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ABSTRACT. The lattice model of elongated molecules interacting via a potential derived
from the Gay-Berne pair potential is proposed. We made a systematic study of the effect of
varying the molecular elongation and intermolecular vector orientation dependence of the pair
potential on the thermodynamic as well as the structural properties of liquid crystals. A Monte
Carlo simulations of molecules placed at the site of a simple cubic lattice and interacting via the
modified Gay-Berne potential with its nearest neighbours is performed. The internal energy,
heat capacity, angular pair correlation function and scalar order parameter are obtained. The
results are compared against predictions of molecular field theory, experimental results and
that of other related simulations wherever possible. It is shown that for more elongated
molecules the nematic-isotropic transition becomes stronger first order transition. For a given
molecular elongation as the intermolecular vector orientation dependence becomes larger the
nematic-isotropic transition becomes a stronger first order transition as measured by the rate of
change of the order parameter and the divergence of the heat capacity. Scaling the potential
well seems to have dramatic change on the effect of the potential well anisotropy on trends of
nematic-isotropic transition temperature and divergence of the heat capacity. It is shown that
the behaviour of many nematies ean be described by proposed model with the elongation ratio of
molecules and potential well anisotropy ranging from 3 to 5.

INTRODUCTION

Ordinary fluids are isotropic in nature: they appear optically, magnetically, electrically, etc. to
be the same from any perspective. Although the molecules which comprise the fluid are
generally anisotropic in shape, this anisotropy generally plays little role in anisetropic
macroscopic behaviour. Nevertheless, there exists a large class of highly anisotropic
molecules which gives rise to unusual, fascinating, and potentially technologically relevant
behaviour. There are many interesting candidates for study, including polymers, micelles,
micro emulsions, and materials of biological significance, such as DNA and membrane. Qur
primary effort centers on liquid crystals [1].

Liquid crystali are composed of moderate size organic molecules (length g, = 20-30 A and
width 6, = 5-6 A with length to width ratio of /0, = 3-6) which tend to be elongated and
shaped like a cigar. Typical structures of well studied mesogens and a simplified model of
them which is commonly used in theory and computer simulation and known to mimic a
variety of mesophases are given in Table 1. Although the literature is full of a variety of other,
highly exotic shapes as well. Because of their elongated shape, under appropriate conditions
the molecules can exhibit orientational order, such that all the axes on the average line up in a
particular direction which is known as the director and designated by 7. In consequence, the
bulk order has profound influence on the way the material behaves optically, magnetically,
and electrically [2,3].

The main charac}cristic of liquid crystals, and what makes them particularly difficult to
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THE MODEL POTENTIAL

The GB potential model has proved to be valuable for computer simulation studies of the
liguid-crystalline state [27-33]. It is a single-site model potential which possesses both the
short-range repulsion and long-range attraction. It has the shifted Lennard-Jones form with
strength and range parameters dependent on the orientations of the molecules and the
intermolecuiar vector. The form of the pair potential is given as
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Here % = (k> - 1)J/(x* = 1 ) is determined by the shape anisotropy of the ellipsoidal
Gaussian k defined as x = 0//0,. 0, and o, are the major and minor axes of the ellipsoid where
Oy is a length scale parameter which reflects the molecular size. The strength parameter
e(i, 1?}., 7)is given as

e(ﬁi,a‘j,f-) = g, e"(&,.,ﬁf) e‘“(ﬁj.ﬁ;j) (5)
where €, is the well depth for cross-configuration which is used for scaling energy and other
related thermodynamic properties. e(.r,?‘_.,eij) is given as
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and €4, 4, F) is assumed to have the form 0, /0°(d,i.,F) with a new anisotropy parameter
defined as x'= (k' "™ -1)/(x’"™+1). The new potential anisotropy parameter &’is defined as
k' = €./€, where ¢ is the side-by-side and €, end-to-end well depths. respectively. The
explicit form of €'(4 z?j, P)is given as
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The two parameters p and v in the well depth function take different sets of values without
affecting the relative well depths for the side-by-side and end-to-end configurations.
However, if y < v the potential has more desirable features: the side-by-side configuration is
more stable than the cross and the T-configurations, and the end-to-end configuration is more
stable than the T-configuration.

If we restrict the centre of mass of particle to Jattice sites we only need part of the GB
potential which could be written as

U(ﬁpﬁ'ﬁ ;) = _E(Epﬁjxf) = —e() E“ (ﬁpﬁj) € Ea (ﬁpﬁj:ﬁ (8)

which we shall call GBA for the sake of brevity. In order to be able to make 2 direct
comparison with the resuits of the LL model and that of other related simulations we will
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Figure 1(a-b) show comparison of the plots of the pair potentials for LL (solid ling), BPAN
(dotted line) and GBAN (dashed-dotted line), where x =5, ¥’ = 5, &,= o,= B, = $ =0,

B, is varied and a) O = w2 (side-by-side configuration) and b) © = 0 (end-to-end

configuration). Comparison of the dotted and solid lines in figures a and b shows how the LL
potential is modified by including a parameter which controls the elongation of melecules.
The effect of a parameter which controls the intermolecular vector orientation dependence on
the pair potential is demonstrated by comparing the dotted and dashed-dotted lines in the two'
plots. The potential is drastically modified when a parameter which conuols the
intermolecular vector orientation dependence is included in the potential.

