 j}, \mathbf{6 r}, \mathbf{8 c}$ and $\mathbf{1 4 d}$ were the most potent to inhibit Pim- 1 activity with IC_{50} values of $0.24,0.56,0.23,0.23,0.40,0.48,0.22$ and $0.38 \mu \mathrm{M}$, respectively. On the other hand, compounds $\mathbf{6 n}, \mathbf{1 0 c}, \mathbf{1 2 c}, \mathbf{1 4} \mathbf{c}, \mathbf{1 4 e}$ and $\mathbf{1 4 f}$ were less effective (IC ${ }_{50}>10 \mu \mathrm{M}$). SGI-1776 was used as the positive control with $\mathrm{IC}_{50} 0.048 \mu \mathrm{M}$ in the assay. These profiles in combination with cell growth inhibitions data of the selected compounds listed in Table 4 indicated that Pim-1 kinase was a potential target of these compounds.
Table 4. The inhibitor activity of selected compounds towards Pim-1 kinase.

Compound No	Inhibition ratio At $10 \mu \mathrm{M}$	$\mathrm{IC}_{50}(\mu \mathrm{M})$
$\mathbf{3 c}$	94	0.24
$\mathbf{6 c}$	84	0.56
$\mathbf{6 e}$	95	0.23
$\mathbf{6 f}$	96	0.23
$\mathbf{6 j}$	90	0.40
$\mathbf{6 n}$	28	>10
$\mathbf{6 r}$	88	0.48
$\mathbf{8 c}$	97	0.22
$\mathbf{1 0 c}$	24	>10
$\mathbf{1 2 c}$	16	>10
$\mathbf{1 4 c}$	24	>10
$\mathbf{1 4 d}$	89	0.38
$\mathbf{1 4 e}$	36	>10
$\mathbf{1 4 f}$	28	>10
$\mathbf{S G I - 1 7 7 6}$	-	0.048 ± 0.019

Bull. Chem. Soc. Ethiop. 2022, 36(1)

EXPERIMENTAL

Chemistry

Newly synthesized compounds showed melting points that were uncorrected. For all compounds the IR spectra (KBr discs) were measured using a FTIR plus 460 or Pye Unicam SP-1000 spectrophotometer. The spectra ${ }^{1} \mathrm{HNMR}$ were measured using Varian Gemini-300 (300 MHz) and Jeol AS 500 MHz instruments spectra were performed in DMSO- d_{6} as solvent using TMS as internal standard and chemical shifts are expressed as $\delta \mathrm{ppm}$. The spectra MS (EI) were measured using Hewlett Packard 5988 A GC/MS system and GCMS-QP 1000 Ex Shimadzu instruments. The microanalytical data CHN were obtained from the Micro-analytical Data Unit at Cairo University and were performed on Vario EL III Elemental analyzer. Screening of compounds against the cancer cell lines and tyrosine kinases were performed through The National Cancer Institute at Cairo University. Compounds 3a-c were prepared according to our reported work [18].

General procedure for the synthesis of the 1,4,5,6,7,8-hexahydroquinoline derivatives $\boldsymbol{6 a} \boldsymbol{a}$ r. Each of either benzaldehyde ($1.06 \mathrm{~g}, 0.01 \mathrm{~mol}$), 4-chlorobenzaldehyde ($1.40 \mathrm{~g}, 0.01 \mathrm{~mol}$) or 4methoxybenzaldehyde $(1.36 \mathrm{~g}, 0.01 \mathrm{~mol})$ and either malononitrile $(0.66 \mathrm{~g}, 0.01 \mathrm{~mol})$ or ethyl cyanoacetate $(1.13 \mathrm{~g}, 0.01 \mathrm{~mol})$ were added to a solution of either $3 \mathbf{3 a}(2.16 \mathrm{~g}, 0.01 \mathrm{~mol}), \mathbf{3 b}(2.30$ $\mathrm{g}, 0.01 \mathrm{~mol})$ or $3 \mathbf{c}(2.50 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 1,4-dioxane $(50 \mathrm{~mL})$ containing ammonium acetate (2.00 $\mathrm{g})$. The whole reaction mixture was heated under reflux for 2 h then poured onto ice/water mixture containing a few drops of hydrochloric acid and the formed solid product was collected by filtration.

2-Amino-7-oxo-4-phenyl-8-(2-phenylhydrazono)-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile ($6 a$). Pale brown crystals from 1,4-dioxane, yield ($2.58 \mathrm{~g}, 70 \%$), $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) v max cm^{-1} : 3463-3359 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2221(\mathrm{CN}), 1694(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{N}), 1636$ $(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{-} \mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.81-2.99\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH_{2}), $5.13(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.26-7.43\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.29,8.32(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, 2NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 38.3,41.6\left(2 \mathrm{CH}_{2}\right), 48.8$ (pyridine C-4), $117.0(\mathrm{CN}), 120.1,120.7,121.3,121.8,123.3,123.8,124.2,125.6\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.1,129.3$, 130.2, 133.8 (pyridine C), $166.3(\mathrm{C}=\mathrm{N}), 167.5(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 71.53$; H , 5.18; N, 18.96\%. Found: C, 71.70; H, 5.25; N, 19.14\%. MS: m/z 369 (M ${ }^{+}, 35 \%$).

2-Hydroxy-7-oxo-4-phenyl-8-(2-phenylhydrazono)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile ($\mathbf{6 b}$). Pale brown from 1,4-dioxane, yield ($2.70 \mathrm{~g}, 73 \%$), Mp $145-147^{\circ} \mathrm{C}$. IR (KBr) v max cm^{-1} : 3552-3371 (OH,NH), $3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1697(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{N}), 1630$ $(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 300 \mathrm{MHz}$): $\delta=2.80-3.02\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.16(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-$ 4), 7.23-7.42 (m, $\left.10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.29,8.33\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), $10.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 37.6,42.5\left(2 \mathrm{CH}_{2}\right)$, 48.1 (pyridine C-4), 116.7 (CN), 120.1, 120.4, 121.7, 121.9, 123.4, 124.7, 125.2, $126.9\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.5,129.6,130.8$, 132.8 (pyridine C), $166.6(\mathrm{C}=\mathrm{N})$, $168.8(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 71.34$; H, 4.90; N, 15.13\%. Found: C, $71.60 ;$ H, 4.87 ; N, 15.28%. MS: $m / z 370\left(\mathrm{M}^{+}, 44 \%\right)$.

2-Amino-4-(4-chlorophenyl)-7-oxo-8-(2-phenylhydrazono)-1,4,5,6,7,8-hexahydro-quinoline-3carbonitrile (6 c). Brown crystals from 1,4-dioxane, yield ($2.41 \mathrm{~g}, 60 \%$), Mp $120-122^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}$) v max cm ${ }^{-1}$: 3484-3339 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1693(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{N})$, 1633 (C=C); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta=2.80-2.99\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable NH_{2}), $5.16(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4)$, $7.23-7.57\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.36,8.46(2 \mathrm{~s}$, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 75 \mathrm{MHz}$): $\delta 37.2$, $41.7\left(2 \mathrm{CH}_{2}\right)$, 48.9 (pyridine C-4), $117.8(\mathrm{CN}), 120.3,120.6,121.8,121.9,122.3,123.6,124.7,126.1\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 128.6, 129.2, 130.5, 132.2 (pyridine C), $166.3(\mathrm{C}=\mathrm{N}), 167.3(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}$: C, 65.43 ; H, 4.49 ; N, 17.34%. Found: C, $65.39 ;$ H, $4.28 ; \mathrm{N}, 17.57 \%$. MS: $m / z 403\left(\mathrm{M}^{+}, 68 \%\right)$.

