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ABSTRACT
The accuracy of a predictive model is crucial in various fields, including classification tasks. One
commonly used method for classification is logistic regression, which relies on maximum-
likelihood estimation. However, there is growing interest in exploring the use of Bayesian
logistic regression as an alternative approach. This interest stems from the advantages offered by
the Bayesian network approach, which allows for explicit modeling of feature dependencies and
the introduction of hidden nodes. Furthermore, Bayesian inference can be associated with
cognitive processes, making it a potentially powerful tool for analyzing complex data. In a
comparative analysis, both classical and Bayesian logistic regression models were evaluated for
their performance in classification tasks using data collected from a hospital based retrospective
study on postpartum mothers and their babies is confined to Two (2) Tertiary Facilities and
Three (3) Secondary Facilities across the three (3) Senatorial Zones of Nasarawa state, Nigeria.
The Cohort design is adopted for the study. Model prediction Measures such as R-Square, Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC) were used. Model
Performance Measures such as Accuracy, Precision, Recall, F1 Score, Area Under Curve (AUC)
were also used. Conclusively, The Bayesian Logistic Regression Model outperforms the
Classical Logistic Regression Model across all evaluated metrics. It demonstrates higher
accuracy, precision, recall, F1-Score, and AUC, indicating better overall predictive performance.
Keywords: Classical Logistic Regression, Bayesian Logistic Regression, Maximum Likelihood
estimation.

INTRODUCTION
In exploring the methodologies for predicting
preterm birth risks, the study delineates
between two predominant statistical models:
Bayesian logistic regression and classical
logistic regression. Bayesian logistic
regression, distinct for its integration of prior
knowledge with current data, offers a
dynamic approach to parameter estimation.
This method enhances flexibility in modeling
by updating parameter estimates with new
data, presenting an advantage over the
conventional method. Classical logistic
regression, conversely, operates strictly on
empirical data without incorporating prior
beliefs, representing a more traditional form
of analysis. Research, including Acquah

(2013) and Weber-Schoendorfer et al. (2015),
has assessed these methodologies in various
contexts, highlighting their efficacy in
predicting outcomes like disease severity and
preterm birth risks.
Notably, logistic regression often utilizes
maximum likelihood estimation for parameter
determination. This classical approach,
however, shows limitations in cases of small
sample sizes or when the dependent variable
exhibits imbalance, potentially leading to
biased parameter estimates. Dumouchel (2012)
advocates for the Bayesian approach to
mitigate these issues, emphasizing its utility
in small sample conditions and its foundation
in probabilistic statements about unknown
parameters.
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Classical binary logistic regression has been
widely applied in identifying preterm birth
risk factors, where Maximum Likelihood
Estimation (MLE) is predominant. Yet,
MLE's reliability dwindles with small samples,
where Bayesian methods, leveraging posterior
distributions that amalgamate observed data
with prior information, exhibit superiority
(Howson, 1993).
Gladence et al. (2015) compared logistic
regression against Bayesian classification in
machine learning, concluding logistic
regression's superior performance across
various metrics. This analysis, utilizing
datasets from the UCI Repository,
underscores logistic regression's applicability
to diverse data types.
In a different vein, Santos et al. (n.d.)
evaluated classical and Bayesian methods in
structural models, particularly for intervention
models. Their findings, from extensive Monte
Carlo experiments and real-world data
analysis, indicate the Bayesian method's
enhanced accuracy in estimation and
prediction, particularly with limited sample
sizes or low signal-to-noise ratios. Yet,
classical methods may prevail under
conditions of large samples or high signal-to-
noise ratios, with the choice of prior
distribution significantly impacting Bayesian
performance.
Ma et al. (2009) assessed Bayesian and
classical methods in analyzing binary
outcomes from cluster randomized trials, with
their study revealing no significant difference
in outcomes between groups. This comparison
highlighted the Bayesian random-effects
model's potential in such analyses, influenced
markedly by the choice of prior distribution.
Kawo et al. (2018) explored anemia
determinants among Ethiopian children,
employing both classical and Bayesian
approaches. Their findings underscore

significant regional disparities in anemia
prevalence, with Bayesian analysis providing
consistent estimates and offering insights into
parameter distribution.
Austin et al. (2000) discussed provider
profiling and hospital performance,
comparing frequentist and Bayesian
hierarchical models. Their analysis revealed
discrepancies in identifying outlier hospitals,
spotlighting the need for further research into
effective performance measurement methods.

