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The Impact of Drought on Technical Efficiency of Smallholder Farmers in Hurungwe, 
Zimbabwe 

Carren Pindiriri, Clever Mumbengegwi and Honest Zhou 
Abstract 

Increasing drought frequencies due to climate change, pose a serious threat to rain-fed farmers 

in rural Africa where the policy thrust points to improving efficiency of these farmers. This 

article uses cross sectional data collected from 411 randomly selected farmers and applies the 

stochastic frontier method (SFM) to investigate the extent to which drought influences technical 

efficiency of smallholder farmers in Hurungwe, Zimbabwe. First, technical efficiency of 

smallholder farmers is computed using the SFM. Second, two groups of farmers, one from 

drought prone areas and the other from wet ecological zones, are compared with regards to 

their technical efficiency levels using a binary covariate which classifies the farmers into two 

groups. The findings show a low level of technical efficiency of maize farmers in Hurungwe. The 

average technical efficiency level is 45.3%. Drought is found to be detrimental to technical 

efficiency, with farmers in drought prone areas being 19% less efficient than those in wet 

ecological zones given their different demographic characteristics. Drought experience, 

education, farming experience, modern methods of forecasting and access to credit contribute 

positively to technical efficiency. The findings point to the need for improving technical 

efficiency of maize farmers. Negative effects of drought on efficiency could be reduced by 

building irrigation infrastructure in drought prone areas or by reallocating farmers to wet 

ecological areas. In addition to construction of irrigation infrastructure and reallocation of 

farmers, we also recommend increased education support, financial inclusion of rural farmers 

through the development of rural financial institutions and publication of drought related 

information for farmers’ consumption. 
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1. Introduction 

Agriculture has remained the backbone of Zimbabwe’s economy, in terms of both employment 

creation and export production, with smallholder farmers playing a critical role in agricultural 

production. Over 65% of the population live in rural areas and their livelihoods depend on 

agriculture (Anseeuw et al., 2012 and Juana and Mabugu, 2005). Improving productivity of 

smallholder farmers is therefore vital not only to poverty reduction but also to the development 

of the economy. The question is: “how can technical efficiency of these smallholder farmers be 

improved?” The measurement of technical efficiency is well documented in literature but the 

question on whether dry weather conditions generate technical efficiency loss remains unsettled. 

For example, Tian and Wan (2000) found no evidence of a significant relationship between wet

weather and technical efficiency in China. But Tasnim et al. (2014), Lemba et al. (2012) and 

Makki et al. (2012) established otherwise. Lemba, et al. (Ibid) established that farmers with 

irrigation were more efficient than those without in the dry lands of Kenya. In Zimbabwe where 

resettlement of farmers is ongoing, it is paramount to investigate whether farmers in wetter 

ecological zones are more efficient than those in drier zones.

Food insecurity has continued to haunt Africa despite the fact that over 73% of the rural 

population are involved in farming (Odulaja and Kiros, 1996). La-Anyame (1985) argues that 

agricultural growth in Africa has been lagging behind population growth thereby putting pressure 

on food demand. For example, in Zimbabwe imports of maize have become persistent over the 

past decade in spite of a growing population of farmers in the rural areas due to unemployment 

(Masunda and Chiweshe, 2015 and Anseeuw et al., 2012). This suggests that improving 

efficiency of smallholder farmers should be the policy thrust for interventions in rural 

Zimbabwe. Since independence, the Government of Zimbabwe has continued to support the 

agricultural sector in order to improve productivity.  Anseeuw et al. (2012) argues that 

government actions promoted the development of smallholder farming through land reforms, 

input subsidies, irrigation infrastructure and animal disease control, among others. However, a 

number of the formulated agricultural policies were not implemented. For example, the 

Agricultural Mission Statement Strategy Framework and Action Plan, 2007–2011 was never 

adopted because the government was preoccupied with land reform and resettlement 

programmes (Anseeuw et al., 2012).
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Most studies on efficiency in Zimbabwe have concentrated on the impact of government policies 

on technical efficiency of farmers (Musara et al., 2012; Mazvimavi et al., 2012; Chisango and 

Obi, 2010 and Kapuya et al., 2010) and on measuring technical efficiency of farmers (Masunda 

and Chiweshe, 2015 and Dube and Guveya, 2012). First, these studies have overlooked the 

potential impact of climate variables such as drought on productivity of smallholder farmers. 