4-(4-Chlorophenyl)-2-hydroxy-7-oxo-8-(2-phenylhydrazono)-1,4,5,6,7,8-hexa-hydroquinoline3 -carbonitrile ($\boldsymbol{6 d}$). Red crystals from 1,4-dioxane, yield ($2.68 \mathrm{~g}, 66 \%$), Mp $148-150^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3561-3373 (OH, NH), $3056(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1697(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{N})$, $1631(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.80-2.99\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.15(\mathrm{~s}, 1 \mathrm{H}$, pyridine H-4), 7.25-7.58 (m, $\left.9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.28,8.42\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH$), 10.49(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 37.8,41.5\left(2 \mathrm{CH}_{2}\right), 48.8$ (pyridine C4), $117.2(\mathrm{CN}), 120.1,120.8,121.7,122.4,123.6,124.2,125.2,125.8\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.3,129.5$, 130.5, 132.6 (pyridine C), $166.9(\mathrm{C}=\mathrm{N})$, $168.4(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, 65.27; H, 4.23; N, 13.84\%. Found: C, 65.53; H, 4.26; N, 14.02\%. MS: $m / z 404$ ($\left.\mathrm{M}^{+}, 48 \%\right)$.

2-Amino-4-(4-methoxyphenyl)-7-oxo-8-(2-phenylhydrazono)-1,4,5,6,7,8-hexahydro-quinoline-3carbonitrile ($6 \boldsymbol{e}$). Brown crystals from 1,4-dioxane, yield ($2.40 \mathrm{~g}, 60 \%$), $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3459-3324 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1697(\mathrm{C}=\mathrm{O}), 1646(\mathrm{C}=\mathrm{N})$, $1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6}, \mathrm{~d}_{6}, 300 \mathrm{MHz}\right): \delta=2.80-2.99\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right)$, $5.05(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4)$, $7.25-7.58\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 8.30, $8.41\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), ${ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 36.6,40.8\left(2 \mathrm{CH}_{2}\right)$, $50.6\left(\mathrm{OCH}_{3}\right), 50.8$ (pyridine C-4), $116.8(\mathrm{CN}), 120.1,121.4,122.2,122.6,123.7,124.6,125.5$, $126.2\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.6,129.08,130.7,133.5$ (pyridine C), $166.4(\mathrm{C}=\mathrm{N})$, $167.6(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $69.16 ; \mathrm{H}, 5.30 ; \mathrm{N}, 17.53 \%$. Found: C, $69.31 ; \mathrm{H}, 5.26 ; \mathrm{N}, 17.42 \%$. MS: $m / z 399\left(\mathrm{M}^{+}, 42 \%\right)$.

2-Hydroxy-4-(4-methoxyphenyl)-7-oxo-8-(2-phenylhydrazono)-5,6,7,8-tetrahydro-4H-chrom-ene-3-carbonitrile ($6 f$). Pale brown crystals from 1,4-dioxane, yield ($2.80 \mathrm{~g}, 70 \%$), Mp 143-145 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3568-3341 (OH, NH), $3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1698(\mathrm{C}=\mathrm{O})$, $1641(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): \delta=2.84-3.03\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.72$ ($\mathrm{s}, 3 \mathrm{H} \mathrm{OCH}_{3}$), $5.16\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyridine H-4), $7.21-7.54\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.29,8.43\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2NH), $10.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH), ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): δ 37.2, $41.6\left(2 \mathrm{CH}_{2}\right), 50.6\left(\mathrm{OCH}_{3}\right), 50.8($ pyridine C-4), $116.8(\mathrm{CN}), 120.1,120.3,121.5,123.8$, 124.6, 124.8, 125.1, $126.3\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.6,129.8,130.2,132.3$ (pyridine C$), 166.5(\mathrm{C}=\mathrm{N})$, $168.2(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 68.99 ; \mathrm{H}, 5.03$; $\mathrm{N}, 13.99 \%$. Found: C, 68.63 ; H , 4.92; N, 14.25%. MS: $m / z 400\left(\mathrm{M}^{+}, 40 \%\right)$.

2-Amino-7-oxo-4-phenyl-8-(2-(p-tolyl)hydrazono)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (6 g). Brown crystals from 1,4-dioxane, yield ($2.29 \mathrm{~g}, 60 \%$), $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3488-3372\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2223(\mathrm{CN}), 1697(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{N}), 1630$ $(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.61-3.02\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.89(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH_{2}), $5.16(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4)$, 7.22-7.49 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}$), 8.28, $8.46\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 36.3$, $40.9\left(2 \mathrm{CH}_{2}\right)$, $35.6\left(\mathrm{CH}_{3}\right), 50.8$ (pyridine C-4), $117.0(\mathrm{CN}), 120.1,121.3,122.2,122.8,123.1,124.6,124.8$, $125.9\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 129.1,129.6,130.5,131.8$ (pyridine C$)$, $166.2(\mathrm{C}=\mathrm{N})$, $167.4(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 72.04 ; \mathrm{H}, 5.52 ; \mathrm{N}, 18.26 \%$. Found: C, $71.92 ; \mathrm{H}, 5.72 ; \mathrm{N}, 18.33 \%$. MS: $m / z 383\left(\mathrm{M}^{+}, 60 \%\right)$.

2-Hydroxy-7-oxo-4-phenyl-8-(2-(p-tolyl)hydrazono)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile ($\mathbf{6 h}$). Pale brown crystals from 1,4-dioxane, yield ($2.64 \mathrm{~g}, 69 \%$), $\mathrm{Mp}>300{ }^{\circ} \mathrm{C}$. IR (KBr) v $\max \mathrm{cm}^{-1}: 3558-3373(\mathrm{OH}, \mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1698(\mathrm{C}=\mathrm{O}), 1642(\mathrm{C}=\mathrm{N})$, $1630(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right): \delta=2.80-3.21\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.76\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{CH}_{3}\right)$, $5.08(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.24-7.52\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.32,8.44\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), $10.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 37.5,41.6$ $\left(2 \mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{3}\right), 50.7$ (pyridine C-4), $116.2(\mathrm{CN}), 120.3,120.6,121.8,122.2,123.7,124.2$, 125.8, $126.2\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.3,129.1,132.3,132.6$ (pyridine C$), 166.7(\mathrm{C}=\mathrm{N}), 168.5(\mathrm{C}=\mathrm{O})$.

Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $71.86 ; \mathrm{H}, 5.24 ; \mathrm{N}, 14.57 \%$. Found: C, $71.61 ; \mathrm{H}, 5.36 ; \mathrm{N}, 14.70 \%$. MS: $m / z 384\left(\mathrm{M}^{+}, 28 \%\right)$.

