Bull. Chem. Soc. Ethiop. **2006**, 20(1), 173-176. Printed in Ethiopia

SHORT COMMUNICATION

SCORODOPHLONE A, A NOVEL ALKYLSULFONE FROM THE SEEDS OF SCORODOPHLOEUS ZENKERI. HARMS

Jules Lobe Songue^a, Anatole G. B. Azebaze^{a*}, Juliette C. Vardamides^a, Jean C. Ndom^a, Alain Blond^b, Michèle Meyer^b, Etienne Dongo^c and Théophile Ngando Mpondo^{a*}

^aDepartment of Chemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon

^bLaboratoire de Chimie des Substances Naturelles, USM 0502 MNHN - UMR 5154 CNRS, 63 rue Buffon-75005 Paris, France

^cDepartment of Organic Chemistry, Faculty of Science, University of Yaounde I, P.O. Box 812 Yaounde, Cameroon

(Received April 22, 2005; revised May 26, 2005)

ABSTRACT. A novel alkylsulfone, scorodophlone A 1, from the seeds of *Scorodophloeus zenkeri* Harms, has been assigned the structure 6-(methylsulfonyl)-1,2,3-dithiazinan-4-one on the basis of its spectroscopic properties. The known compounds α -sophoradiol (12-oleanene-3 β ,22 α -diol), lupeol and sitosterol were also obtained.

KEY WORDS: Scorodophloeus zenkeri, Caesalpiniaceae, Scorodophlone A, Pentacyclic triterpene, Phytosterol

INTRODUCTION

Scorodophloeus zenkeri Harms (Caesalpiniaceae) is a tropical tree of Central Africa. It is of restricted height with a trunk diameter rarely exceeding 80 cm [1]. The tree has a garlic – like odour which comes from its sulphur containing compounds [2]. The bark, seeds and wood of *Scorodophloeus zenkeri* are used as spices in some traditional dishes such as "bongo-tjobi", "nkuii" and "na-pôô" in Cameroon, and also in folk medicine for the treatment of several diseases. Previous work on *S. zenkeri* Harms concerned only the bark essential oil and extract of this plant from which sulfides, alkylthiosulfides, sulphoxides and sulphones have been isolated [2-5].

Until now, no report has been given on the nitrogen-containing sulfur compounds from this plant. We now report the isolation and structural elucidation of a novel alkylsulfone **1** from the seeds of this plant

RESULTS AND DISCUSSION

The methanol extract of the finely powdered seeds of *S. zenkeri* Harms, on chromatographic separation, afforded a novel alkylsulfone named scorodophlone A **1**, together with sitosterol [6], lupeol [7] and α -sophoradiol (12-oleanene-3- β ,22- α -diol) [8]. The known compounds were identified by direct comparison of their physical and spectral data with the published values.

Soluble in D₂O, compound **1**, was obtained as white powder, m.p.: 206-208 °C, $[\alpha]_D^{19} - 90^\circ$ (c 0.6, H₂O). Its molecular formula C₄H₇NO₃S₃ was deduced from the high resolution TOF mass spectrum (HRTOFMS), which shows the pseudomolecular ion peak (M+H)⁺ at m/z = 214.3010

^{*}Corresponding author. E-mail: azebaze@yahoo.com or aazebaze@uycdc.uninet.cm

Jules Lobe Songue et al.