Second, improving maize production is critical for food security in Zimbabwe but a majority of 

studies done on efficiency in Zimbabwe is on other crops. Third, despite being one of the major 

maize-producing districts in Zimbabwe henceforth critical for food security in the country, no 

attempt has been made to study efficiency of maize farmers in Hurungwe district.  Studies that 

have attempted to estimate drought cost in terms of reduced agricultural output are national level 

studies (Gbegbelegbe et al., 2014; Pauw et al., 2011; Arndt et al., 2011; Beniston, 2007 and 

Mano and Nhemachena, 2006). Macro studies, however fail to provide useful community level 

information for policy makers to enable them to influence community development because of 

aggregation. Understanding the impact of dry weather conditions on technical efficiency of 

smallholder farmers at a community level is vital for both farmers and policy makers in order to 

increase maize output in a changing climate. Farmers need to prepare for options to counter 

drought impact on their productivity while policy makers use the information when making 

decisions such as resettling people and making disaster prevention strategies.

It is against this background that this article examines efficiency losses/gains from varying 

weather conditions and the relationship between smallholder farmers’ characteristics and 

technical efficiency. Specifically, the article measures technical efficiency of smallholder 

farmers in Hurungwe and examines the drivers of technical efficiency levels of farmers with 

particular attention given to drought impact. The rest of the article is organised as follows: 

Section 2 reviews efficiency literature. Section 3 explains the methodology, while section 4 

presents the results. Finally, section 5 concludes and proffers some policy implications. 

2. Literature Survey 

In economic literature, technical efficiency is measured using two main techniques, namely, 

parametric and non-parametric. In non-parametric method, no functional form is imposed on the 
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production frontier and nothing is assumed on the error term. A linear programming approach is 

applied in non-parametric methods and the most popular one is the Data Envelopment Analysis 

(DEA). On the other hand, researchers (Battese and Corra, 1977 and Aigner, et al., 1977) 

developed a parametric Stochastic Frontier Model (SFM) which imposes a functional form on 

the production function and makes assumptions about the data. A number of researchers have 

trailed these techniques of measuring technical efficiency. Chirwa (2007) argues that despite the 

importance of measuring technical efficiency of farmers in Africa, very little has been done in 

this area. More work on technical efficiency of farmers has however been done outside Africa.  

The Stochastic Frontier Approach (SFA) has been the most commonly used approach in 

measuring technical efficiency of farmers (Mazvimavi et al., 2012; Chisango and Obi, 2010; 

Chirwa, 2007; Battese and Coelli, 1995 and Ekanayake and Jayasuriya, 1987). In Zimbabwe, 

Chisango and Obi (2010) applied this approach to investigate the impact of mechanization and 

Fast Track Land Reform Programme (FTLRP) on efficiency of Bindura farmers. The same 

technique was applied by Mazvimavi et al. (2012) to compare technical efficiency between 

conservative and conventional agriculture. In most Asian countries, the SFA was applied to 

measure technical efficiency of rice farmers. The most popular characteristic of these studies is 

that they all focused on measuring efficiency. While these studies have done a considerable work 

on producing efficiency scores, more work needs to be done for different regions of Africa.  

There is vast literature worldwide on the measurement of technical efficiency but little attempt 

has been made to examine the determinants of technical efficiency of maize farmers in 

Zimbabwe despite the critical role played by smallholder maize farmers. A diversity of 

efficiency determinants have been identified in a number of studies using either the SFA or the 

DEA. The most common factors identified are education, credit access, farm size, seed quality, 

cropping intensity and gender, among others (Masunda and Chiweshe, 2015; Ibrahim et al., 

2014; Tasnim et al., 2014; Mapemba et al., 2013; Makki et al., 2012; Okon et al., 2010; Singh et 

al., 2009 and Tian and Wan, 2000). Despite some research on the impact of dry weather 

conditions on technical efficiency (Ibrahim et al., 2014; Ogada et al., 2014; Tasnim et al., 2014; 

Makki et al., 2012 and Tian and Wan, 2000), the findings on how weather conditions influence 

farmers’ technical efficiency are still inconclusive. For example, Ibrahim et al. (2014) and Makki 
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et al. (2012) established that drought/dry weather conditions reduce technical efficiency of 

farmers while Tian and Wan (2000) established otherwise. 