2-Amino-4-(4-chlorophenyl)-7-oxo-8-(2-(p-tolyl)hydrazono)-5,6,7,8-tetrahydro-4H-chromene3 -carbonitrile (6 i). Pale brown crystals from 1,4-dioxane, yield ($3.16 \mathrm{~g}, 76 \%$), Mp 170-172 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3480-3360 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2223(\mathrm{CN}), 1694(\mathrm{C}=\mathrm{O}), 1643$ $(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{MHz}$): $\delta=2.68-3.17\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.72(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 5.09(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.25-7.58\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 8.31, $8.49\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 36.2,41.6\left(2 \mathrm{CH}_{2}\right)$, $36.5\left(\mathrm{CH}_{3}\right), 50.9$ (pyridine C-4), $116.8(\mathrm{CN}), 120.3,120.5,122.5,122.8,123.1,123.6,125.8$, $126.3\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.8,128.8,130.2$, 131.6 (pyridine C), $166.3(\mathrm{C}=\mathrm{N})$, $168.6(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}: \mathrm{C}, 66.10 ; \mathrm{H}, 4.82$; N, 16.76%. Found: C, $65.91 ; \mathrm{H}, 4.63 ; \mathrm{N}, 16.82 \%$. MS: m / z 417 ($\mathrm{M}^{+}, 55 \%$).

4-(4-Chlorophenyl)-2-hydroxy-7-oxo-8-(2-(p-tolyl)hydrazono)-5,6,7,8-tetrahydro-4H-chrom-ene-3-carbonitrile ($\mathbf{6 j}$). Yellow crystals from 1,4-dioxane, yield ($2.31 \mathrm{~g}, 55 \%$), Mp 131-133 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3539-3342 (OH, NH), $3055(\mathrm{CH}$, aromatic), $2221(\mathrm{CN}), 1692(\mathrm{C}=\mathrm{O}), 1645$ $(\mathrm{C}=\mathrm{N}), 1631(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.83-2.96\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.72(\mathrm{~s}, 3 \mathrm{H}$ CH_{3}), $5.11(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.21-7.47\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26,8.42\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), $10.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): δ $38.4,42.8\left(2 \mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{3}\right), 51.2$ (pyridine C-4), $117.6(\mathrm{CN}), 120.0,120.6,122.8,123.2,125.0$, 125.2, 126.0, $126.5\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.2,132.8,134.8,136.5$ (pyridine C), $166.8(\mathrm{C}=\mathrm{N}), 168.5(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, 65.81 ; H, $4.29 ; \mathrm{N}, 9.82 \%$. Found: C, $65.54 ; \mathrm{H}, 4.51 ; \mathrm{N}, 9.68 \%$. MS: $m / z 418\left(\mathrm{M}^{+}, 50 \%\right)$.

2-Amino-4-(4-methoxyphenyl)-7-oxo-8-(2-(p-tolyl)hydrazono)-1,4,5,6,7,8-hexahydro-quinoline3 -carbonitrile ($6 \boldsymbol{k}$). Brown crystals from 1,4-dioxane, yield ($3.22 \mathrm{~g}, 78 \%$), $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3482-3348 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1696(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{N})$, $1631(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO_{6}, 300 MHz): $\delta=2.62-3.19\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 5.06(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.21-7.50$ $\left(\mathrm{m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.34,8.41\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): δ 36.3, $40.7\left(2 \mathrm{CH}_{2}\right)$, $36.8\left(\mathrm{CH}_{3}\right), 50.2\left(\mathrm{OCH}_{3}\right), 51.3($ pyridine $\mathrm{C}-4), 116.9(\mathrm{CN}), 119.6,120.2,122.6$, 123.2, 124.7, 125.0, 125.2, 126.3($2 \mathrm{C}_{6} \mathrm{H}_{4}$), 128.7, 130.1, 130.2, 132.5 (pyridine C), $166.4(\mathrm{C}=\mathrm{N})$, $168.6(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, $69.72 ; \mathrm{H}, 5.61$; $\mathrm{N}, 16.94 \%$. Found: $\mathrm{C}, 69.58 ; \mathrm{H}$, 5.76 ; N, 17.17%. MS: $m / z 413\left(\mathrm{M}^{+}, 66 \%\right)$.

2-Hydroxy-4-(4-methoxyphenyl)-7-oxo-8-(2-(p-tolyl)hydrazono)-1,4,5,6,7,8-hexahydro-quino-line-3-carbonitrile (6 ll). Orange crystals from 1,4-dioxane, yield ($2.98 \mathrm{~g}, 72 \%$), $\mathrm{Mp} 175-177{ }^{\circ} \mathrm{C}$. IR (KBr) v max cm${ }^{-1}: 3573-3347(\mathrm{OH}, \mathrm{NH}), 3054(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1696(\mathrm{C}=\mathrm{O}), 1640$ $(\mathrm{C}=\mathrm{N}), 1634(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.79-3.13\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.69(\mathrm{~s}, 3 \mathrm{H}$ CH_{3}), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.05(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.24-7.49\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.30,8.45(2 \mathrm{~s}$, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, 2 NH), $10.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75$ $\mathrm{MHz}): \delta 37.5,40.9\left(2 \mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{3}\right), 50.3\left(\mathrm{OCH}_{3}\right), 50.5($ pyridine C-4), $116.5(\mathrm{CN}), 120.1$, 120.4, 121.8, 122.6, 123.5, 124.8, 125.6, $125.9\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.3,129.6,130.7,131.3$ (pyridine C), $166.9(\mathrm{C}=\mathrm{N}), 168.3(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 69.55 ; \mathrm{H}, 5.35 ; \mathrm{N}, 13.52 \%$. Found: C, $69.68 ; \mathrm{H}, 5.47 ; \mathrm{N}, 13.80 \%$. MS: $m / z 414$ ($\mathrm{M}^{+}, 32 \%$).

2-Amino-8-(2-(4-chlorophenyl)hydrazono)-7-oxo-4-phenyl-1,4,5,6,7,8-hexa-hydroquinoline-3carbonitrile ($\mathbf{6 m}$). Orange crystals from 1,4-dioxane, yield ($2.21 \mathrm{~g}, 55 \%$), $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3479-3341 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1694(\mathrm{C}=\mathrm{O}), 1646(\mathrm{C}=\mathrm{N})$, $1635(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.64-3.02\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$
exchangeable NH_{2}), $5.08(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.22-7.53\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.33,8.42$ (2 s , $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): δ 36.3, $41.8\left(2 \mathrm{CH}_{2}\right), 50.8$ (pyridine C-4), $117.0(\mathrm{CN}), 120.1,120.4,121.3,122.7,122.8,123.9,124.6,125.7\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 129.3, 129.7, 130.3, 131.8 (pyridine C), $167.6(\mathrm{C}=\mathrm{N}), 168.2(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}$: C, 65.43 ; H, 4.49 ; N, 17.34%. Found: C, 65.72; H, 4.39; N, 17.52\%. MS: $m / z 403$ ($\mathrm{M}^{+}, 48 \%$).

8-(2-(4-Chlorophenyl)hydrazono)-2-hydroxy-7-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene3 -carbonitrile ($6 \boldsymbol{n}$). Yellow crystals from 1,4-dioxane, yield ($2.42 \mathrm{~g}, 60 \%$), Mp $162-164{ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}: 3528-3358(\mathrm{OH}, \mathrm{NH}), 3054(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1697(\mathrm{C}=\mathrm{O}), 1640$ $(\mathrm{C}=\mathrm{N}), 1633(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): \delta=2.83-3.32\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.08(\mathrm{~s}, 1 \mathrm{H}$, pyridine H-4), 7.25-7.49 (m, $\left.9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.30,8.42\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2NH), 10.41 (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta 37.2,41.3\left(2 \mathrm{CH}_{2}\right), 50.7$ (pyridine C-4), $117.3(\mathrm{CN}), 120.2,121.2,121.8,122.9,123.4,124.4,125.1,125.8\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 128.7, 128.8, 130.8, 131.9 (pyridine C), $167.0(\mathrm{C}=\mathrm{N}), 168.9(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, $65.27 ; \mathrm{H}, 4.23 ; \mathrm{N}, 13.84 \%$. Found: C, $65.14 ; \mathrm{H}, 4.40 ; \mathrm{N}, 14.21 \%$. MS: $m / z 404$ ($\mathrm{M}^{+}, 35 \%$).