RESEARCH DESIGN
This research is a retrospective hospital-based
study focusing on mothers and their newborns
across Nasarawa State, Nigeria, spanning two
tertiary and three secondary healthcare
facilities within its three senatorial zones.
Utilizing a cohort design, this study
specifically examines a subgroup of the
population—mothers and their babies—
sharing common characteristics pertinent to
the research question. A cohort study, by
definition, observes statistical occurrences
within a particular segment of the population
over time, distinguishing it from analyses that
consider the broader population, thereby
providing targeted insights into the factors
influencing maternal and neonatal outcomes.
Sample Size
Data from maternal, fetal/neonatal, and
obstetric records from the labor wards of all
live births in the selected health facilities is
obtained. All deliveries less than 22 weeks
gestation and post term birth at greater or
equal to 42 weeks gestation are excluded. All
records of multiple and stillbirths are also
excluded.
Study Area
Nasarawa, situated in the north-central region
of Nigeria, was established on October 1,
1996, with Lafia as its capital. It shares
borders with Kaduna State to the north, the
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Federal Capital Territory to the west, Kogi
and Benue States to the south, and Taraba and
Plateau States to the east. The state spans an
area of 27,117 square kilometers (10,470
square miles) and had an approximate
population of 1,869,377 according to the 2006
Census. Nasarawa State is divided into three
Senatorial districts: Nasarawa North,
Nasarawa South, and Nasarawa West,
encompassing 13 Local Government Areas
(LGAs) and 16 Development Areas.
Sampling Strategy
The study utilized a cluster randomized trial
approach, randomly selecting healthcare
facilities based on their fulfillment of specific
inclusion criteria. The selection encompassed
two tertiary and three secondary healthcare
facilities distributed across the state's three
senatorial zones. The research utilized data
concerning live births recorded between 2016
and 2020. These facilities were selected for
their comprehensive databases on all live
births, including detailed parameters stored in
their records units. This extensive data
collection on both mothers and their children
provided a rich source of variables, enabling
the identification of risk factors associated
with preterm births in Nasarawa State.
Data Collection Procedure
Documents and records are used for data
collection. Only relevant variables were
extracted for the purpose of this research
Variables in the Study
The dependent variable is the live births
among women in the selected facilities in the
three senatorial zones in Nasarawa State of
Nigeria. This is coded as '1' for those that are
preterm and '0' for those that are term.
The independent variables are factors such as
Age of mother, Booking status, parity,
previous miscarriages, multiple or singleton

gestation, gestational age, blood group, type
of delivery, sex of infant, Education of
parents, Body Mass Index (BMI), Income,
smoking history, HIV status, Diabetes,
Hypertension (Gestational or Chronic) etc.
The choice of these variables is guided by
literatures on the risk factors of preterm births.
The table below summarizes the variables
used in this research work.
Ethical Consideration
Ethical clearance was gotten from the
Nasarawa State Ministry of Health and in
particular the Health Research and Ethics
Committee (HREC) before the
commencement of data collection. A letter of
permission is sought from the Hospitals
Management Board, Primary Health Care
Development Agency and all the Facilities
that are visited for the purpose of this research.
Names of the clients are not documented in
the research. The protection of the privacy of
research participants is ensured. Anonymity
of individuals is also ensured. Adequate level
of confidentiality of the research data is
ensured. The information was not accessible
to any other person outside the research team,
and it is used only for the purpose of research.
Data Analysis
Data Analysis is performed using Stata.
Bayesian Logistic regression, and Bivariate
analysis is considered for identifying the risk
factors associated with preterm births as a
discrete and binary response variable.

