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ABSTRACT. An effective medium theory of ferroelectric ceramic-polymer composite materials
which treats both components symmetrically has been investigated to demonstrate the role played by
the microgeometry of inclusions on dielectric, mechanical and piezoelectric properties of 0-3
composites. The limits of the various theoretical predictions as a function of the geometric parameters

n,and n, are determined. We have observed that the geometric effect is more significant for the
component with low values of the various material constants. Comparisons of predictions of the
effective medium theory and spherical particle dispersion theory with several experimental results on
the magnitude and loss tangents of elastic, dielectric, and piezoelectric coupling coefficients are given,
The predictions of the effective medium theory on all the coupling constants magnitude and loss
tangent are in good accord with experiment. The theory enables predictions of dielectric and elastic
constants of composites from piezoelectric constant data and vice versa.

INTRODUCTION

Composites of the Pb(Zr, Ti)O, or the PZT family with polymers are important both scientifically
and industrially [1-10]. They are selected for the best individual properties and put together in a
manner designed to make maximum use of these properties. A production of an electric response
due to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) is revealed in
such composite systems. In the direct piezoelectric effect an applied mechanical force is coupled
to an electrical response in an acentric material. It is through these coupled properties that
composite materials are expected to play a vital role in device design. Such composite materials
are used as transducers for electric keyboards and pressure sensors.

In the study of ferroelectric ceramic-polymer composites, the concept of phase connectivity, or
the number of dimensions in which each component phase is self-connected between the limiting
surfaces of the composite, has proved to be very useful in the understanding of their properties as
compared with those of the phases. Among the ten possible connectivities for two phase
composite systems, those with 0-3 connectivity are very useful because of their potential use as
soft transducers. A composite with 0-3 connectivity consists of a three dimensionally connected
polymer matrix loaded with piezoelectrically active ceramic particles. Ceramic rods, one-
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dimensionally connected between electrodes and held in a three-dimensionally connected polymer
matrix are called 3-1 composites [1,9].

Piezoelectric, dielectric and mechanical properties of a composite are affected by several
factors among which are composition, shape, connectivity, properties of the individual
components, temperature and frequency of measurement [3-12]. In some materials not only are the
propetties of the separate phases modified, but composites may exhibit completely new couplings
not found in the separate phases. One of the inherent problems in composite systems has been in
predicting their macroscopic properties using the properties of the constituents.

Theoretical investigations on polycrystaline ceramics [8] and binary systems [5-6] have been
performed with regard to the piezoelectric constant, the dielectric constant, and the elastic
constant. However, some of the methods are very complicated and may not be appropriate for
applying the theories to such a composite. Spherical particle dispersion theories which uses
Maxwell-Garnet (MG) type approximations [13-14] are commonly used to interpret experimental
data of composite materials [11-12, 15-17]. It is well known that MG type theories are too simple
to take care of all the important factors which influence composite properties. A strong
piezoelectricity is needed for a composite system to be a useful one. This could be achieved by
preparing a composite with a large PZT volume fraction. So it is hard to apply MG type theories
to such a composite. At high ceramic composition of interest the role of inclusion and host
interchanges. This makes it necessary to consider the shape of the matrix in developing a theory of
composite materials. The effect of inclusion shape in the composite dielectric [18-19], elastic [18]
and piezoelectric d-constant [18] via the permitivity has been demonstrated. In an earlier paper
[20] it was shown that the elastic local field also depends on the shape of the inclusion which
influences all the piezoelectric coupling coefficients.

In this work we have investigated an effective medium theory developed in the earlier
publication to demonstrate the role played by shape and connectivity on properties of composites.
We have observed that shape and connectivity effects are inseparable within the limits of the
theory. We have compared the predictions from the theory with experimental data. Predictions are
also made on the complex dielectric, elastic and piezoelectric properties of composites. The
predictions on the magnitude and loss tangents of these constants are compared with experimental
results {11, 18].

In the next section predictions of the effective medium theory are derived and compared against
the spherical particle dispersion theory (MG). This is then followed by the presentation of the
results and discussion. The important conclusions are summarized in the last section.