(calcd. for C₄H₇NO₃S₃, 213.3013). This formula indicated two degrees of unsaturation. The IR spectrum of 1 showed characteristics bands for N-H (3552.5 cm⁻¹), carbonyl (1630.7 cm⁻¹), sulfone (1301.6 and 1104.2 cm⁻¹) and S-S (487.5 and 454.5 cm⁻¹) moieties [9-11]. The broad band decoupled ¹³C NMR spectrum showed four signals, an amide carbonyl (174.7 ppm) [12], a methine (56.5 ppm), a methylene (36.1 ppm) and a methyl group (40.9 ppm). The ¹H NMR spectrum of **1** showed a typical AMX spin system at δ 4.10 ppm (1H, dd, J = 3.3 Hz and 4.6 Hz), δ: 3.42 ppm (1H, dd, J = 3.3 Hz and 11.0 Hz), δ 3.38 ppm (1H, dd, J = 4.6 Hz and 11.0 Hz). A singlet of three protons at δ 3.18 ppm is characteristic of a group CH₃SO₂ [5]. The HMBC spectrum showed connectivity from the methine proton at δ 4.10 and the methylene protons at 3.42 and 3.38 ppm to the carbonyl group at δ 174.7 ppm. The methylsulfonyl group was located at position 6 according to the chemical shifts of methylene and methine protons and carbons. Further confirmation came from the HMBC spectrum which presented significant correlation between the methyl protons at δ 3.18 ppm and the carbon C-6 (56.5 ppm). The HMBC spectrum showed correlations from the methine and methylene protons to the carbonyl group at δ 174.7 ppm and the expected correlations from the methylene protons to the methine carbon and from the methine proton to the methylene carbon. A critical correlation was observed from the sulfone methyl protons to the methine carbon C-6 (Figure 1). These data led to structure 1 for scorodophlone A. The alternative structure, 5-(methylsulfonyl)-1,2,3-dithiazinan-4-one, was excluded on chemical shift arguments.

From the above spectroscopic evidence, the structure of scorodophlone A 1 was established as 6- (methylsulfonyl)-1,2,3-dithiazinan-4-one.

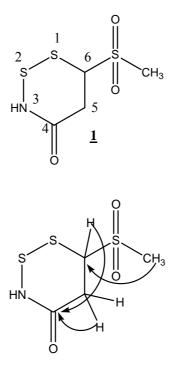


Figure 1. Significant HMBC correlations of 1.

Bull. Chem. Soc. Ethiop. 2006, 20(1)

174

Short Communication

Table1.	¹ H (300.135 MHz) and ${}^{13}C$ (75.46	9 MHz) assignments for	or compound 1 in D_2O .
---------	-----------------------------	-------------------------	------------------------	-----------------------------

Attribution	¹³ C	Multiplicity	$^{1}\mathrm{H}(\mathrm{m, J}(\mathrm{Hz}))$	HMBC
1	-	-	-	-
2	-	-	-	-
3	-	-	-	-
4	174.7	S	-	5,6
5	36.1	t	3.38 (dd, J = 4.6, 11 Hz)	6
			3.42 (dd, J = 3.3, 11 Hz)	
6	56.5	d	4.10 (dd, J = 3.3, 4.6 Hz)	5
CH ₃	40.9	q	3.18 (s)	6

EXPERIMENTAL

General experimental procedures. Melting points were determined on a Buchi apparatus and are uncorrected. NMR spectra were run on a Bruker instrument equipped with a 5 mm ¹H and ¹³C probe operating at 300.135 and 75.469 MHz respectively with TMS as internal standard. ¹H assignments were made using 2D-COSY and NOESY (mixing time 800 ms) experiments while ¹³C assignments were made using 2D-HSQC and HMBC experiments. Silica gel 70-230 mesh (Merck) was used for column chromatography, while precoated aluminium sheets silica gel 60 F_{254} (Merck) were used for TLC with a mixture of hexane-ethyl acetate and ethyl acetate-methanol as eluents. Spot were visualised by UV (254 nm) and (365 nm) or by iodine vapour, vanillin-H₂SO₄ and H₂O-H₂SO₄ reagents.

Plant material. Seeds of *S. zenkeri* Harms were collected in September 2003 in the forest of Yokadouma in south Cameroon. A voucher specimen documenting the collection was identified at the Botanic Department of University of Douala by Dr Ndongo Din and was deposited there.

Extraction and isolation. The air dried powdered seeds of *S. zenkeri* Harms (2.8 kg) were extracted with methanol at room temperature and the extract concentrated to dryness to obtain a viscous residue (185 g). The methanol extract was subjected to column chromatography over silica gel 70 – 230 mesh, eluting with n-hexane, n-hexane-ethyl acetate mixture and ethyl acetate-methanol mixture with increasing polarity. A total of 144 fractions of *ca.* 400 mL each were collected and mixed on the basis of TLC. Fractions 1-15 (series A) contained essentially oil. Fractions 17-24 (series B) were concentrated to dryness and the residue (1.8 g), subjected to column chromatography over silica gel with a gradient of increasing polarity with n-hexane-EtOAc to yield 80 fractions of ca. 100 mL. Fractions 34-37 eluted with n-hexane-ethyl acetate (19:1) gave sitosterol. The combined fractions 52-56 eluted with n-hexane-ethyl acetate (17:3) crystallized at room temperature and gave α -sophoradiol. Fractions 109-111 eluted with ethyl acetate-MeOH (9:1) crystallized at room temperature to afford compound **1** after further purifications.