MODEL SPECIFICATION
Logistic Regression
Logistic Regression Model originally
developed for survival analysis that usually
has output (y) in form 0 or 1 (binary)
(William and Terry, 2012). Logistic
regression model for a binary dependent
variable is:
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� � =
exp (�0 + �1�1 + �2�2 + … + ����)

1 + exp (�0 + �1�1 + �2�2 + … + ����)
(1)

Where � = 1; �������� �
0; �������� �

�1, �2, …, �� are the � predictors.
The model above can be expressed as follows:

� � = � � = 1 = �

� =
exp (�0 + �1�1 + �2�2 + … + ����)

1 + exp (�0 + �1�1 + �2�2 + … + ����)
(2)

Equation 2 can be expressed in the log-odds terms:
�� �

1−�
= �0 + �1�1 + �2�2 + … + ���� (3)

Given some random samples (��, �1�, …, ���) where j=1,2,3,…,k and �� is a result of Bernoulli
experiment with probability of success as we can see in equation (3); coefficient �� from the
model is a constant that we don’t know the value and it will be estimated from the data.
Likelihood Function
The Likelihood function from the sample is:

� �; � = �=1
� ��

��(1 − ��)1−��� (4)
Or we can write it in another form,

� �; � = �=1
� ��0+�2�2+…+�����

1+��0+�2�2+…+�����

��

1 − ��0+�2�2+…+�����

1+��0+�2�2+…+�����

1−��

� (5)

In Classical Logistic regression, model parameters can be determined by Maximum Likelihood
Estimation (MLE) Method,

�=1
� �� log �� + 1 − �� log (1 − ��)� (6)

The main foundation of the Bayesian method is the Bayes theorem. Bayes theorem can be stated
as follows:

�(�/�) =
� � � �(�)

�(�)
Where �(�/�) is posterior distribution.

P(�) is prior distribution.
� � � is sampling distribution or likelihood function.

P(y) is marginal likelihood.
Prior Distribution
Prior Distribution is a distribution that gives
information about the parameters. The prior
ought to mirror the entire knowledge of the
experts in terms of data variation and dynamic

properties (Adenomon, 2017). There are
several types of prior distribution.
i. Non-Informative Prior Distribution:
For the selection of the prior distribution is
not based on existing data.
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ii. Informative Prior Distribution: This
prior distribution is based on parameter value
from the prior distribution. Parameter value
from the previous distribution will affect the
posterior distribution.
Posterior distribution

The conditional sample likelihood in equation
(3) is combined with joint prior distribution
using bayes theorem. Recall equation (9). The
joint posterior distribution of the model
parameters is:
Posterior =Prior x likelihood

Posterior= �=1
� 1

2���
2
��� − 1

2
��−��

��

2
×�

�=1
� ��0+�2�2+…+�����

1+��0+�2�2+…+�����

��

1 − ��0+�2�2+…+�����

1+��0+�2�2+…+�����

1−��

�

Where the prior is the pdf of normal
distribution. The marginal posterior
distribution can be computed from the joint
posterior distribution. The means of these
distributions are the parameter estimates.
To evaluate and compare the Classical
Logistic Regression Model with the Bayesian
Logistic Regression Model, various predictive
and performance metrics are utilized,
including R-Square, Mean Square Error
(MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Akaike
Information Criterion (AIC), and Bayesian
Information Criterion (BIC) for model
prediction measures. Model performance is
assessed through Accuracy, Precision, Recall,

F1 Score, and Area Under Curve (AUC),
facilitating a comprehensive analysis of each
model's efficacy.
Model Prediction Measures
R-Square
R-Square in logistic regression measures how
well the independent variables explain
variability in the dependent variable's log-
odds ratios. It quantifies the proportion of
variance in the response variable that can be
attributed to variation in the predictors (Nhu
et al. 2020).
One commonly used formula for calculating
R-Square in logistic regression is Cox and
Snell's pseudo-R-Squared:

���
2 = 1 −

�0

��

2
�

= 1 − �2(�� �0 −�� �� )/�

Where �� and �0 are the likelihoods for the model being fitted and the null model respectively.

Mean Squared Error (MSE)
Mean Squared Error (MSE) is a commonly
employed metric for evaluating the
performance of predictive models, including
logistic regression models. MSE measures the
average squared difference between predicted
and actual values. In the context of logistic
regression analysis, MSE provides insights
into the accuracy and reliability of model
predictions (Zhang et al., 2021)

Mathematically, MSE can be expressed as:

��� = � − �
2
��

Where:
- y represents observed outcomes (0 or 1)
- p represents predicted probabilities
- n represents the total number of observations
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Root Mean Squared Error (RMSE)
RMSE is an evaluation metric that measures
the average magnitude of errors between
predicted values and actual observations in
logistic regression models. It assesses how
well predictions align with observed
outcomes by considering both false positives
and false negatives.
To calculate RMSE in logistic regression, we
first obtain predicted probabilities for each
observation using the fitted model equation.
We then compare these probabilities with
binary outcomes (0 or 1) to determine
prediction errors for each observation. Finally,
we take the square root of the mean squared
errors to obtain RMSE (Nhu et al., 2020).
Therefore, the formula of RMSE is