Ibrahim et al. (2014) applied the stochastic frontier approach to examine technical efficiency of 

at least 40 maize farmers across agro-ecological zones of Northern Nigeria. The results indicate a

positive relationship between technical efficiency and education, access to credit, household size, 

market variables and farm size. Farmers in wetter agro ecological zones were however found to 

be more technically efficient than those in drier zones.  Using the same approach, Makki et al.

(2012) established similar positive association between technical efficiency and agricultural 

inputs (which included land, fertilizer, labour, pesticides and wet weather conditions) of local 

rice farmers in Indonesia. On the contrary, Tian and Wan (2000) found wet weather 

conditions/irrigation to be an insignificant determinant of technical efficiency of grain farmers in 

China. Many studies identified education as a significant determinant of technical efficiency 

(Masunda and Chiweshe, 2015; Ibrahim et al., 2014; Mapemba et al., 2013; Makki et al., 2012 

and Singh et al., 2009). Tian and Wan (2000) however identified this positive association to hold 

only between education and technical efficiency of maize and wheat farmers but not for rice 

farmers. Singh et al. (2009) even established a non-existent association between education and 

farm-specific technical efficiency in Tripura, India. 

While there is a sensible level of consistency in the methods used to measure technical efficiency 

and its determinants, the impact of some determinants on technical efficiency still remains 

ambiguous. For instance, on one hand some researchers established a negative association 

between farm size and technical efficiency (Okon et al., 2010; O’Neill et al., 2001 and Herdt and 

Mandac, 1981) while on the other hand some found larger farms to be more efficient than 

smaller farms (Ogada et al., 2014; Igliori, 2005; Thirtle and Holding, 2003 and Sherlund et al.,

2002). Other studies, for example, Mochebelele and Winter-Nelson (2000) established a non-

existent relationship between farm size and technical efficiency. In some cases the impact of 

farm size on technical efficiency depends on the crop type (Tian and Wan, 2000). According to 

Tian and Wan (Ibid), technical efficiency was only positively associated with average farm size 

for rice farmers in China but the association was negative for wheat farmers. The fragility of 
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these findings as also noted by Townsend et al. (1998) indicates heterogeneity of determinants 

coefficients which require area-specific research. 

The study of technical efficiency is based on the production function and hence the quality of 

inputs is a key determinant of technical efficiency. Previous studies have however taken 

production inputs into consideration in the modeling of technical efficiency but with little or no 

emphasis on the quality of natural inputs such as climate factors (Ibrahim et al., 2014; 

Mazvimavi et al., 2012; Singh et al., 2009 and Chirwa, 2007). Weather is an important input in 

agriculture, hence leaving it when modelling technical efficiency in agriculture may result in 

non-robust findings. The knowledge of how much efficiency is lost due to dry weather 

conditions is necessary for the Government when resettling communities and planning for 

drought relief.  

3. Model of Technical Efficiency and Data Issues 

This article applies a two-step procedure to examine the impact of drought conditions on 

technical efficiency of smallholder farmers in Hurungwe. The first phase involves measuring 

technical efficiency of farmers and the second phase examines how drought and other factors 

influence technical efficiency of smallholder farmers. The Farrell (1957) and Debreu (1951) 

approach to measuring technical efficiency is applied in this article. The main advantage of the 

stochastic frontier model (SFM) over data envelopment analysis (DEA) is that SFM 

accommodates random variations in catch, that is, SMF is more appropriate when data noise is 

more likely a problem (Coelli et al., 1998). If farmers are 100% technically efficient then they 

will be producing along the production possibility frontier. A parametric frontier for a cross-

sectional production function is presented as: 
ieZfQ ii
 ),(         (1) 

where iQ  is the observed output of the thi  farmer, Z is vector of inputs,   is a vector of slope 

coefficients and iii uv   is a composite error term. The first component of the composite 

error term, iv , is assumed to be symmetric and normally distributed and it captures output 
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variation due to factors beyond the farmer’s control. The second component, iu , is one-sided 

error term capturing inefficiency of the farmer. 