EFFECTIVE MEDIUM THEORY

The model used to develop the effective medium theory is a symmetrical effective medium which
can automatically change the role of matrix and inclusion phases depending on the composition of
the system. Such models are generally classified as Bruggeman Approximation (BA) [21]. Figure
1 shows a representation of the model. In the first case a polymer inclusion (phase 1), the blank
ellipsoid, is placed in an effective medium. In the second case a ceramic inclusion (phase 2), the
lined ellipsoid, is placed in an effective medium. In the Bruggeman Approximation the effective
medium is expressed as a linear combination of the two cases. In the following, we shall give the
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effective medium theory expressions for the dielectric, elastic and piezoelectric properties.

(1-9)

Figure 1. Representation of Bruggeman Approximation. The blank ellipsoid, lined ellipsoid and
dotted regions represent polymer inclusion, ceramic inclusion and effective medium,
respectively.
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Dielectric properties. The depolarization field in phase i, E,,' , due to a field E in the effective

medium is given as

where €, and € are the dielectric constants of component i and the composite, respectively, #, is
the geometric factor for phase i. n, takes O(prolate), 1/3(sphere), 1(oblate) and intermediate values
for intermediate shapes. The electric field in phase i, E,, is given by

ek

E=E+El=-___%§
! ¢ (I-n)e + ng, @

Using the dielectric equations for the single components:, D, = €E; and the effective medium
dielectric relations: D = €E, D = ¢D, + (1 - §)D, and E = $E, + (1-$)E,, where ¢ is the
volume fraction of the ceramic inclusion (phase 2), the effective medium dielectric constant, €, is
given as a solution of the quadratic equation

€ +(1-¢)——-—€—-——-— = 1 3)

(1-ny)e+n,€, (1-n)e+ne,

Elastic properties. The effective medium elastic properties are calculated by assuming the
composite and the individual components to be incompressible. In addition their elastic properties
are gssumed to be one dimensional and similar to their analogous dielectric properties. This allows
the use of similar equations for similar elastic and dielectric properties: € ~ C (elastic constant), E
- S(strain) and D ~ T(stress). This leads to the strain analogue of the depolarization field, which
we shall denote by S/, and is given by
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where C,; and C are the elastic constants of component i and the composite, respectively, », is the
geometric factor for phase i. The strain in phase i, S,, is given by
(3+n)

§,=8+8§/=——F (s
! 47 nC, + 3(1-n)C )

Using the expressjons for the elastic properties of the single components:T; = C.S;, and the

effective medium elastic relations: T = CS, T = ¢T, + (1-)T, and S = ¢S, + (1-9)S, the
effective medium elastic constant, C, is given as a solution of the quadratic equation

@B+n,)C . (1-4) @B+n)C
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Piezoelectric polarization. When a stress T or strain S is applied 10 a composite system of discrete
nonpiezoelectric phase (phase 1) and a piezoelectric phase (phase 2), a piezoelectric polarization
P, is induced by the stress T or strain S in the latter which in turn produces an electric
displacement D and an electric field E in the system. The observed polarization of the system
caused by P, is a function of the dielectric constants (€,, €,) and elastic constants (C,, C, ) of the
two phases. The cross coupling effect between the second-rank tensor elastic variables (T stress, S
strain) and the simple vector dielectric variables (D electric displacement, E electric field) define
four third-rank tensor piezoelectric constants for the composite: d, e, g and h, and are given by
[12,22]

D S D T
d = (7)5 = (E)T , es= (—S—)E = ~(—E‘)s

E S E T @
g = ('T')D = (‘Z)')T , h= “(-E)D = “(“E)S

When one or both the components of a compositeé are piezoelectric, we can observe the
piezoelectric effect as a gross property of composites. In order to relate the gross piezoelectric
constants to that of the components we assume that the'tomponents constants are one dimensional
and relate to the dielectric variables along one polar axis, and the elastic variables along the
direction perpendicular (or parallel) to the polar axis. The dielectric constants are approximated to
be independent of mechanical states and the elastic constants are approximated to be independent
of elastic states. The composite piezoelectric coefficients are calculated from the corresponding
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where d, ¢, g,and h;are piezoelectric coefficients of the individual components and the various
L’s are local field coefficients defined as follows

L = E; L. = D, L. = T, L. = S; 9
E,.'E’ DE-D’ T,*T’ S; R ®
and have the explicit expressions ‘
o o
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where B, = G+n)[3(1-n)C+4n,C\], B, = B+n)[3(1-n)C+4n,C,)].

