SYNTHESIS AND STRUCTURE OF A RHENIUM(V) COMPLEX CONTAINING A TRIDENTATE IMIDO-COORDINATED SCHIFF BASE

Irvin Booysen ${ }^{1}$, Thomas I.A. Gerber ${ }^{1 *}$, Eric Hosten ${ }^{1}$ and Peter Mayer ${ }^{2}$
${ }^{1}$ Department of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa
${ }^{2}$ Department of Chemistry, Ludwig-Maximilians University, D-81377 München, Germany

(Received April 16, 2007; revised May 2, 2007)

Abstract

The six-coordinate complex $\left[\operatorname{Re}(\mathrm{mps}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)\right]$ (1) $\left(\mathrm{H}_{3} \mathrm{mps}=N\right.$-(2-amino-3-methylphenyl) salicylideneimine) was prepared by the reaction of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ with $\mathrm{H}_{3} \mathrm{mps}$ in the presence of triphenylphosphine and hydrochloric acid in glacial acetic acid. Crystallization from acetonitrile gave the product 1. $\mathrm{CH}_{3} \mathrm{CN}$. The compound was characterized by spectroscopy and X-ray crystallography. The results show that the tridentate mps ligand coordinates via the doubly deprotonated 2 -amino nitrogen (which is present in $\mathbf{1}$ as an imide), the neutral imino nitrogen and the phenolate oxygen. The imide and phenolate oxygen are trans to each other in a distorted octahedral geometry around the rhenium (V) centre, with the two chlorides in cis positions.

KEY WORDS: Reduction of perrhenate, Rhenium(V), Imido donor atom, Crystal structure

INTRODUCTION

The use of compounds of the ${ }^{186 / 188} \mathrm{Re}$ isotopes as therapeutic agents in nuclear medicine has rekindled interest in the coordination chemistry of rhenium. Complexes are normally prepared from perrhenates, and usually have the oxo group as a ligand and the metal in the +5 oxidation state [1]. One of the disadvantages of this approach is that the oxo group dominates the structures, geometries, reactivity and magnetic properties, and puts limitations on the exploration of rhenium (V) coordination chemistry. For this reason current research efforts are focussing on oxo-free rhenium (V) compounds with metal-nitrogen multiple bonds, for example metal-nitrido, metal-hydrazido and metal-imido complexes [2, 3].

We have synthesized several stable $\operatorname{Re}(\mathrm{V})$ complexes containing the phenylimido core, $\mathrm{Re}=\mathrm{NC}_{6} \mathrm{H}_{4}-\mathrm{X}$, obtained by deprotonation of a precursor containing an amino group. An advantage of the phenylimido moiety is that it can be functionalized and derivatized, but a disadvantage is that phenylimidorhenium (V) compounds having monodentate ligands in the coordination sphere are hydrolytically unstable [4]. For this reason, the synthesis of rhenium(V) complexes containing multidentate imido-containing ligands is important.

We recently reported the structure of the rhenium (V) complex $\left[\mathrm{Re}(\mathrm{mps}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{ReO}_{4}\right]$, synthesized from the reaction of trans- $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with the Schiff base N-(2-amino-3methylphenyl)salicylideneimine $\left(\mathrm{H}_{3} \mathrm{mps}\right)$ in ethanol [5]. We now describe the reduction of [$\left.\mathrm{ReO}_{4}\right]^{-}$with triphenylphosphine in the presence of $\mathrm{H}_{3} \mathrm{mps}$ and hydrochloric acid.

EXPERIMENTAL

Ammonium perrhenate, salicylaldehyde and 3-methyl-1,2-diaminobenzene were obtained commercially from Aldrich. The scientific instrumentation used is the same as reported elsewhere [6]. Infrared spectra were obtained by use of KBr discs and ${ }^{1} \mathrm{H}$ NMR spectra were run in d_{6}-DMSO. The orange $\mathrm{H}_{3} \mathrm{mps}$ ligand was synthesized by the condensation of salicylaldehyde and 3-methyl-1,2-diaminobenzene in a boiling ethanol/benzene mixture.