Technical efficiency is defined as the ratio of the observed output to maximum possible output, 

that is: 

),( i

i
i Zf

QTE          (2)  

The observed output can be expressed in terms of exponent as: 

)exp()exp( iiii uvZQ           (3) 

The maximum possible output can be expressed in terms of exponent as: 

)exp( ii vZ           (4) 

Substituting equations (3) and (4) into equation (2) we obtain a measure of technical efficiency 

expressed as: 

)exp(
)exp(

)exp(
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ii

iii
i u
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uvZTE 







       (5) 

Equation (5) shows that if iu  is zero then technical efficiency is 100%, that is, the farmer is 

assumed to be technically efficient (actual output equals the maximum possible output). The 

following empirical stochastic production function is estimated: 

iiiiiiii uvLandPloughsFertSeedLabQ  543210log   (6) 

where Q is maize output of the ith farmer, Lab is total farm labour, Seed and Fert are maize seed 

quantity and fertilizer quantity, respectively, Ploughs is the number of ploughs, Land is maize 

hectrage (land devoted to maize) and s  are the parameters to be estimated. Output is logged 

because logging it is more log normal. The residuals from equation (6) are used to compute 

technical efficiency using equation (5) which is then used as a dependent variable in the second 

phase. 

In the second phase, the impact of dry weather conditions on technical efficiency (TE) of 

smallholder farmers is modelled as follows: 

i

K

k
kikii XDSTE   

1
10       (7)  
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where iTE  is a measure of technical efficiency of farmer i, iDS  is a dummy variable which takes 

a value of 1 if a farmer experiences drought and zero otherwise, X is a vector of control variables 

which include farm size, education, farming experience, gender, age, drought experience, access 

to credit, extension services and seed quality, 0 , 1  and   are the parameters to be estimated 

whereas  is a random disturbance assumed be identically and independently distributed. 

Equation (7) is one of the two ways of displaying drought impact on technical efficiency of 

farmers. One way is to recognize drought as a condition of abnormally low precipitation and then 

use rainfall amount as an input in the production function of farmers. This approach is however, 

applicable where numerical rainfall data is available for each farmer. The absence of 

disaggregated rainfall data for Zimbabwe at ward level makes this approach inapplicable when 

studying output and rainfall variability across wards. 

In equation (6) a production function of farmers with the usual inputs without rainfall is 

estimated for all farmers to generate a technical efficiency score )( iTE  for each farmer. Second, 

given some farmers’ characteristics, a theoretical econometric association between weather and 

technical efficiency can be derived from the following model: 

  iii DSXDSXTEE 1,           (8) 

where X is a vector of farmers’ characteristics,  is a vector of the coefficients of farmers’ 

characteristics, iDS  is a dummy variable taking a value of 1 if the farmer experiences drought 

and a value of 0 if a farmer experiences wet weather and 1  is the coefficient of a drought shock 

dummy. Model (8) produces two models, one for farmers experiencing a drought shock and the 

other for farmers experiencing wet weather conditions. The models are: 

  1  XXTEE
Dryi   (since 1iDS )     (9)

  XXTEE
W eti          (since 0iDS )     (10) 

Subtracting equation (10) from equation (9) we obtain: 

   
W etiDryi XTEEXTEE 1       (11) 

Hence the parameter 1  measures the difference in average technical efficiency between farmers 

experiencing wet weather and those experiencing drought and is expected to be negative. It is the 
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Equation (5) shows that if iu  is zero then technical efficiency is 100%, that is, the farmer is 

assumed to be technically efficient (actual output equals the maximum possible output). The 

following empirical stochastic production function is estimated: 
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where Q is maize output of the ith farmer, Lab is total farm labour, Seed and Fert are maize seed 

quantity and fertilizer quantity, respectively, Ploughs is the number of ploughs, Land is maize 
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where iTE  is a measure of technical efficiency of farmer i, iDS  is a dummy variable which takes 

a value of 1 if a farmer experiences drought and zero otherwise, X is a vector of control variables 

which include farm size, education, farming experience, gender, age, drought experience, access 

to credit, extension services and seed quality, 0 , 1  and   are the parameters to be estimated 

whereas  is a random disturbance assumed be identically and independently distributed. 

Equation (7) is one of the two ways of displaying drought impact on technical efficiency of 

farmers. One way is to recognize drought as a condition of abnormally low precipitation and then 

use rainfall amount as an input in the production function of farmers. This approach is however, 

applicable where numerical rainfall data is available for each farmer. The absence of 

disaggregated rainfall data for Zimbabwe at ward level makes this approach inapplicable when 

studying output and rainfall variability across wards. 