2-Amino-4-(4-chlorophenyl)-8-(2-(4-chlorophenyl)hydrazono)-7-oxo-1,4,5,6,7,8-hexahydroqui-noline-3-carbonitrile (60). Orange crystals from 1,4-dioxane, yield ($3.32 \mathrm{~g}, 76 \%$), Mp 185-187 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3473-3352 (NH_{2}, NH), $3053(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1696(\mathrm{C}=\mathrm{O})$, $1641(\mathrm{C}=\mathrm{N}), 1635(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.63-3.13\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.89$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable NH_{2}), 5.08 ($\mathrm{s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4$), $7.24-7.53\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.33,8.42$ ($2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 36.7,41.2\left(2 \mathrm{CH}_{2}\right), 50.8$ (pyridine C-4), $117.1(\mathrm{CN}), 120.2,120.7,122.4,122.6,123.8,124.3,125.3,126.4\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.8$, 129.5, 130.4, 131.6 (pyridine C), $167.3(\mathrm{C}=\mathrm{N}), 168.8(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}$, 60.29 ; H, 3.91; N, 15.98\%. Found: C, 60.37; H, 3.78; N, 16.25\%. MS: m/z $438\left(\mathrm{M}^{+}, 48 \%\right)$.

4-(4-Chlorophenyl)-8-(2-(4-chlorophenyl)hydrazono)-2-hydroxy-7-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile ($6 p$). Pale yellow crystals from 1,4-dioxane, yield ($2.97 \mathrm{~g}, 68 \%$), Mp $171-173{ }^{\circ} \mathrm{C}$. IR (KBr) v max cm${ }^{-1}: 3538-3349(\mathrm{OH}, \mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1701$ $(\mathrm{C}=\mathrm{O}), 1646(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.83-3.21\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $5.05(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.23-7.59\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26,8.43\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), $10.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 37.8,41.5$ $\left(2 \mathrm{CH}_{2}\right)$, 51.4 (pyridine $\mathrm{C}-4$), $117.2(\mathrm{CN}), 120.3,120.8,121.5,121.9,123.6,124.8,125.1,126.3$ $\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 129.2,129.8,130.3,132.4$ (pyridine C), $166.6(\mathrm{C}=\mathrm{N}), 168.9(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 60.15 ; H, 3.67; N, 12.75\%. Found: C, $60.26 ; \mathrm{H}, 3.59 ; \mathrm{N}, 12.92 \%$. MS: m/z 439 ($\mathrm{M}^{+}, 48 \%$).

2-Amino-8-(2-(4-chlorophenyl) hydrazono)-4-(4-methoxyphenyl)-7-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile ($6 q$). Orange crystals from 1,4-dioxane, yield ($3.03 \mathrm{~g}, 70 \%$), $\mathrm{Mp}>300$ ${ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}$: 3483-3329 ($\left.\mathrm{NH}_{2}, \mathrm{NH}\right), 3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1687(\mathrm{C}=\mathrm{O})$, $1641(\mathrm{C}=\mathrm{N}), 1633(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{MHz}$): $\delta=2.58-3.14\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.64$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable $\left.\mathrm{NH}_{2}\right), 5.13(\mathrm{~s}, 1 \mathrm{H}$, pyran $\mathrm{H}-4), 7.26-7.55(\mathrm{~m}, 8 \mathrm{H}$, $2 \mathrm{C}_{6} \mathrm{H}_{4}$), 8.32. $8.42\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 37.3$, $41.8\left(2 \mathrm{CH}_{2}\right), 50.1\left(\mathrm{OCH}_{3}\right), 51.6$ (pyran C-4), $117.0(\mathrm{CN}), 120.3,120.5,121.8,122.9,124.3$, 124.6, 125.1, $126.0\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.1,129.6,130.2$, $131.3($ pyran C$), 165.4(\mathrm{C}=\mathrm{N}), 168.9(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}_{2}$: C, 63.67; H, 4.65; N, 16.14\%. Found: C, 63.92; H, 4.59; N, 16.26\%. MS: m/z 433 ($\mathrm{M}^{+}, 66 \%$).

8-(2-(4-Chlorophenyl)hydrazono)-2-hydroxy-4-(4-methoxyphenyl)-7-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile ($6 \mathbf{r}$). Pale yellow crystals from 1,4-dioxane, yield (3.38 g, 78\%), Mp 171-
$173{ }^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-1}: 3573-3352(\mathrm{OH}, \mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1688$ $(\mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1633(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.78-3.12\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.07(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.21-7.53\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26,8.42(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, 2 NH), $10.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 38.2,41.5\left(2 \mathrm{CH}_{2}\right), 50.4\left(\mathrm{OCH}_{3}\right), 50.8($ pyridine C-4), $116.7(\mathrm{CN}), 120.3,120.8,121.2,122.9$, 123.0, 123.7, 125.2, $126.5\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.4,129.4,130.2,131.6$ (pyridine C), $164.3(\mathrm{C}=\mathrm{N}), 168.8$ $(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{3}$: C, 63.52; H, 4.40; N, 12.88\%. Found: C, 63.63; H, 4.52; N, 13.05%. MS: $m / z 434\left(\mathrm{M}^{+}, 86 \%\right)$.

General procedure for the synthesis of the 5,6,7,8-tetrahydro-4H-chromene derivatives 8a-c. Each of benzaldehyde $(1.06 \mathrm{~g}, 0.01 \mathrm{~mol})$ and ethyl benzoylacetate $(1.92 \mathrm{~g}, 0.01 \mathrm{~mol})$ were added to a solution of either $\mathbf{3 a}(2.16 \mathrm{~g}, 0.01 \mathrm{~mol}), \mathbf{3 b}(2.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ or $\mathbf{3 c}(2.50 \mathrm{~g}, 0.01 \mathrm{~mol})$ in absolute ethanol (50 mL) containing triethylamine $(2.00 \mathrm{~mL})$. The whole reaction mixture was heated under reflux for 2 h then poured onto ice/water mixture containing a few drops of hydrochloric acid and the formed solid product was collected by filtration.

Ethyl 7-oxo-2,4-diphenyl-8-(2-phenylhydrazono)-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate (8a). Orange crystals from ethanol, yield ($3.15 \mathrm{~g}, 66 \%$), Mp $142-144^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-}$ ${ }^{1}$: 3439-3353 (NH), $3055\left(\mathrm{CH}\right.$, aromatic), 1699, $1688(2 \mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\mathrm{d}_{6}, 300 \mathrm{MHz}$): $\delta=1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.22 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.63-3.20\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $4.21\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.22 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.11(\mathrm{~s}, 1 \mathrm{H}$, pyran $\mathrm{H}-4), 7.24-7.53\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.31$ (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, NH); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75 \mathrm{MHz}$): $\delta 16.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 37.2,41.8$ $\left(2 \mathrm{CH}_{2}\right), 50.1$ (pyran C-4), $50.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 120.3,120.6,121.0,121.7,122.5,122.8$, 123.1, $123.4,124.3,125.2,125.6,126.7\left(3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.3,130.5,131.6,133.8$ (pyran C), $165.8(\mathrm{C}=\mathrm{N})$, 166.3, $168.7(2 \mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $75.30 ; \mathrm{H}, 5.48 ; \mathrm{N}, 5.85 \%$. Found: C, 75.51; H, 5.62; N, 5.73\%. MS: $m / z 478$ ($\mathrm{M}^{+}, 56 \%$).