For comparison we shall give the expressions for dielectric constant, elastic constant, and local
field coefficients derived via spherical particle dispersion theory as follows.

2e,+€,-20(€, ~€,) c - 3C,+C,-2¢(C,-C)

€,
2e 6,4l €y | 2C,+C,+9(C,-C) (12)
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RESULTS AND DISCUSSION

We have proposed an effective medium theory of ferroelectric ceramic-polymer compésite
materials which can treat both components symmetrically, and have demonstrated the role played
by the microgeometry of inclusions on dielectric, mechanical and piezoelectric properties of 0-3
type composites. The limits of the dielectric, elastic and the local field coefficients used to predict
the four piezoelectric coefficients of the effective medium theory as a function of the geometric
parameters is determined and presented in Table 1. The predictions reduce to that of a parallel

Table 1. Limits of the effective medium predictions as a function of the effective geometric parameters 7, and n,.

Parallel: n =n, = 0 Series: n =n, =1
e=¢e,+(1-P)e, , C=¢C,+(1-9)C, 1. ¢ .0-¢) 1 ¢ Q-9)
ee € CC C
La,=1 , L.=1 L = € L= €,
" 5 S (10, | B el -B)e,
L = El L = Ez
2 e (-0, T P e, r(1-0)e, Lyl Lyl
c C
Lp= ! , L= 2 Lp=l, Ly-1
TTC,H1-0)C; | $C,(1-9)C, " "
L,=1, L=l L, o2 L= G
5T T SC+1-)C, T T 9C+(1-0)C,

mode!l when n, and n, go to 0, a series model when », and n, go to 1, a pure component 1
when n, goes to 1 and n, goes to 0 and a pure component 2 when n, goes to 0 and n, goes to 1.
1t appears that the geometric parameters, n, and n,, are effective parameters which can take care
of shape of inclusion and certain aspects of connectivity. For this particular circumstance the
effect of shape and connectivity on the mechanical, electrical and piezoelectric properties are
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indistinguishable. In Figures 2-4 we present the predictions from the theory on the effect of
microgeometry on the dielectric, elastic and dielectric constants of a composite.

10

Figure 2. Effective medium theory predictions on the effect of inclusion microgeometry on the
composite dielectric constant. 1(Parallel:n, = 0, n, =0), 2(Spherical matrix:
n, = 1/3, n, = 0.05), 3(n, = 143, n, = 1/3), 4(Spherical inclusions:
n, = 0.83, n,=1/3),5 (Series:n, = 1, n,=1).

Figure 2 shows comparison of predictions of the effective medium theory via equation 3 on the
dielectric constants of five different models as a function of the ceramic volume fraction,
1(Paraliel:n;, = 0, n, =0), 2(Spherical matrix: n, = 1/3, n, = 0.05), 3(n, = 1/3, n, = 1/3),
4(Spherical inclusions: n, = 0.83, n,=1/3), 5(Series:n, = 1, n,=1). The dielectric constants
data for the two pure phases used in these calculations are given in Table 2.

Table 2. Parameters used in the theoretical calculations [18].

e C/(GN m®) d/(pCN*Y)
PZT 1850 6.32 184
PVDF 8.9 0.79 .

All the effective medium predictions are intermediate between the two extremes, parallel and
series models. The shape effect is significant in the ceramic composition range of interest ¢ ~ 0.7.
We shall present next the predictions of the effective medium theory on effect of microgeometry
on the elastic and piezoelectric properties of a composite at a constant ceramic composition of
interest.