In equation (6) a production function of farmers with the usual inputs without rainfall is 

estimated for all farmers to generate a technical efficiency score )( iTE  for each farmer. Second, 

given some farmers’ characteristics, a theoretical econometric association between weather and 

technical efficiency can be derived from the following model: 
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where X is a vector of farmers’ characteristics,  is a vector of the coefficients of farmers’ 

characteristics, iDS  is a dummy variable taking a value of 1 if the farmer experiences drought 

and a value of 0 if a farmer experiences wet weather and 1  is the coefficient of a drought shock 

dummy. Model (8) produces two models, one for farmers experiencing a drought shock and the 

other for farmers experiencing wet weather conditions. The models are: 
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Subtracting equation (10) from equation (9) we obtain: 
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Hence the parameter 1  measures the difference in average technical efficiency between farmers 

experiencing wet weather and those experiencing drought and is expected to be negative. It is the 
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magnitude of a loss or a gain in technical efficiency created by weather variability. Farmers 

experiencing drought are expected to be less efficient than those experiencing wet weather 

conditions. To remedy the problem of heteroscedastic variances and autocorrelation, equation (7)

is estimated using robust standard errors.  

The study uses primary data collected in 2015 from a sample of 411 randomly selected farmers 

in three Wards of Hurungwe district consisting of two groups of farmers, one group from 

drought prone areas and the other group from wet areas. A multi-stage sampling technique was 

applied. First, wards were stratified according to agricultural ecological zones (regions IIA, III 

and IV) and one ward was then randomly selected from each ecological zone. Second, each 

selected ward was proportionally represented in terms of sample units. Enumeration areas (EAs) 

within each selected ward were randomly selected and a census was finally carried out within the 

selected EA. EAs were developed by ZIMSTAT for the 2012 population Census. The sample 

size for enumeration areas was generated from Cochran (1977)’s formula with an error margin of 

±5%. 

4. Results and Discussion 

The majority (79.3%) of farmers use ploughs and draught power in the production of maize. 

Only 5.6% of the farmers do not have ploughs and use hoes only. Mechanization is still lagging 

in the district despite improved incomes from tobacco growing (see Keyser, 2002). About 15.1% 

of the farmers have mechanized their farms mainly through tractor and water pump acquisitions. 

Maize is produced on a small scale as indicated by the average tonnage of 2.9 shown in Table 1. 

However, variations in maize production are very huge with a standard deviation of 4 tonnes. 

Besides hoes, ploughs, draught power and heavy machinery, the other inputs used in maize 

production by farmers in Hurungwe include farm land, seed, organic and non-organic fertilizers 

and labour. The average farm size in the district is 8.7 hectares while farmers set aside an 

average of only 2.6 hectares for maize production. The mean number of ploughs and draught 

animals are 1 and 5, respectively (see Table 1). 

Farmers in Hurungwe mainly use treated maize seed and non-organic fertilizers. About 93% of 

farmers use treated maize seed, 82.5% apply non-organic fertilizer, 11.9% use manure, while 

5.6% do not use any fertilizer or manure. On average, each maize farmer uses 44.4 kilograms of 

80
 

maize seed and 266.9 kilograms of fertilizer in maize production per growing season. Labour is 

mostly unpaid family labour. The average labour force is 5 with a standard deviation of 5 

workers. There are huge variations in most of the maize inputs used by the farmers except in 

plough ownership. It is however not surprising to have such huge variations in a rural setting 

such as Hurungwe where income variations are also huge (see Kinsey et al., 1998).  

Table 1: Descriptive Statistics of Maize Production 

Variable Observation Mean Std. Dev Minimum Maximum

Maize output (tonnes) 411 2.9 4 0 35

Farm size (ha) 411 8.7 6.1 1 40

Maize hectrage 411 2.6 1.9 0.5 20

Productivity (tonnes/ha) 411 1.3 1.5 0 11.7

Ploughs 411 1 1 0 20

Oxen 411 5 8 0 100

Labour 411 5 5 1 80

Seed quantity (kg) 411 44.4 35.3 6 250

Fertilizer quantity (kg) 375 266.9 338.4 0 5200
Source: Authors’ Compilation 

Table 2: Average Production and Productivity According to Ecological Conditions 

Characteristic Drought shock

(N=172)

Wet weather

(N=239)

Total

(N=411)