Ethyl 7-oxo-2,4-diphenyl-8-(2-(p-tolyl)hydrazono)-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate ($8 \mathbf{b}$). Orange crystals from ethanol, yield ($3.64 \mathrm{~g}, 74 \%$), $\mathrm{Mp} 186-188^{\circ} \mathrm{C}$. IR (KBr) v max cm ${ }^{-}$ ${ }^{1}$: 3469-3336(NH), $3055\left(\mathrm{CH}\right.$, aromatic), 1694, $1689(2 \mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{N}), 1630(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.59 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.63$3.20\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.21\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.59 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.13(\mathrm{~s}, 1 \mathrm{H}$, pyran $\mathrm{H}-4), 7.21-7.58(\mathrm{~m}$, $14 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}$), $8.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 16.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{3}\right), 36.5,40.6\left(2 \mathrm{CH}_{2}\right)$, 50.3 (pyran C-4), $50.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 120.1,120.5$, $122.3,122.5,123.8,123.9,124.0,124.2,124.8,125.1,125.3,126.9\left(2 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.6$, 131.7, 132.5, 133.9 (pyran C), 165.2 (C=N), 166.6, $168.9(2 \mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 75.59$; H, 5.73; N, 5.69\%. Found: C, 75.31 ; H, 5.49; N, 5.82\%. MS: $m / z 492$ (M $\left.{ }^{+}, 48 \%\right)$.

Ethyl 8-(2-(4-chlorophenyl)hydrazono)-7-oxo-2,4-diphenyl-5,6,7,8-tetrahydro-4H-chromene-3carboxylate (8c). Orange crystals from ethanol, yield ($3.68 \mathrm{~g}, 72 \%$), Mp 173-175 ${ }^{\circ} \mathrm{C}$. IR (KBr) v $\operatorname{max~} \mathrm{cm}^{-1}: 3469-3336(\mathrm{NH}), 3055(\mathrm{CH}$, aromatic), 1694, $1689(\mathrm{C}=\mathrm{O}), 1643(\mathrm{C}=\mathrm{N}), 1630(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.80 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 2.61-3.23 ($2 \mathrm{t}, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 4.23\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.80 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}$, pyran $\mathrm{H}-4), 7.24-7.62\left(\mathrm{~m}, 14 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4}$), $8.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 16.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 36.2, $39.1\left(2 \mathrm{CH}_{2}\right), 50.4$ (pyran C-4), $51.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 120.4,120.8,122.2,123.0,123.6,123.8$, 124.2, 124.6, 125.0, 125.7, 126.2, $126.7\left(2 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.4,131.6,132.8,133.3$ (pyran C), $165.7(\mathrm{C}=\mathrm{N}), 166.2,168.5(2 \mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}: \mathrm{C}, 70.24 ; \mathrm{H}, 4.91 ; \mathrm{N}, 5.46 \%$. Found: C, 70.37; H, 5.16; N, 5.72\%. MS: m/z 512 ($\mathrm{M}^{+}, 32 \%$).

General procedure for the synthesis of the 4,5,6,8-tetrahydrochromeno[2,3-c]pyrazole derivatives 10a-c. Each of benzaldehyde ($1.06 \mathrm{~g}, 0.01 \mathrm{~mol}$) and 3-methyl-1 H -pyrazol-5(4H)-one
$(0.98 \mathrm{~g}, 0.01 \mathrm{~mol})$ were added to a solution of either $3 \mathbf{a}(2.16 \mathrm{~g}, 0.01 \mathrm{~mol}), \mathbf{3 b}(2.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ or $3 \mathbf{c}(2.50 \mathrm{~g}, 0.01 \mathrm{~mol})$ in absolute ethanol $(50 \mathrm{~mL})$ containing triethylamine $(2.00 \mathrm{~mL})$. The whole reaction mixture was heated under reflux for 2 h then poured onto ice/water mixture containing a few drops of hydrochloric acid and the formed solid product was collected by filtration.

3-Methyl-4-phenyl-8-(2-phenylhydrazono)-4,5,6,8-tetrahydrochromeno[2,3-c]pyrazol-7(1H)one (10a). Orange crystalsfrom ethanol, yield ($2.30 \mathrm{~g}, 60 \%$), Mp $135-137^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3453-3329(\mathrm{NH}), 3055\left(\mathrm{CH}\right.$, aromatic), $1699(\mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): ~ \delta=2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60-3.29\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.13(\mathrm{~s}, 1 \mathrm{H}$, pyran H-4), 7.26-7.45 (m, 10H, 2C $\mathrm{C}_{6} \mathrm{H}_{5}$), 8.27, $8.40\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2NH), ${ }^{13} \mathrm{C}$ NMR (DMSO- ${ }_{6}$, 75 MHz): $\delta 35.8\left(\mathrm{CH}_{3}\right), 37.4,41.5\left(2 \mathrm{CH}_{2}\right)$, 50.7 (pyran C-4), 120.1, 120.3, 121.9, 122.6, 123.8, $124.1,125.3,126.1\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.0,130.6,131.4,132.7$ (pyran C), 164.5, $165.2(2 \mathrm{C}=\mathrm{N}), 168.9$ $(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 71.86 ; H, $5.24 ; \mathrm{N}, 14.57 \%$. Found: C, $71.75 ; \mathrm{H}, 5.39$; N, 14.80%. MS: $m / z 384\left(\mathrm{M}^{+}, 38 \%\right)$.

3-Methyl-4-phenyl-8-(2-(p-tolyl)hydrazono)-4,5,6,8-tetrahydrochromeno[2,3-c]pyrazol-7(1H)one (10b). Orange crystals from ethanol, yield ($2.78 \mathrm{~g}, 70 \%$), Mp 180-182 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3481-3325(\mathrm{NH}), 3055\left(\mathrm{CH}\right.$, aromatic), $1697(\mathrm{C}=\mathrm{O}), 1644(\mathrm{C}=\mathrm{N}), 1630(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.68,2.73\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.62-3.30\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.11(\mathrm{~s}, 1 \mathrm{H}$, pyran H-4), 7.24-7.42 (m, $\left.9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.24,8.43\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH$) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75 \mathrm{MHz}$): $\delta 32.3,35.6\left(2 \mathrm{CH}_{3}\right)$, $37.1,41.2\left(2 \mathrm{CH}_{2}\right), 50.9$ (pyran C-4), 119.6, 120.8, 121.3, 122.9, 123.5, 124.7,125.5, $126.0\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.3,131.1,131.6,132.9$ (pyran C), 164.2, $165.8(2 \mathrm{C}=\mathrm{N}), 168.5(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $72.34 ; \mathrm{H}, 5.57 ; \mathrm{N}, 14.06 \%$. Found: C, 72.53 ; H, 5.44; N, 14.25\%. MS: m/z 398 ($\mathrm{M}^{+}, 40 \%$).