[^0]$\left[\operatorname{Re}(m p s) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{CN}\left(1 . \mathrm{CH}_{3} \mathrm{CN}\right)$

To $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right](100 \mathrm{mg}, 0.37 \mathrm{mmol})$ in 0.34 mL of concentrated HCl and 10 mL of glacial acetic acid was added a mixture of $0.098 \mathrm{~g}(0.37 \mathrm{mmol})$ of PPh_{3} and 0.169 g of $\mathrm{H}_{3} \mathrm{mps}(0.75$ mmol), dissolved in 10 mL of glacial acetic acid. The mixture was stirred for 3 h at room temperature, during which time an orange precipitate of 1 formed ($0.127 \mathrm{~g} ; 48 \%$). This was filtered off and washed with acetic acid and diethyl ether. To the mother liquor was added 5 mL of acetonitrile, and slow evaporation of this mixture at room temperature gave orange crystals, which were washed with diethyl ether, then dried under vacuum. Yield of $1 . \mathrm{CH}_{3} \mathrm{CN}=0.106 \mathrm{~g}$ (37 \%), m.p. 198-200 ${ }^{\circ} \mathrm{C}$. Anal. calcd. (\%): C, 52.11 ; H, 3.73; N, 5.36. Found: C, 52.36; H 3.61; N, 5.22. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{C}=\mathrm{N}) 1598 ; v(\operatorname{Re}=\mathrm{N}) 1096, v(\operatorname{Re}-\mathrm{N}) 534 ; v(\operatorname{Re}-\mathrm{O}) 466 ; v(\operatorname{Re}-\mathrm{Cl}) 324,318$. ${ }^{1} \mathrm{H}$ NMR (ppm): $13.66(\mathrm{~s}, 1 \mathrm{H}, H(7)), 7.61-7.33(\mathrm{~m}, 16 \mathrm{H}, \mathrm{PPh} 3, \mathrm{H}(2)), 7.17(\mathrm{~d}, 1 \mathrm{H}, H(11)), 7.08$ $(\mathrm{t}, 1 \mathrm{H}, H(4)), 6.96(\mathrm{t}, 1 \mathrm{H}, H(3)), 6.82(\mathrm{~d}, 1 \mathrm{H}, H(13)), 6.74(\mathrm{~d}, 1 \mathrm{H}, H(5)), 6.66(\mathrm{t}, 1 \mathrm{H}, H(12))$, 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$). UV-Vis (DMF) ($\lambda\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$): 329 (7400), 375 (3400), 491 (800). Conductivity $\left(10^{-3} \mathrm{M}, \mathrm{CH}_{3} \mathrm{CN}\right)=31 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
X-ray structure

Data collection was on a Nonius Kappa CCD diffractometer at 200 K with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. The structure was solved by direct methods and refined by full-matrix least-squares procedures using SHELXL-97 [7]. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were calculated in idealized geometrical positions. Data were corrected by a numerical absorption correction [8] after optimising the crystal shape with XShape [9]. Crystal and refinement data are given in Table 1. Selected bond lengths and angles are given in Table 2.

Table 1. Crystal data and structure refinement for $1 . \mathrm{CH}_{3} \mathrm{CN}$.

Chemical formula	$\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{OPCl}{ }_{2} \mathrm{Re}$
Formula weight	783.70
Crystal system	Orthorhombic
Space group	$P b c a$
Unit cell dimensions (\AA))	$a=18.4648(2)$
	$b=15.2651(1)$
	$c=22.0463(2)$
Volume $\left(\AA^{3}\right)$	$6214.1(1)$
Z	8
Density (calc.) $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.675
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	4.167
F (000)	3088
Crystal size (mm)	$0.09 \times 0.18 \times 0.22$
θ range for data collection $\left({ }^{\circ}\right)$	$3.2-27.5$
Index ranges	$-23 \leq h \leq 23 ;-19 \leq k \leq 19 ;-28 \leq \ell \leq 28$
Reflections measured	13521
Independent/observed reflections	$7100 / 5706$
Data/parameters	$7100 / 380$
Goodness-of-fit on F_{2}	1.07
Final R indices $[I>2 \sigma(I)]$	$0.0348, w R 2=0.0809$
Largest diff. peak and hole $\left(\mathrm{e} / \AA^{3}\right)$	$1.42 /-2.06$

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.