6-(*Methylsulfonyl*)-1,2,3-*dithiazinan*-4-*one*. White powder, m.p.: 206-208 °C. $[α]_D^{19} - 90^\circ$ (c 0.6, H₂O). IR v_{max} (KBr) cm⁻¹: 3552.5; 2933.8; 1630.7; 1301.6; 1104.2; 487.5 and 454.5. HRTOFMS: $m/z = 214.3010 \text{ (M+H)}^+$ (calcd. for C₄H₇NO₃S₃, 213.3013). TOF MSMS NEG: m/z: 125 (15); 79 (65); 64 (100). ¹³C NMR (75 MHz, D₂O) δ (ppm): 174.7; 56.5; 40.9; 36.1. ¹H-NMR (400 MHz, D₂O) δ (ppm): 4.10; 3.42; 3.38; 3.18 (Table 1).

ACKNOWLEDGEMENTS

One of us, A.G.B. Azebaze is indebted to the French government for the award of a postgraduate scholarship to Museum National d'Histoire Naturelle de Paris. This investigation was also supported by J. C. Ndom research grants RG/CHE/AF/AC from the Third World Academy of Science (TWAS). We are also grateful to Mr. A. Deville for his contribution for the structure elucidation.

REFERENCES

- 1. Aubreville, A.; Leroy, J.F. *Flore du Cameroun 9. Légumineuses- Césalpinioïdes*, Muséum National d'Histoire Naturelle: Laboratoire de phanérogamie; **1970**; p 83.
- Amvam Zollo, P.H.; Dupont Youngo, M.J.; Fekam, B.F.; Menut, C.; Lamaty, G.; Bessiére, J.M. Etude comparée de la composition chimique des huiles essentielles extraites à partir d'un « arbre à l'ail » Scorodophloeus zenkeri. Harms (Caesalpiniaceae) et de l'ail: Allium sativum Linn. (Liliacée) du Cameroun. Actes des 14^{émes} journées internationales huiles essentielles, Dignes les Bains; 1995.
- 3. Mbofung, C.M.F.; Gee, J.M.; Knight, D.J. J. Sci. Foods Agric. 1994, 66, 213.
- 4. Kouokam, J.C.; Zapp, J.; Becker, H. Z. Naturforsch. 2001, 56C, 1003.
- 5. Kouokam, J.C.; Zapp, J.; Becker, H. Phytochemistry 2002, 60, 403.
- 6. Furuya, T.; Orihara, Y.; Hayashi, C. Phytochemistry 1987, 26, 715.
- 7. Reynolds, W.F.; McLean, S.; Poplawski, J.; Enriquez, R.G. Tetrahedron 1986, 42, 3419.
- 8. Ndom, J.C.; Kouam; Vardamides, J.C.; Wansi, J.D.; Waffo Kamdem, A.; Tanyi Mbafor, J.; Tanee Fomum, Z. *Bull. Chem. Soc. Ethiop.* **2001**, 15, 151.
- Harwood, L.M.; Claridge, T.D.W. Introduction to Organic Spectroscopy, Oxford University Press: New York; 1997; p 68.
- 10. Scheinmann, F. An Introduction to Spectroscopic Methods for the Identification of Organic Compounds, Vol. 1, Pergamon Press: Oxford; **1970**; p 189.
- 11. Nakanishi, K. Infrared Absorption Spectroscopy Practical, Nankodo Company: Tokyo; 1962; pp. 54-55.
- Hesse, M.; Meier, H.; Zeeh, B. Méthodes Spectroscopiques pour la Chimie Organique, Masson: Paris; 1997; p 190.

Bull. Chem. Soc. Ethiop. 2006, 20(1)