Theoretical molecular structure, vibrational frequencies and NMR investigations of 2-[(1E)-2-aza-2-(5-methyl(2-pyridyl)ethenyl)]-4-bromobenzen-1-ol

  • Metin Bilge
  • Hasan Bircan
  • Özgür Alver
  • Cemal Parlak


The normal mode frequencies and corresponding vibrational assignments, 1H and 13C NMR chemical shifts and structural parameters (bond lengths, bond and dihedral angles) of 2-[(1E)-2-aza-2-(5-methyl(2-pyridyl)ethenyl)]-4-bromobenzen-1-ol (2mpe-4bb) Schiff base compound have been theoretically examined by means of Hartree-Fock (HF) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G(d) and 6-311++G(d,p) basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 2mpe-4bb have been predicted. Theoretical results have been successfully compared with available experimental data in the literature. Regarding the calculations, 2mpe-4bb prefers enol-imine form and DFT method is superior to HF approach except for predicting bond lengths.


KEY WORDS: Schiff bases, Normal mode frequencies, HF, DFT, NMR


Bull. Chem. Soc. Ethiop. 2012, 26(2), 279-285.



Journal Identifiers

eISSN: 1726-801X
print ISSN: 1011-3924