$\mathrm{Re}-\mathrm{O}$	$1.926(3)$	$\mathrm{Re}-\mathrm{N}(2)$	$1.768(4)$
$\mathrm{Re}-\mathrm{Cl}(1)$	$2.373(1)$	$\mathrm{Re}-\mathrm{N}(1)$	$2.162(3)$
$\mathrm{Re}-\mathrm{P}$	$2.420(1)$	$\mathrm{Re}-\mathrm{Cl}(2)$	$2.422(1)$
$\mathrm{C}(1)-\mathrm{O}$	$1.343(6)$	$\mathrm{C}(7)-\mathrm{N}(1)$	$1.311(6)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.422(6)$	$\mathrm{N}(2)-\mathrm{C}(9)$	$1.448(6)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$88.85(4)$	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{N}(1)$	$85.2(1)$
$\mathrm{O}-\mathrm{Re}-\mathrm{N}(2)$	$157.8(2)$	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{P}$	$175.09(4)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{O}$	$96.52(9)$	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{P}$	$93.30(4)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{N}(2)$	$105.3(2)$	$\mathrm{C}(1)-\mathrm{O}-\mathrm{Re}$	$136.0(3)$
$\mathrm{Re}-\mathrm{N}(2)-\mathrm{C}(9)$	$127.7(3)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$113.3(3)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(2)$	$76.1(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$126.8(4)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{O}$	$82.6(1)$	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{P}$	$92.6(1)$

RESULTS AND DISCUSSION

The complex cis-[Re(mps)Cl $\left.\left(\mathrm{PPh}_{3}\right)\right](\mathbf{1})$ was prepared in good yield (85%) by the reduction of $\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]$ with triphenylphosphine in the presence of two mole equivalents of $\mathrm{H}_{3} \mathrm{mps}$ in glacial acetic acid, according to the equation
$\left[\mathrm{NH}_{4}\right]\left[\mathrm{ReO}_{4}\right]+\mathrm{H}_{3} \mathrm{mps}+3 \mathrm{HCl}+2 \mathrm{PPh}_{3} \rightarrow \mathbf{1}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{OPPh}_{3}$
Spectroscopic and X-ray crystallographic results indicate that the mps is present in $\mathbf{1}$ as a trinegative tridentate ligand, with coordination through the doubly deprotonated amino nitrogen (to form a coordinated imido group), the imino nitrogen and the deprotonated phenolic oxygen atom. Complex $\mathbf{1}$ is diamagnetic and a non-electrolyte in acetonitrile, and it is only soluble in the polar solvents, e.g. DMF, DMSO and acetonitrile.

The IR spectrum of $\mathbf{1}$ displays the $\mathrm{Re}=\mathrm{N}$ stretching frequency as a medium-intensity band at $1096 \mathrm{~cm}^{-1}$, with no band in the $920-990 \mathrm{~cm}^{-1}$ region that can be ascribed to $v(\mathrm{Re}=\mathrm{O})$. The $\mathrm{Re}-\mathrm{N}$ and $\mathrm{Re}-\mathrm{O}$ stretches appear at 534 and $466 \mathrm{~cm}^{-1}$, respectively, and medium-intensity bands at 324 and $318 \mathrm{~cm}^{-1}$ are typical of $v(\mathrm{Re}-\mathrm{Cl})$. Although the ${ }^{1} \mathrm{H}$ NMR spectrum of the complex is dominated by the signals of the phosphine protons, the aromatic region integrates for 23 protons. The signal of the methine proton, $\mathrm{H}(7)$, appears far downfield as a singlet at 13.66 ppm , and the signal of $\mathrm{H}(2)$ is hidden under a sixteen-proton multiplet at $7.33-7.61 \mathrm{ppm}$. The signals of the other protons of the mps ligand are clearly distinguishable as a doublet-triplet-triplet-doublet-doublet-triplet sequence in the region 6.66-7.17 ppm.