Difference

Maize output (tonnes) 1.75 3.74 2.9 -1.99***

Productivity (tonnes per ha) 0.76 1.74 1.3 -0.98***

Maize hectrage 2.81 2.41 2.6 0.40**

Farm size 9.50 8.20 8.7 1.30**

Years of schooling 8.27 9.25 8.8 -0.98**
***, ** and * indicate that the difference between farmers experiencing a drought shock and wet weather conditions 

is statistically significant at 1, 5 and 10 percent level, respectively. Difference in means were tested using t-tests for 

equality of means and Levene’s test for equality of variances

Source: Authors’ Compilation 
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Table 2 shows average maize production and productivity in dry and wet zones. The statistics 

show some expected findings, that is, they demonstrate that the average maize output for farmers 

experiencing drought is lower than that of those experiencing wet weather conditions. The 

difference in mean output is 1.99 tonnes and is statistically significant at 1% level. Similarly, 

farmers experiencing droughts have a lower average productivity level as compared to those 

experiencing wet weather conditions. On average, farmers experiencing droughts produce 0.98 

tonnes per hectare less than those experiencing wet weather conditions. The difference in 

tonnage per hectare between these two groups of farmers is statistically significant at 1% level. 

Despite having higher productivity and output, farmers experiencing wet weather conditions 

have smaller farms on average and their mean maize hectrage is also smaller than those in 

drought-prone areas. The difference in average farm size between the two groups of farmers is 

statistically significant at 5% level. The estimated production function is presented in Table 3. 

Table 3: Determinants of Maize Production  

(1) (2) (3)

Variables log(Maize output) log(Maize output) log(Maize output)

Farm size -0.00350 -0.00449

(0.0112) (0.0112)

Maize hectrage -0.0757* -0.0739* -0.0828**

(0.0441) (0.0441) (0.0382)

Oxen 0.00683

(0.00916)

Ploughs 0.147** 0.175*** 0.173***

(0.0604) (0.0469) (0.0465)

Seed quantity 0.00458* 0.00440* 0.00444*

(0.00246) (0.00245) (0.00244)

Fertilizer quantity 0.000674*** 0.000680*** 0.000665***

(0.000189) (0.000189) (0.000185)

Labour 0.0407*** 0.0420*** 0.0406***

(0.0131) (0.0130) (0.0125)

lnsigma2v 0.0348 0.0364 0.0368
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lnsigma2u -29.6875 -29.5443 -28.1489

sigma v 1.01753 1.01834 1.018579

sigma u 0.0000004 0.000000384 0.00000077

sigma2 1.035368 1.037019 1.037504

lambda 0.0000004 0.000000377 0.00000076

Observations 352 352 352

Standard errors in parentheses 

      *** p<0.01, ** p<0.05, * p<0.1 
Source: Authors’ Compilation 

The findings from the estimated production functions presented in Table 3 suggest a production 

curve that starts from the origin. Inputs which are statistically significant in model (1) remain 

statistically significant in the other two models demonstrating a reasonable degree of reliability 

and robustness of the models.  The results show that, ploughs, labour, maize hectrage, seed 

quantity and fertilizer are the major factors explaining variability of maize output in Hurungwe. 

The coefficients of ploughs, fertilizer quantity and labour are statistically significant at 1% level 

while that of seed quantity is weakly significant at 10% level. The effect of fertilizer on maize 

output is however very small; a 1% increase in fertilizer increases maize output by only 0.06% in 

all three models. Returns to increasing fertilizer application in the district are not much. 

Variations in seed quantity have also a small impact on maize output. A percentage increase in 

seed quantity increases maize output by less than 0.5%. This finding however support that 

farmers are applying the recommended quantity of maize seed per hectare hence no benefits 

from further increases in seed quantity.  