8-(2-(4-Chlorophenyl)hydrazono)-3-methyl-4-phenyl-4,5,6,8-tetrahydrochromeno-[2,3-c]pyra-zol-7(1H)-one (10c). Pale brown crystals from ethanol, yield ($2.29 \mathrm{~g}, 55 \%$), Mp $159-162^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) \cup \operatorname{max~cm}{ }^{-1}: 3471-3332(\mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $1701(\mathrm{C}=\mathrm{O}), 1644(\mathrm{C}=\mathrm{N}), 1630(\mathrm{C}=\mathrm{C})$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): \delta=2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62-3.15\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}$, pyran H-4), 7.22-7.54 (m, 9H, C $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}$), 8.31, 8.42 ($2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, 2NH); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right): \delta 34.3\left(\mathrm{CH}_{3}\right), 37.1,41.9\left(2 \mathrm{CH}_{2}\right), 50.5$ (pyran C-4), 120.3, 120.8, 121.2, 121.8, 122.5, 124.6,125.0, $125.7\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.2,130.3,131.1,132.2$ (pyran C), 164.8, $165.7(2 \mathrm{C}=\mathrm{N})$, $168.6(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2}: \mathrm{C}, 65.95 ; \mathrm{H}, 4.57$; $\mathrm{N}, 13.38 \%$. Found: C, 66.15; H, 4.70; N, 13.52\%. MS: m/z 418 ($\mathrm{M}^{+}, 21 \%$).

General procedure for the synthesis of the 5,6,7,8-tetrahydro-4H-chromene derivatives 12a-c. Each of benzaldehyde ($1.06 \mathrm{~g}, 0.01 \mathrm{~mol}$) and 3-oxo- $N, 3$-diphenylpropanamide ($2.39 \mathrm{~g}, 0.01 \mathrm{~mol}$) were added to a solution of either $3 \mathbf{a}(2.16 \mathrm{~g}, 0.01 \mathrm{~mol}), \mathbf{3 b}(2.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ or $3 \mathbf{c}(2.50 \mathrm{~g}, 0.01$ mol) in 1,4-dioxane (50 mL) containing triethylamine (2.00 mL). The whole reaction mixture was heated under reflux for 5 h then poured onto ice/water mixture containing a few drops of hydrochloric acid and the formed solid product was collected by filtration.

7-Oxo-N,2,4-triphenyl-8-(2-phenylhydrazineylidene)-5,6,7,8-tetrahydro-4H-chromene-3-carboxamide (12a). Orange crystals from 1,4-dioxane, yield ($3.67 \mathrm{~g}, 70 \%$), Mp 180-182 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v \operatorname{max~} \mathrm{~cm}^{-1}: 3478-3339(\mathrm{NH}), 3055\left(\mathrm{CH}\right.$, aromatic), $1689(\mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): ~ \delta=2.61-3.23\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.15(\mathrm{~s}, 1 \mathrm{H}$, pyran H-4), 7.21-7.56 ($\mathrm{m}, 20 \mathrm{H}, 4 \mathrm{C}_{6} \mathrm{H}_{5}$), $8.23,8.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): δ $37.4,41.6\left(2 \mathrm{CH}_{2}\right), 50.1($ pyran C-4), 119.8, 120.1, 120.8, 121.2, 121.5, 122.3, 122.5, 123.0, 123.6, $124.2,124.6,124.8,125.2,125.8,126.2,126.9\left(4 \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.3,130.5,131.6,133.8$ (pyran C),
$165.9(\mathrm{C}=\mathrm{N})$, 167.3, $168.6(2 \mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 77.70; $\mathrm{H}, 5.18 ; \mathrm{N}, 7.99 \%$. Found: C, $77.89 ; \mathrm{H}, 5.42$; N, 8.03\%. MS: $m / z 525$ (M $\mathrm{M}^{+}, 42 \%$).

7-Oxo-N,2,4-triphenyl-8-(2-(p-tolyl)hydrazineylidene)-5,6,7,8-tetrahydro-4H-chromene-3-carboxamide (12b). Yellow crystals from 1,4-dioxane, yield (3.66 g, 68\%), Mp 135-137 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v \max \mathrm{~cm}^{-1}: 3495-3346(\mathrm{NH}), 3054(\mathrm{CH}$, aromatic), 1698, $1689(2 \mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1630$ $(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right): \delta=2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.61-3.24\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.16(\mathrm{~s}$, 1 H , pyran $\mathrm{H}-4), 7.25-7.56\left(\mathrm{~m}, 19 \mathrm{H}, 3 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.25,8.32\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH$)$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta 34.2\left(\mathrm{CH}_{3}\right), 36.5,40.6\left(2 \mathrm{CH}_{2}\right), 50.3$ (pyran C-4), 120.2, 120.4, $121.3,121.8,122.3,122.4,123.2,123.5,123.8,124.0,124.2,124.8,125.1,125.3,126.0,126.5$ $\left(3 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.3,131.2,132.3,133.6($ pyran C$), 165.5(\mathrm{C}=\mathrm{N}), 164.6,168.7(2 \mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 77.90 ; H, 5.42; N, 7.79%. Found: C, $78.21 ; \mathrm{H}, 5.36 ; \mathrm{N}, 7.80 \%$. MS: m/z 539 ($\mathrm{M}^{+}, 34 \%$).

8-(2-(4-Chlorophenyl)hydrazineylidene)-7-oxo-N,2,4-triphenyl-5,6,7,8-tetrahydro-4H-chromene -3-carboxamide (12c). Orange crystals from 1,4-dioxane, yield ($3.80 \mathrm{~g}, 68 \%$), Mp $155-157{ }^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3469-3339(\mathrm{NH}), 3055(\mathrm{CH}$, aromatic), 1695, $1688(2 \mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{N})$, $1630(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\left.-d_{6}, 300 \mathrm{MHz}\right): ~} \delta=2.63-3.25\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.09(\mathrm{~s}, 1 \mathrm{H}$, pyran $\mathrm{H}-4), 7.21-7.58\left(\mathrm{~m}, 19 \mathrm{H}, 3 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.25,8.31\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH$) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75 \mathrm{MHz}$): $\delta 36.2,39.1\left(2 \mathrm{CH}_{2}\right), 50.7$ (pyran C-4), 119.3, 120.1, 120.5, 121.3, 121.6, $121.9,122.2,123.0,123.8,123.8,124.2,124.6,125.2,125.5,126.0,126.3\left(3 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.1$, 131.2, 132.4, 133.1 (pyran C), $165.4(\mathrm{C}=\mathrm{N}), 166.2,168.7(2 \mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, $72.92 ;$ H, $4.68 ;$ N, 7.50%. Found: C, $73.26 ; \mathrm{H}, 4.72 ; \mathrm{N}, 7.74 \%$. MS: $m / z 560\left(\mathrm{M}^{+}, 36 \%\right)$.

General procedure for the synthesis of the 1,4,5,6,7,8-hexahydroquinoline derivatives 14a-f. Each of benzaldehyde $(1.06 \mathrm{~g}, 0.01 \mathrm{~mol})$ and either 2 -cyanoacetamide $(0.84 \mathrm{~g}, 0.01 \mathrm{~mol})$ or 2cyanoethanethioamide $(1.00 \mathrm{~g}, 0.01 \mathrm{~mol})$ were added to a solution of either $\mathbf{3 a}(2.16 \mathrm{~g}, 0.01 \mathrm{~mol})$, $\mathbf{3 b}(2.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ or $\mathbf{3 c}(2.50 \mathrm{~g}, 0.01 \mathrm{~mol})$ in 1,4-dioxane $(50 \mathrm{~mL})$ containing triethylamine $(2.00 \mathrm{~mL})$. The whole reaction mixture was heated under reflux for 2 h then poured onto ice/water mixture containing a few drops of hydrochloric acid and the formed solid product was collected by filtration.