The electronic spectrum of $\mathbf{1}$ in DMF shows two intense absorptions at 329 and 375 nm , with a weaker one at 491 nm . With reference to previous spectroscopic studies [10], the intense band at 329 nm , with an extinction coefficient of $7400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, is tentatively assigned to a ligand-to-metal charge transfer transition $\left[p_{\pi}\left(N^{2-}\right) \rightarrow d^{*}(R e)\right]$, and the one at 375 nm to the $\mathrm{p}_{\pi}\left(\mathrm{Cl}^{-}\right) \rightarrow \mathrm{d}^{*}(\mathrm{Re})\left(\mathrm{d}_{\pi}^{*}=\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}\right)$. The weak absorption at 491 nm is probably due to a $\left(\mathrm{d}_{\mathrm{xy}}\right)^{2} \rightarrow$ $\left(\mathrm{d}_{\mathrm{xy}}\right)^{1}\left(\mathrm{~d}^{*}{ }_{\pi}\right)^{1}$ transition.

X-ray crystallographic analysis of $1 . \mathrm{CH}_{3} \mathrm{CN}$ shows that the rhenium (V) ion is in an octahedral environment with the equatorial plane formed by the $\mathrm{PCl}_{2} \mathrm{~N}(1)$ donor set (Figure 1). The octahedron is severely distorted with large deviations from orthogonality for $\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{N}(2)$ $\left[105.3(2)^{\circ}\right], \mathrm{Cl}(1)-\mathrm{Re}-\mathrm{O}\left[96.52(9)^{\circ}\right]$ and $\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{N}(2)\left[96.3(1)^{\circ}\right]$. The $\mathrm{N}(2)-\mathrm{Re}-\mathrm{O}$ angle is $157.8(2)^{\circ}$ and the $\mathrm{P}-\mathrm{Re}-\mathrm{Cl}(2)$ angle $175.09(4)^{\circ}$. The dihedral angle between two phenyl rings of mps is 13.65° and the two bite angles of mps are $\mathrm{N}(1)-\mathrm{Re}-\mathrm{O}=82.6(1)^{\circ}$ and $\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(2)=$ 76.1(2) ${ }^{\circ}$.

The mps ligand acts as a terdentate trianionic moiety, with $\mathrm{N}(2)$ coordinated to Re as a dinegative imido nitrogen atom. The $\operatorname{Re}-\mathrm{N}(2)$ bond length $[1.768(4) \AA$ is is slightly longer than normally observed [1.726-1.740 Å] for the phenylimido unit [3, 11], but considerably shorter than the values found for $\mathrm{Re}^{\mathrm{v}}-\mathrm{NH}$ and $\mathrm{Re}^{\mathrm{v}}-\mathrm{NH}_{2}$ bonds [1.98-2.05 \AA and 2.15-2.23 \AA, respectively] [12]. The $\operatorname{Re}-\mathrm{N}(2)-\mathrm{C}(9)$ bond angle [127.7(3) ${ }^{\circ}$] deviates significantly from 180° and shows that the imido nitrogen is doubly, rather than triply, bonded to the rhenium, making the complex a sixteen-electron species. The $\operatorname{Re}-\mathrm{N}(1)$ bond length of 2.162(3) \AA is typical of $\mathrm{Re}^{\mathrm{v}}-\mathrm{N}$ (imine) bonds [12], and the Re-O bond length of 1.926(3) \AA falls at the lower end of the range normally observed for $\mathrm{Re}-\mathrm{O}$ (phenolate) bonds [13]. The $\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$ bond angle $\left[120.5(4)^{\circ}\right]$ is close to that for a sp^{2}-hybridized nitrogen atom and the $\mathrm{C}(7)-\mathrm{N}(1)$ bond length [1.311(6) \AA] is normal for a carbon-nitrogen double bond. The $\mathrm{Re}-\mathrm{Cl}$ bond lengths are within the range [2.34(2)-2.44(2) \AA] found for $\operatorname{Re}(\mathrm{V})$ complexes containing phosphine ligands [14].