�� − �� �� 2

�
Where, �� is the ith measurement, �� � is its
corresponding prediction and N is the number
of datapoints.
Mean Absolute Error (MAE)
Mean Absolute Error (MAE) is a measure that
quantifies the average difference between
predicted and observed values in logistic
regression. It provides a numerical value that
represents the magnitude of error in model
predictions (Leffondre et al., 2013)
To calculate MAE in logistic regression, we
first obtain predicted probabilities for each
observation using the fitted logistic regression
model. These predicted probabilities represent
the estimated probability of success (e.g.,
occurrence of an event) given a set of
predictor variables.
Next, we compare these predicted
probabilities with the actual binary outcome
values (0 or 1). The absolute differences
between predicted probabilities and observed
outcomes are calculated for each observation.

Finally, we take the mean of these absolute
differences to compute the MAE. (Leffondre
et al., 2013).

��� =
1
�

1

�

�� − �� ��

Where �� =actual value, �� � =predicted value,
n=sample size.
Akaike Information Criterion (AIC)
AIC, which stands for Akaike Information
Criterion. Developed by Hirotugu Akaike,
AIC quantifies the quality of a given model
by balancing goodness-of-fit with parsimony
using mathematical formulas (Jin et al.,2022).
The formula for calculating AIC is as follows:
AIC = -2 * log-likelihood + 2 * k, where log-
likelihood represents the maximized value of
the logarithm of likelihood function for a
particular model, and k represents the number
of parameters estimated in that model.
Bayesian Information Criterion (BIC)
BIC (Bayesian Information Criterion) is a
statistical measure commonly used in model
selection and evaluation (Conca, et al., 2022)
It is a criterion that balances the goodness of
fit of a model with its complexity, aiming to
find the most parsimonious yet accurate
model.
Like AIC, it is appropriate for models fit
under the maximum likelihood estimation
framework.
The BIC statistic is calculated for logistic
regression as follows:
BIC = -2 * LL + log(N) * k
Where log () has the base-e called the natural
logarithm, LL is the log-likelihood of the
model, N is the number of examples in the
training dataset, and k is the number of
parameters in the model. The score as defined
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above is minimized, e.g., the model with the
lowest BIC is selected.
The quantity calculated is different from AIC,
although can be shown to be proportional to
the AIC. Unlike the AIC, the BIC penalizes
the model more for its complexity, meaning
that more complex models will have a worse
(larger) score and will, in turn, be less likely
to be selected.
Model Performance Measures
In the realm of statistical modeling, accurately
evaluating model performance is pivotal. The
precision of predictions from logistic
regression models is indispensable for
generating dependable forecasts and making
well-informed choices, as highlighted by
recent studies (Bokaba et al., 2022; Yacoob et
al., 2019). Within logistic regression analysis,
accuracy denotes the model's proficiency in
correctly predicting outcomes and accurately
categorizing observations into their
designated groups, essentially reflecting the
ratio of correct predictions to total predictions.
To gauge accuracy, a set of metrics including
sensitivity (or true positive rate), specificity
(true negative rate), precision (positive
predictive value), and recall (also known as
sensitivity) are frequently employed. These
metrics shed light on various facets of the
model's predictive performance, offering a
nuanced understanding of the precision in the
model's forecasts (Poitras and Lajoie, 2014).
Precision is defined as the model's capacity to
accurately identify positive instances while
limiting false positives. This metric is
particularly critical in sectors like healthcare,
finance, and marketing, where precise
predictions are fundamental to decision-
making processes. Precision is calculated as
the quotient of true positives over the sum of
true positives and false positives, indicating
the model's efficacy in correctly identifying