For a given ceramic volume fraction ¢, the composite elastic constant is expected to depend on
the microgeometry of the inclusions and the host. Equation 6 gives the composition and
microgeometry dependence of the composite elastic constant predicted by the effective medium
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theory. Figure 3 shows the geometric dependence of the composite elastic constant at a constant
ceramic composition of ¢ = 0.67. The elastic constants data for the two pure phases used in these
calculations are given in Table 2. The dielectric constants of the two pure phases differ by a factor
of about 200, in contrast to the elastic constants of the two pure phases which differ by a factor of
about 10. The relatively small difference in the magnitude of the elastic constants for the two pure
phases compared to that of the dielectric constants appears to make the geometric dependence of
the composite elastic constant relatively weak compared to that of the dielectric constant.

Figure 3. Effective medium predictions on the effect of inclusions.microgeometry on the
composite elastic constant for a ceramic composition of 0.67.

In the experimental determination of the longitudinal piezoelectric d-constant [18], the stress
and the electric displacement are measured perpendicular to each other. Consequently we have
used two separate sets of geometric parameters for the dielectric and elastic properties to define
the piezoelectric d-constant. Figure 4 shows the piezoelectric d-constant of the composite
predicted via equations 8, 10 and 11 as a function of r, of the dielectric constant and r, of the
elastic constant when r, of the elastic constant and r, of the dielectric constant are kept fixed at
0.5. The piezdelectric d-constants for the two pure phases used in this prédiction are given in
Table 2 where the ceramic volume fraction was taken to be ¢ = 0.67. The microgeometry in the
dielectric properties is more significant in determining the d-constant than that of the elastic
constant. In general, the microgeometry of the component with low dielectric, elastic and
piezoelectric coefficients appear to play a more significant role in controlling the corresponding
values in the composite.
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Figure 4. Effective medium predictions on the effect of inclusions microgeometry on the
composite piezoelectric d-constant for a ceramic composition of 0.67.

Next, we present a- comparison of theoretical predictions of the elastic, dielectric and
piezoelectric coupling constants with the experimental data obtained from Reference 18 on a
binary system consisting of polyvinylidese fluoride (PVDF) and lead zirconate titanate (PZT)
powder at various compositions. The powder is expected to have, on the average a spherical shape
and to be uniformly distributed in the polymer matrix. The single component coupling constants
used in the theoretical calculations are given in Table 2. The values of the effective geometric
parameters, n,and n,, which best fit the experimental data on the stress free dielectric constant are
0.60 and 0.20, respectively. Figure 5SA compares predictions for the dielectric constant via
equation 3 (solid line), equation 12 (dashed line) and experimental data [18] (open circles). The
effective medium theory predictions are in good accord with the experimental data over all the
composition range studied. For uniformly distributed spherical inclusions at low composition
range, n, is expected to take values close to 1 and n, close to 0.33 (see Figure 2). Close to zero
values of n, and values much lower than 1 of n, for € implies that the PZT particles are
connected across the electrodes. The specifications for the preparation of the sample describes
how the composite film was prepared by pressing the film perpendicular to the film surface. The
PZT sample, which was once distributed homogeneously, would make electrical contact in the
normal direction of the surface of the film during the pressing process. The values of n, and n,
that fit the experimental data are consistent with this explanation.
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Figure 5. PZT volume fraction dependence of A) dielectric constant €, B) elastic constant C, C)
piezoelectric d-constant, and D) piezoelectric g-constant in a PVDF matrix composite.
The effective medinm theory predictions, the spherical particle dispersion theory
predictions and the experimental data[18] are represented by solid line, dashed line
and points, respectively.

The comparison of the predictions from theory and experimental data of the dependence of the
elastic constant on a PZT volume fraction is shown in Figure 5B. The geometric parameters n,
and n, evaluated via equation 6 (solid line) to fit the experimental data are 0.6 and 0.8,
respectively, The values of the geometric parameters appear to be significantly different from
those of the dielectric constant. This implies that the inclusions are elongated and perpendicular to
the applied stress. This is consistent with the predictions for the inclusions geometry based on the
dielectric constant. The dielectric constant is measured along the thickness direction and the
elastic constant is measured along the length direction.