Figure 1. ORTEP drawing of the molecular structure of $\left[\operatorname{Re}(\mathrm{mps}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)\right]$ showing the atom labelling scheme; thermal ellipsoids are drawn at 40% probability level.

We have recently reported the reaction between trans- $\left[\operatorname{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $N-(2-$ aminophenyl)salicylideneamine (H_{3} apa), which gave cis-[$\left.\mathrm{Re}(\mathrm{apa}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)\right]$ as product [15]. Like the mps in $\mathbf{1}$, the apa acts as a tridentate ligand via the doubly-deprotonated amino nitrogen (which is coordinated as an imide), the neutral secondary amino nitrogen and the deprotonated phenolic oxygen.

Supplementary data

File CCDC-643782 contains the crystallographic data for this article. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge

Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033; E-mail: deposit @ccdc.cam.ac.uk].

AKNOWLEDGEMENT

I.B. gratefully acknowledges financial support from the NMMU.

REFERENCES

1. Liu, S.; Edwards, D.S. Chem. Rev. 1999, 99, 2235.
2. Gerber, T.I.A.; Luzipo, D.; Mayer, P. J. Coord. Chem. 2004, 57, 1393.
3. Couillens, X.; Gressier, M.; Turpin, R.; Dartiguenave, M.; Coulais, Y.; Beauchamp, A.L. J. Chem. Soc., Dalton Trans. 2002, 914.
4. Porchia, M.; Tisato, F.; Refosco, F.; Bolzati, C.; Cavazza-Ceccato, M.; Bandoli, G.; Dolmella, A. Inorg. Chem. 2005, 44, 4766.
5. Booysen, I.; Gerber, T.I.A.; Hosten, E.; Mayer, P. J. Coord. Chem. 2007, 60, 867.
6. Gerber, T.I.A.; Luzipo, D.; Mayer, P. J. Coord. Chem. 2005, 58, 1505.
7. Sheldrick, G.M. SHELXL-97, Program for Structure Refinement, University of Göttingen, Göttingen, 1997.
8. STOE \& Cie, XRed, Rev. 1.09, STOE \& Cie GmbH (Darmstadt, Germany).
9. STOE \& Cie, XShape, Rev. 1.02, STOE \& Cie GmbH (Darmstadt, Germany).
10. (a) Yam, V.W.W.; Tam, K.K.; Cheng, M.C.; Peng, S.M.; Wang, Y. J. Chem. Soc., Dalton Trans. 1992, 1717; (b) Winkler, J.R.; Gray, H.B. Inorg. Chem. 1985, 24, 2346; (c) Yam, V.W.W.; Pui, Y.L.; Wong, K.M.C.; Cheung, K.K. Inorg. Chim. Acta 2000, 300, 721.
11. Refosco, F.; Tisato, F.; Bolzati, C.; Bandoli, G. J. Chem. Soc., Dalton Trans. 1993, 605, and references therein.
12. Gerber, T.; Luzipo, D.; Mayer, P. J. Coord. Chem. 2005, 58, 637.
13. Benny, P.D.; Barnes, C.L.; Piekarski, P.M.; Lydon, J.D.; Jurisson, S.S. Inorg. Chem. 2003, 42, 6519.
14. Bandoli, G.; Dolmella, A.; Gerber, T.I.A.; Perils, J.; Du Preez, J.G.H. Bull. Chem. Soc. Ethiop. 2002, 16, 149.
15. Gerber, T.I.A.; Luzipo, D.G.; Mayer, P. J. Coord. Chem. 2006, 59, 373.

[^0]: *Corresponding author. E-mail: thomas.gerber@nmmu.ac.za