In Figure 2 (a-c) we shall compare the intermolecular vector polar angle 0 and the second
molecule polar angle B,, which is adjusted to be equivalent to [3,,, dependence of the model

pair potentials a) LL, b) BPAN, and ¢) GBAN where k=5, k' = 5. o,= 0,= B, = ¢ = 0.

The intermolecular vector orientation independence of LL and BPAN potentials are evident
from Figures 24 and 2b where the potentials remained constant as 8 is varied. However, the
peak appears to be sharper for BPAN due 1o its dependence on molecular elongation. Figure
2¢ shows the strong intermolecular vector orientation dependence of GBAN.

The comparison of the dependence of the three model pair potentials on the molecular
elongation (x = ¢,/0,) and intermolecular vector orientation dependence parametrized via the
potential strength anisotropy x = €/€, is given in Figures 3(a-c). Comparison of the thres
plots show that the effect of the molecular elongation and intermolecular vector orientation.
dependence make the potential well depth shallower relative to that of LL. The effect of the
molecular elongation parameter ( k = 0,/0 ) appears to be much stronger than that of the
potential well depth anisotropy parameter K = € /e,

The two parameters ¢ and v in the well depth function take different sets of values without
affecting the relative well depths for the side-by-side and end-to-end configurations (see for
example in Table 2). However, their relative values affect the relative well depth for the end-
to-end and T-configurations. If u s v the side-by-side configuration and end-to-end
configuration are more stable than the cross and the T-configurations. Smectic systems are
expected to be stabilized if the end-to-end configuration is stabilized relative to the T-
configuration. However, the parametrization with p < v is not suitable for scaling. Figure 4
shows how end-to-end configuration can be stabilized relative to the T-configuration by
properly tuning the relative values of the molecular elongation parameter (x = ¢,/ ) and
intermolecular vector orientation dependence parametrized via the potential strength
anisotropy k = €/¢,. The curve connects points where the well depth for the end-to-end
configuration is equal to the cross and the T-configurations. For any value of k = €/e. the
well depth for the end-to-end configuration is deeper than that of the T-configuration above
the curve and shallower below the curve. For the N-site per molecule Lennard-Jones potential
the end-to-end configuration potential well depth is always shallower than that of the T
configuration. The values for N = 4 are compared in Table 2. A potential which can be tuned
in such a way that the relative well depth for. the end-to-end configuration, and T-
configurations is of interest for studies of interfacial properties of mesogens prefeming a
perpendicular or a parallel orientation at the interface [10].
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Table 2.

Plot showing the relative stabilities of end-to-end and side-by-side configurations
as a function of the molecular elongation parameter (x = 6,/0,) and intermolecular
vector orientation dependence parametrized via the potential strength anisotropy
K =¢/e,.

Potential well depth for selected configurations: Cross (e,) used as scaling
parameter, T (&), Side-by-side (€,) and end-to-end (€ ) for of the GB model and
the four site Lennard-Jones rod (RLJ4).

v it K=0/0, |¢ = € /e, €, €. € €x
1 2 |7 s 5 2.6 052 | -0.382 -1
1 2 3 5 -1.66 | -0.333 | -0.38 -1
2 1 5 5 -6.76 -1.35 | -0.333 -1
2 1 3 5 277 | -0.555 | -0:333 -1
RLj4 -1.15 | -0.173 | -0.42 -1
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and the director and the expansion coefficients <P > are defined as
<P;> = f P,(cosB) ficosP) dcosp (12)

The second rank order parameter, <P,>, used to characterize pure orientational order is
conveniently defined for evaluating by computer simulation as [8]

P, = ()XY, Pyteosp)) (13)
where the angular brackets indicate ensemble averages, N is the number of particles and B, is

the angle between molecule i and the director.