Labour and farming equipment such as ploughs however play a critical role in maize production 

in Zimbabwe. Increasing labour by 1% will increase output by about 4% and a percentage 

increase in ploughs will increase maize output by 15 to 18% (see results in Table 3). Despite 

having a weak statistically significant coefficient in the first two models, (1) and (2), maize 

output is negatively associated with maize hectrage. A percentage increase in maize hectrage 

reduces maize output by 8.3%. This suggests that large maize farms are less productive. This 

finding is similar to results established by Okon et al. (2010) and O’Neill et al. (2001) in Nigeria 

and Ireland, respectively. 
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The stochastic frontier results show that a majority (51.3%) of Hurungwe farmers are technically 

inefficient, that is, they have technical efficiency scores which are less than 50%. Only 2.9% of 

the farmers had a technical efficiency score exceeding 80%. Table 4 illustrates the proportion of 

farmers in different groups of technical efficiency levels. The average level of technical 

efficiency in Hurungwe is 45.3% with a minimum of 1.6% and a maximum of 88.5%. The mean 

technical efficiency for farmers experiencing drought is 34.5% while those experiencing wet 

weather conditions have a higher mean technical efficiency of 51.9%. The difference between 

the average technical efficiency levels of the two groups of farmers is 17.4% and is statistically 

significant at 1%. A mean technical efficiency level of only 45.3% for all farmers is very low 

suggesting a considerable room to improve maize production. However, such low efficient levels 

are common in developing countries. For example, Chiona et al. (2014) established that 14% of 

the farmers in the Central province of Zambia had a technical efficiency of less than 30%. In 

Zimbabwe, Dube and Guveya (2012) established that tea growers had a technical efficiency level 

ranging from 37% to 100% but Mazvimavi et al. (2012) found two thirds of the farmers under 

conservative agriculture having efficient scores in the 60-80% range.  

Table 4: Proportion of Farmers in Different Categories of Technical Efficiency 

Technical efficiency score Number of farmers Percentage

<50 211 51.3

50-60 80 19.5

61-70 83 20.2

71-80 25 6.1

>80 12 2.9

Total 411 100.00

The three variants of the determinants of technical efficiency model presented in Table 5 

consistently provide similar statistically significant explanatory variables. This indicates a high 

degree of model reliability and robustness. The model explains about 85% of the variation in 

technical efficiency of smallholder farmers in Zimbabwe. The findings reveal that technical 

efficiency is 19% lower for farmers experiencing drought in the district, that is, an average of 

19% of farmers’ technical efficiency in Hurungwe is lost due to droughts. The coefficient of 
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drought shock is negative and statistically significant at 1% level. The farmers’ incentive to work 

hard is reduced by persistent droughts. Some farmers may choose to stay home rather than 

wasting their labour hours if they anticipate droughts. Under such circumstances, output of maize 

from a given set of inputs may be comparably lower than what the farmers can possibly achieve 

with the same set of inputs in the absence drought-induced reluctance. Similar findings that 

droughts reduce farmers’ efficiency levels were established by Ibrahim et al. (2014) and Makki 

et al. (2012) in Nigeria and Indonesia, respectively. The findings point to an important policy 

implication that the government’s 2030 targets of eliminating poverty and improve food security 

may not be achieved if nothing is done to mitigate drought impacts.

Despite the negative consequence of drought on farmers’ technical efficiency levels, increased 

drought experience helps farmers to adapt and improve their efficiency levels. The results 

portray a strong positive association between drought experience and technical efficiency. A year 

increase in the number of droughts experienced by the farmer increases the farmer’s technical 

efficiency by an average of about 5%. Farmers who have encountered several droughts in their 

life span are likely to apply extra effort in maize production if they anticipate a drought. As noted 

by Kinsey et al. (1998), improved knowledge of droughts by farmers helps them devise adaptive 

measures and strategies to counter droughts such as early planting and use of short season 

varieties.  Adaptation is hence critical to improving agricultural productivity in a changing 

climate (Arndt et al., 2011 and Mano and Nhemachena, 2006). 

Table 5: Determinants of Technical Efficiency of Maize Farmers 
(1) (2) (3)

Variables Technical efficiency Technical efficiency Technical efficiency
Drought shock -0.185*** -0.185*** -0.189***

(0.0196) (0.0196) (0.0197)
Farm size 0.0159*** 0.0162*** 0.0165***

(0.00429) (0.00424) (0.00423)
Gender 0.0116

(0.0259)
Experience 0.00221** 0.00231*** 0.00219**

(0.000896) (0.000861) (0.000862)
Farmer education 0.0149*** 0.0154*** 0.0137***

(0.00287) (0.00268) (0.00285)
Forecast 0.0383*

(0.0224)
Credit access 0.0806*** 0.0825*** 0.0768***
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(0.0264) (0.0226) (0.0230)
Extension 0.000792 0.000760 0.000717