2-Hydroxy-7-oxo-4-phenyl-8-(2-phenylhydrazineylidene)-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile (14a). Yellow crystals from 1,4-dioxane, yield (2.77 g, 75\%), Mp 170-172 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v \max \mathrm{~cm}^{-1}: 3564-3372(\mathrm{OH}, \mathrm{NH}), 3055(\mathrm{CH}$, aromatic $), 2220(\mathrm{CN}), 1689(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{N})$, $1630(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.60-3.28\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.13(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.25-7.48\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.28,8.34\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH$), 10.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right): \delta 36.2,39.5\left(2 \mathrm{CH}_{2}\right)$, 50.4 (pyridine C-4), $116.7(\mathrm{CN}), 119.6,120.1,122.2,123.0,123.8,123.6,124.2,124.6\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.3,131.6,132.1$, 133.8 (pyridine C), $165.6(\mathrm{C}=\mathrm{N}) 168.9(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 71.34; H, 4.90; N, 15.13%. Found: C, $71.59 ; \mathrm{H}, 4.78 ;$ N, 15.08%. MS: $m / z 370\left(\mathrm{M}^{+}, 48 \%\right)$.

2-Mercapto-7-oxo-4-phenyl-8-(2-phenylhydrazineylidene)-1,4,5,6,7,8-hexahydro-quinoline-3carbonitrile (14b). Yellow crystals from 1,4-dioxane, yield ($2.54 \mathrm{~g}, 66 \%$), Mp 180-184 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v$ max $\mathrm{cm}^{-1}: 3487-3339(\mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1688(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{N})$, $1630(\mathrm{C}=\mathrm{C}), 1205(\mathrm{SH}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): \delta=2.62-3.27\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.15(\mathrm{~s}$, 1 H , pyridine $\mathrm{H}-4)$, $7.22-7.52\left(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.26,8.38\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH$)$, $10.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, SH$) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right): \delta 36.2,39.8\left(2 \mathrm{CH}_{2}\right), 50.6$ (pyridine C-4), $116.9(\mathrm{CN}), 119.4,120.5,121.8,122.7,123.6,124.0,124.6,124.8\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 130.0$, 131.7, 132.5, 133.3 (pyridine C), $165.4(\mathrm{C}=\mathrm{N}) 168.5(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$: C,
68.37; H, 4.69; N, 14.50; S, 8.30\%. Found: C, 68.44; H, 4.82; N, 14.36; S, 8.49\%. MS: $m / z 386$ ($\mathrm{M}^{+}, 36 \%$).

2-Hydroxy-7-oxo-4-phenyl-8-(2-(p-tolyl)hydrazineylidene)-1,4,5,6,7,8-hexahydro-quinoline-3carbonitrile (14c). Yellow crystals from 1,4-dioxane, yield ($2.30 \mathrm{~g}, 60 \%$), Mp 205-207 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3587-3352(\mathrm{OH}, \mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1689(\mathrm{C}=\mathrm{O}), 1642$ $(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.64-3.28\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.87(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $5.18(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.24-7.56\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.23,8.35\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), $10.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): δ 36.0, $39.6\left(2 \mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{3}\right), 50.8($ pyridine $\mathrm{C}-4), 116.8(\mathrm{CN}), 119.1,119.6,121.6,122.3,123.2$, 124.2, 124.8, $125.3\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.2,131.5,132.2,135.6$ (pyridine C), $165.2(\mathrm{C}=\mathrm{N}) 168.6$ (C=O). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 71.86 ; H, 5.34; $\mathrm{N}, 14.57$ \%. Found: C, $71.68 ; \mathrm{H}, 5.24 ; \mathrm{N}$, 14.30%. MS: $m / z 384$ ($\mathrm{M}^{+}, 56 \%$).

2-Mercapto-7-oxo-4-phenyl-8-(2-(p-tolyl) hydrazineylidene)-1,4,5,6,7,8-hexahydro-quinoline-3carbonitrile (14d). Yellow crystals from 1,4-dioxane, yield ($2.54 \mathrm{~g}, 64 \%$), Mp $180-184^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3487-3339(\mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2222(\mathrm{CN}), 1688(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{N})$, $1630(\mathrm{C}=\mathrm{C}), 1205(\mathrm{SH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right): \delta=2.62-3.27\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.88(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.15(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.22-7.52\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26,8.38\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), 10.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, SH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}^{-} \mathrm{d}_{6}, 75 \mathrm{MHz}$): δ $36.2,39.8\left(2 \mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{3}\right), 50.6($ pyridine $\mathrm{C}-4), 116.7(\mathrm{CN}), 119.4,120.5,121.8,122.7$, 123.6, 124.0, 124.6, $124.8\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.0,131.7,132.5,133.3$ (pyridine C), $165.4(\mathrm{C}=\mathrm{N}) 168.5$ $(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}$: C, 68.98 ; $\mathrm{H}, 5.03 ; \mathrm{N}, 13.99 ; \mathrm{S}, 8.00 \%$. Found: C, $68.73 ; \mathrm{H}$, 4.92; N, 14.18; S, 8.21\%. MS: $m / z 400\left(\mathrm{M}^{+}, 28 \%\right)$

8-(2-(4-Chlorophenyl)hydrazineylidene)-2-hydroxy-7-oxo-4-phenyl-1,4,5,6,7,8-hexa-hydroqui-noline-3-carbonitrile ($\mathbf{1 4 e}$). Yellow crystals from 1,4-dioxane, yield ($2.22 \mathrm{~g}, 55 \%$), Mp 235-237 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max cm^{-1} : 3551-3348 (OH, NH), $3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1688(\mathrm{C}=\mathrm{O})$, $1642(\mathrm{C}=\mathrm{N}), 1632(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300 \mathrm{MHz}\right): \delta=2.62-3.20\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.18$ (s, 1 H , pyridine $\mathrm{H}-4$), $7.21-7.58\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.22,8.38\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), 10.34 (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable, OH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta 36.2,39.5$ $\left(2 \mathrm{CH}_{2}\right), 50.4$ (pyridine C-4), $116.8(\mathrm{CN}), 119.2,119.8,120.2,121.8,122.2,124.6,124.9,125.6$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.2,131.8,132.6,135.1$ (pyridine C), $165.6(\mathrm{C}=\mathrm{N}) 168.8(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2}$: C, 65.27; H, 4.23; N, 13.84\%. Found: C, $65.41 ; \mathrm{H}, 4.56 ; \mathrm{N}, 13.96 \%$. MS: $m / z 404$ ($\mathrm{M}^{+}, 48 \%$).