The calculations of order parameters and some of the distribution functions require the
knowledge of the director orientation. In computer simulations the director is not known-a
priori and it may fluctuate during the evolution of the system. In general the second rank
orientational order parameter and the direction of the director for a given configuration can be
calculated from a second rank tensor defined as [8]

Qup = (UN) X0, (112)Bufug -5 ) (14)

where u,, @ = x, y, z is the direction cosine of the unit vector describing the i molecular

orientation with respect to an arbitrary space fixed frame. At the temperatures where the
configurations show considerable orientational order the fluctuations of the director
orientation during a cycle is insignificant. Considering this slow fluctuation of the director
orientation we have reduced the computational time by sampling the Q-tensor only once at
the end of a cycle and accumulated for 30 to 50 consecutive cycles. The Q-tensor was then
averaged and diagonalized. Its largest positive eigenvalue was collected and averaged to give
the second rank orientational order parameter <P,>. Whenever a director orientation was

needed to calculate other structural properties the eigenvectors of the last Q-temsor
diagonalized was determined and the one associated with the largest eigenvalue was
identified with the director. Once the director orientation is located 2 variety of structural
properties parallel and perpendicular to the director can be calculated. The frequency of the
eigenvector determination depends on the frequency of sampling of structural properties
which depends on the knowledge of orientation of the director.

In order to study the short-range order in the system in detail we have also calculated the
second and fourth rank angular pair correlation functions. The angular pair correlation
functions are defined as the expansion coefficients of the rotational invariant pair distribution

function G(rifﬁij) which determines the probability of finding two particles separated by a
distance r; with a certain relative orientation By It is convenient to expand G(r‘},ﬁij) in a

series of Legendre polynomial as [8]
G(rﬂ,ﬂﬁ) = Gn(rij)EL (RL+1)2)G (r )P (cosP(r.)), L even (15)
where G(ry)is the scalar distribution of the particles centre of mass and the expansion

coefficients GL(r‘.j)dcﬁnc two-particle order parameters. These in turn give the correlation
between the orientation of two particles separated by a distance r; and are given as [8]

Gulry) = (UGy(r,) | dB,G(r,B,)P (cosP(ry) = <P (cosB,(r,))>, L even (1)
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For lattice systems the particle positions are fixed and their distribution is just a series of delta
functions centred at the successive lattice sites at distance r/a, from the reference particle and
with a population of z(r/a,) neighbours. In order to study the effect of the intermolecular
vector orientation dependence on the pair angular correlation functions in the system we have
also calculated the pair correlation functions perpendicular to the director G, *(r,”) and parailel
to the director G, '(r’ ). These structural properties are conveniently defined for evaluating by
computer simulation as

Gyr) = (UNzlr WEY L X, PleosBy(r o™~ #7,)) an
G (r°) = ((”NZ(" .L-))ZN mZ' it eosBy(r )8(r™ - r7y }> (18)
fo("' )= ((llNz(r I-})EN f='Z’ ¥ P L(COSBEj(r '.-;}5(" T )> (19)

where & is a delta function taken to be unity for 8(0), and zero otherwise. A histogram was
compilcd of all pair separations satisfying the conditions where r;, = (Ir,;F-IA.F;)"* and

ijx
= IA.T; Iﬁ(lr[ {A.r)

SIMULATION RESULTS AND DISCUSSION

Internal energy. The internal energies of the various systems studied is calcnlated as a sum of
the pair interactions <U> = (1/2)4:2?' Z{fji Uj; >. The angular brackets imply ensemble

average and the {ij} implies restriction on j to only the nearest neighbours of i and N is the
number of particles. The temperature dependence of the scaled single particie energy
<U>/Ne, for the six systems studied is shown in Figure 5 (a-f). For a system expected to

show a first order transition the internal energy is expected to show a discontinuity. In all the
six cases studied the internal energy appears to vary continuously with temperature. This is
due to the weak nature of the transition and the small number of particles employed in the
simulation. However, the shape of the temperature dependence of the internal energy close to
the transition varies as the elongation and potential well anisotropy parameters change. These
changes qualitatively show how the transitional properties of the six systems vary as the two
parameters change. The transition appears to get sharper as either of the parameters increases.
The transition temperature appears to shift to lower values as either of the parameters are
increased. A more definite location of the nematic-isotropic transition temperature can be
identified from the temperature dependence of the heat capacity.

Heat capacity. It is known that the heat capacity is a very temperature sensitive property
close to a phase transition. It shows a divergence, a discontinuity or a peak near a phase
transition. It is, therefore, used to locate a transition temperature and characterize the order of
the a transition. In computer simulation heat capacity can be obtained as a fluctuation of the

internal energy C, = (<0°> - <U>%)/kT> Given the mean square and the square mean of

the internal energy, in principle the heat capacity can be calculated. However, since Cy;
calculated in this way is actually obtained as a finctuation quantity it is often prone to large
errors and uncertainties. When the heat capacity show large error the other alternative is to do
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Figure 7.

Plots of the second rank orientational order parameters as a function of the scaled
temperature for the LL model (a) and GBAN model (b-f). a) LL model, by x =5

andx =3, c)k=5and K’ =5. d)k=3and k' =1, e)k=3and k' =3, k=3
and ¥'/=35.
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