Considering the relationships among the four piezoelectric coupling constants: e = dC, g = d/g,
and h = e/g, and the mechanical and dielectric local field coefficients:L, = (C,/C)L, and
L, = (eje)L; we have used the geometric parameters determined to fit the dielectric constant
data (n, = 0.6 and n, = 0.2) and elastic constant data (n, = 0.6 and n, = 0.8) to predict and
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compare against the experimental data for the piezoelectric d- and g-coupling constants of the
same composite [18]. Figures SC and 5D compare predictions of the effective medium theory
defined via equations 8, 10 and 11, the spherical particle dispersion theory defined via equations 8
and 13, and experimental results for the piezoelectric d- and g- coefficients, respectively. Overall
the composition range studied from the experimental data is well predicted by the effective
medium theory.

Figure 6. Comparison of predictions of effective medium theory (solid lines), spherical particle
theory (dashed lines) with experimental results [S] (open circles) on the loss tangents
of a 0.131 volume fraction PZT- epoxy resin composite in the Jocal mode dispersion
region of epoxy resin: A) tand. for n, = 0.11 and n, = 0.33, B) tand, for n, = 0.26
and n, = 0.33.

The elastic, dielectric and piezoelectric coupling constants of composites depend upon
temperature and frequency of measurement [23]). The piezoelectric constants show relaxations
where thermal relaxations in mechanical and dielectric properties take place. For sinusoidal
excitations the relaxing dielectric and elastic constants are expressed as complex quantities in the
form €* =€ -~ je’, C* =C’ +jC”, the relaxing complex piezoelectric constants are
expressed as d* =d’ - jd" e* =e/ - je", g* =g’ -jg’, h* = h' - jh" and their loss
tangent is defined in the form (tand = x"/x where x stands for any of the six complex quantities.

The effective medium equations developed are generally valid at any temperature if the
corresponding values of the single component constants are used. Figure 6(A-B) compare
predictions of theory ‘with experimental results [11] on the loss tangents of elastic and dielectric
constants of a 0.131 volume fraction PZT-epoxy resin composite in the local mode dispersion
region of an epoxy resin. Values for the effective geometric parameters which fit the experimental
data are &(n, = 0.26 and n, = 0.33) and C(n, = 0.11 and n, = 0.33). Both theories give good
predictions on fand_. However, they differ widely for the predictions of tand.. The geometric
parameters which fit tand_ and tand_, are also found to best fit the experimental data on tand ”
tanﬁg, tand, and tand, when used in the appropriate local field coefficients. The results for the
loss tangents of the piezoelectric coupling constants are shown in Figure 7(A-D). The spherical
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particle dispersion theory predictions differ widely from the experimental resuits. In particular the
g-constant was predicted to be non-relaxing against the experimental results. These differences
show the effect of the inclusions microgeometry on the relaxation properties of the various
composite coupling constants.
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Figure 7. Comparison of predictions of effective medium theory (solid lines, spherical particle
theory (dashed lines) with experimental results [11] (open circles) on the loss tangents:
A) tand,, B) ran ég, C)tand, and D) tand, for a 0.131 volume fraction PZT-epoxy
resin composite. The geometric parameters used to fit the effective medium theory are
n, = 0.11 and n, = 0.33 for the elastic constant and n, = 0.26 and n, = 0.33 for the
dielectric constant.

CONCLUSIONS

In this work we have shown the strong “influence of the geometric effect in determining the
magnitude and relaxational behavior of electrical, mechanical and piezoelectric properties of
feroelectric ceramic-polymer composite materials by comparing the effective medium predictions
against spherical panicle dispersion theory and experimental data from various composite
materials. We have observed that the geometric effect is more significant for the component with



low values for the dielectric, elastic and piezoelectric coupling constants. The effective medium
theory could be used to interpret and understand experimental data from composite materials. It
could also be used to predict dielectric and elastic properties from piezoelectric constant data and
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vice versa.
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