8-(2-(4-Chlorophenyl)hydrazineylidene)-2-mercapto-7-oxo-4-phenyl-1,4,5,6,7,8-hexa-hydroqui-noline-3-carbonitrile (14f). Yellow crystals from 1,4-dioxane, yield ($2.94 \mathrm{~g}, 70 \%$), Mp 222-225 ${ }^{\circ} \mathrm{C}$. IR (KBr) v max $\mathrm{cm}^{-1}: 3489-3348(\mathrm{NH}), 3055(\mathrm{CH}$, aromatic), $2220(\mathrm{CN}), 1688(\mathrm{C}=\mathrm{O}), 1640$ $(\mathrm{C}=\mathrm{N}), 1630(\mathrm{C}=\mathrm{C}), 1205(\mathrm{SH}) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right): \delta=2.64-3.32\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, $5.15(\mathrm{~s}, 1 \mathrm{H}$, pyridine $\mathrm{H}-4), 7.22-7.52\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26,8.38\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable, 2 NH), 10.41 (s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exchangeable, SH); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 75 \mathrm{MHz}$): $\delta \quad 36.2,39.8$ $\left(2 \mathrm{CH}_{2}\right)$, 50.6 (pyridine $\mathrm{C}-4$), $116.7(\mathrm{CN}), 119.2,120.3,120.7,122.8,123.4,124.2,124.3,124.9$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 130.4,131.2,132.4,133.7$ (pyridine C), $165.2(\mathrm{C}=\mathrm{N}) 168.7(\mathrm{C}=\mathrm{O})$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{OS}: \mathrm{C}, 62.78$; H, 4.07; N, 13.31; S, 7.62%. Found: C, 62.90 ; H, 4.25 ; N, 13.26; S, 7.80\%. MS: $m / z 420\left(\mathrm{M}^{+}, 68 \%\right)$.

CONCLUSION

In this work the adopted the synthesis of heterocyclic compounds starting from arylhydrazone derivatives of cyclohexan-1,3-dione through different multi-component reactions. Different measurements were carried out to evaluate the target molecules as anticancer agents. Seven
compounds were the most common potent compounds toward the cancer cell lines, c-Met kinase, PC-3 cell line, tyrosine kinases. Whereas, eight compounds were the most common potent compounds toward Pim-1 kinase. The results obtained in this work encourage further work in the future since many compounds were considered as promising anticancer agents.

REFERENCES

1. Fan, H.; Wu, Q.; Simon, J.E.; Lou, S.N.; Ho, C.T. Authenticity analysis of citrus essential oils by HPLC-UV-MS on oxygenated heterocyclic components. J. Food Drug Anal. 2015, 23, 3039.
2. Delannée, V.; Langouët, S.; Siegel, A.; Théret, N. In silico prediction of heterocyclic aromatic amines metabolism susceptible to form DNA adducts in humans. Toxicol. Lett. 2019, 300, 1830.
3. Kalaria, P.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem. 2018, 158, 917-936.
4. Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole- N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem. 2020, 94, 103382.
5. Dhameja, M.; Gupta, P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur. J. Med. Chem. 2019, 176, 343-377.
6. Xuea, Y.; He, X.; Yang, T.; Wang, Y.; Liu, Z.; Zhang, G.; Wang, Y.; Wang, K.; Zhang, L.; Zhang, L. Discovery of fused heterocyclic carboxamide derivatives as novel $\alpha 7-\mathrm{nAChR}$ agonists: synthesis, preliminary SAR and biological evaluation. Eur. J. Med. Chem. 2019, 182, 111618.
7. Sulzbach, M.; Kunjapur, A.M. The pathway less traveled: Engineering biosynthesis of nonstandard functional groups. Trends Biotechnol. 2020, 38, 532-545.
8. Miyazaki, R.; Akiyam, Y.; Mori, H. A photo-cross-linking approach to monitor protein dynamics in living cells. Bioch. Bioph. Acta (BBA) 2020, 1864, 129317.
9. El-Naggar, M.M.; Haneen, D.S.; Mehany, A.B.M.; Khalil, M.T. New synthetic chitosan hybrids bearing some heterocyclic moieties with potential activity as anticancer and apoptosis inducers. Inter. J. Biol. Macromol. 2020, 150, 1323-1330.
10. Yaqoob, M.; Gul, S.; Zubair, N.F.; Iqbal, J.; Iqbal, M.A. Theoretical calculation of selenium N-heterocyclic carbene compounds through DFT studies: synthesis, characterization and biological potential. J. Mol. Struct. 2020, 1204, 127462.
11. Nithyabalaji, R.; Krishnana, H.; Subha, J.; Sribalan, R. Synthesis, molecular structure, in vitro and in silico studies of 4-phenylmorpholine-heterocyclic amides. J. Mol. Struct. 2020, 1204, 127563.
12. Yaşar, S.; Köprülü, T.K.; Tekin, S.; Yaşar, S. Synthesis, characterisation and cytotoxic properties of N-heterocyclic carbene silver(I) complexes. Inorg. Chim. Acta 2018, 479, 1723.
13. Gerry, C.J; Schreiber, S.L. Recent achievements and current trajectories of diversity-oriented synthesis. Curr. Opinion Chem. Biol. 2020, 56, 1-9.
14. Jeffries, D.E.; Lindsley, C.W. A one-pot, multi-component reaction cascade for the rapid synthesis of diversely functionalized heteroaryl methyl substrates. Tetrahedron Lett. 2017, 58, 112-116.
15. Saouli, S.; Selatnia, I.; Zouchoune, B.; Professor, A.S.; Zendaoui, S.M.; Bensouici, C.; Bendeif, E. Synthesis, spectroscopic characterization, crystal structure, DFT studies and biological activities of new hydrazone derivative: 1-(2,5-bis((E)-4-isopropyl-benzylidene)cyclopentylidene)-2-(2,4-dinitrophenyl) hydrazine. J. Molec. Struc. 2020, 1213, 128203.
16. Coimbra, E.S.; Souza, M.V.; Terror, M.S.; Pinheiro, A.C; Granato, J.T. Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur. J. Med. Chem. 2019, 184, 111742.
17. Belskaya, N.P.; Dehaen, W.; Bakulev, V.A. Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions. ARKIVOC 2010, 9, 275-332.
18. Mohareb, R.M; Ebrahim, R.A.; Alwan, E.S. Multi-component reactions of cyclohexan-1,3diketones to produce fused pyran derivatives with antiproliferative activities and tyrosine Kinases, Pim-1 Kinase inhibitions. Acta. Chim. Slov. 2021, 68, 51-64.
19. Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen. A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.Y.; Teffera, Y.; Yang, Y.J.; Zhang, Y.H.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2- methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem. 2008, 51, 3688-3691.
20. Peach, M.L.; Tan, N.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R.; Nicklaus, M.C.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem. 2009, 52, 943-951.
21. Bacco, F.D.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radio resistance and invasive growth of cancer. J. Natl. Cancer Inst. 2011, 103, 645-661.
22. Tang, Q.; Wang, L.; Tu, Y.; Zhu, W.; Luo, R.; Tu, Q.; Wang, P.; Wu, C.; Gong, P.; Zheng, P. Discovery of novel pyrrolo[2,3-b]pyridine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Bioorg. Med. Chem. Lettt. 2016, 26, 1680-1684.
23. Liu, J.; Nie, M.; Wang, Y.; Hu, J.; Zhang, F.; Gao, Y.; Liu, Y.; Gong, P. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4triazolone moiety as c-Met kinase inhibitors. Eur. J. Med. Chem. 2016, 123, 431-446.
24. Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2fluorophenoxy) quinoline derivatives bearing 4-oxo-1, 4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem. 2013, 21, 2843-2855.
25. DiSalvo, J.; Bayne, M.L.; Conn, G.; Kwok, P.W.; Trivedi, P.G.; Soderman, D.D.; Palisi, T.M.; Sullivan, K.A.; Thomas, K.A. Purification and characterization of a naturally occurring vascular endothelial growth factor placenta growth factor heterodimer. J. Biol. Chem. 1995, 270, 7717-7723.
26. Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1993, 219, 983-985.