positive outcomes among those predicted as
positive (Acharya et al., 2022).
Recall, on the other hand, gauges a model's
ability to detect all pertinent positive cases
from the actual positives available in the
dataset, emphasizing the model's success in
capturing true positives without overlooking
false negatives. The recall metric, computed
as the division of true positives by the
aggregate of true positives and false negatives,
reflects the model's competency in accurately
identifying positive instances (Bokaba et al.,
2022).
The F1-Score serves as a composite metric
that evaluates the accuracy and efficiency of
classification models, particularly beneficial
in situations of class imbalance. By
harmonizing precision and recall, the F1-
Score delivers a comprehensive measure of
model performance, calculated as 2 times the
product of precision and recall divided by
their sum. A higher F1-Score signifies
superior performance, encapsulating both
precision and recall considerations.
Lastly, the Area Under the Curve (AUC)
metric assesses the logistic regression model's
discriminative capacity, or its ability to
distinguish between positive and negative
cases. A higher AUC value, ranging from 0 to
1, suggests a model's enhanced ability to
differentiate outcomes. AUC is determined by
plotting the Receiver Operating Characteristic
(ROC) curve, which illustrates the balance
between sensitivity and specificity across
various threshold settings, thus offering a
graphical representation of model efficacy
(Rasyid et al., 2016).



DOI: 10.56892/bima.v8i1B.648

Bima Journal of Science and Technology, Vol. 8(1B) Apr, 2024 ISSN: 2536-6041

382

RESULTS AND DISCUSSION
Table 1: Comparison on Prediction

Performance
Criteria Logistic

model
Bayesian Logistic
Model

R-square 0.2323 0.3539
MSE 0.9650 0.2812
RMSE 0.9824 0.1676
MAE 0.9651 0.5779
AIC 2716.274 2716.081
BIC 2776.945 2776.251

Source: Author’s Computation 2023
Table 1 shows the prediction performance
comparison between the frequentist logistic
regression model and the Bayesian logistic
regression model. The measures used are the
R-square, Mean Square Error (MSE), Root
Mean Square Error (RMSE), Mean Absolute
Error (MAE), Alkaike Information Criterion
(AIC) and the Bayesian Information Criterion
(BIC). The model with the higher values of R-
square performs better, while the one with the
lowest value for the MSE, RMSE, MAE, AIC
and BIC would be considered better than the
other. Considering Table 4.10 above, the
Bayesian satisfied the conditions stated above
as it produces higher R-square and lower
MSE, RMSE, MAE, AIC and BIC values
compare to the Logistic regression model. In
conclusion, the Bayesian Logistic regression
outperform the classical logistic regression
model.

Table 2: Comparison on Performance
Measure

Performance
measure

Logistic
model

Bayesian
Logistic model

Accuracy 0.3490 0.876
Precision 0.3240 0.3609
Recall 0.7000 0.9400
F1-score 0.6192 0.7085
AUC 0.35162 0.9485

Source: Author’s Computation 2023
Table 2 shows the model performance
measures using the accuracy, precision, recall,
f1-score and the AUC value. In this section,

the model with the higher value is considered
better than the other. Looking at the table,
Bayesian logistic model produced higher
accuracy, precision, recall, f1-score and AUC
values compared to the classical logistic
regression model. In conclusion, Bayesian
logistic regression model performs better than
the classical logistic regression model. The
density of the posterior means and trace plots
are displayed below.
In contrasting the Bayesian Logistic
Regression Model, boasting an accuracy of
87.6%, precision of 36.09%, recall of 94%,
F1-Score of 70.85%, and AUC of 94.85%,
against the Classical Logistic Regression
Model, which exhibits an accuracy of 34.9%,
precision of 32.4%, recall of 70%, F1-Score
of 61.92%, and AUC of 35.16%, it's clear that
each performance metric merits individual
examination. The Bayesian approach
significantly surpasses the Classical in terms
of accuracy, showcasing superior overall
prediction effectiveness for both positive and
negative outcomes. In precision, the Bayesian
model slightly outperforms the Classical,
suggesting a higher likelihood of accurate
positive predictions. Regarding recall, the
Bayesian method proves more proficient at
detecting true positives, capturing a larger
fraction of actual positive cases. The F1-Score,
representing the harmonic mean of precision
and recall, is notably higher in the Bayesian
model, indicating a superior balance between
precision and recall. Moreover, with a
considerably higher AUC, the Bayesian
model demonstrates enhanced capability in
differentiating between positive and negative
instances. Overall, the Bayesian Logistic
Regression Model exhibits superior
performance across all metrics, evidencing
more effective predictive accuracy, precision,
recall, F1-Score, and AUC than its Classical
counterpart.
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