(0.000521) (0.000511) (0.000511)
Drought experience 0.0507** 0.0528** 0.0451*

(0.0252) (0.0247) (0.0250)
Square of farm size -0.000472*** -0.000477*** -0.000484***

(0.000152) (0.000151) (0.000151)
Observations 408 408 408
R-squared 0.851 0.851 0.852

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Source: Authors’ Compilation 
In addition to weather variables, access to credit, education, experience, weather forecasting 

methods and farm size are significant drivers of technical efficiency of smallholder farmers in 

Hurungwe. Farmers with access to credit are 8% technically more efficient than farmers with no 

access to credit. In support of this finding, Hailu et al. (2014) and Uaiene et al. (2009) 

established that farmers with access to technology can afford better technologies that can 

improve their productivity. The statistical significance of a positive association  between 

technical efficiency and education as buttressed by many previous studies (Masunda and 

Chiweshe, 2015; Ibrahim et al., 2014; Mapembe et al., 2013; Makki et al., 2012 and Singh et al., 

2009) suggests that investment in education is critical for improving efficiency of smallholder 

farmers in rural Zimbabwe. A unit increase in the farmer’s years of schooling increases technical 

efficiency of that farmer by 1.4% to 1.5%. The returns to formal education are however 

considered to be higher in areas with mechanised agricultural systems (Phillips, 1994). The 

results in model (3) further show that farmers who use modern weather forecasting methods are 

4% more technically efficient than those using traditional methods although the coefficient is 

only statistically significant at 10% level. While experience can be regarded as the best teacher, 

in Hurungwe its impact on technical efficiency of farmers is very small despite its statistical 

significance. Technical efficiency increases by only 0.2% in every year increase in farming 

experience.

The question on whether small farms are efficiency enhancing has been addressed in this article. 

The findings in this article reveal a concave association between farm size and technical 

efficiency. The negative coefficient of the square of farm size suggests the existence of an 

optimal farm size which is 17 hectares obtained from maximizing model (3) with respect to farm 

size. With very small farm sizes, increases in farm size will increase technical efficiency but only 
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up to 17 hectares, after which further increases in farm size will begin to negatively affect 

technical efficiency. There are diminishing returns in farm size. The quadratic association 

between technical efficiency and farm size may be the reason why previous studies established 

contradicting results. For example, Sherlund et al. (2002) and Sharma et al. (1999) established a 

positive association while Okon et al. (2010) and O’Neill et al. (2001) established the opposite. 

Many communal farmers in Hurungwe still require agricultural land while others have large 

tracks of land in excess of optimal land holdings which could be redistributed to improve 

technical efficiency of these farmers.

5. Conclusion and Policy Implications 

This article first applied the stochastic frontier model to determine technical efficiency level of 

smallholder farmers in Hurungwe district. Second, the article made an attempt to model the 

determinants of technical efficiency with particular focus on the impact of drought on technical 

efficiency. With regards to technical efficiency levels, the results reveal that technical efficiency 

levels for smallholder farmers in Hurungwe are very low with an average of 45.3%. The findings 

show that drought is detrimental to technical efficiency of smallholder farmers. Farmers 

experiencing a drought shock are 19% less efficient than those experiencing wet weather 

conditions. However, knowledge and experience of droughts is an important driver of technical 

efficiency in the district. Furthermore, the results demonstrate that education, experience, access 

to credit and modern methods of weather forecasting contribute positively to technical efficiency 

while farm size has diminishing effects on technical efficiency. Gender, technology adoption and 

extension services are not associated with technical efficiency of Hurungwe farmers. The 

statistically significant findings have essential implications on policies aimed at improving 

technical efficiency of maize farmers in Zimbabwe. 

First, the findings point to the need for the development of irrigation infrastructure in drought 

prone areas. Equally, the government can reduce the drought-induced technical efficiency losses 

by reallocating smallholder farmers to wet ecological areas of the district. The ongoing land 

reform will go a long way in improving technical efficiency of farmers in Hurungwe district if 

the government targets farmers in drought prone areas. The major policy implication of such 

findings is that if not checked, technical efficiency of maize farmers may worsen in the future 

due to climate change. Second, knowledge of drought history is important to the farmers as they 
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prepare for the unforeseen. Farmers with drought experiences improve their efficiency levels. In 

this regard, the article recommends publication of drought information to farmers. This could be 

done by setting regional weather stations where farmers can freely obtain information with 

regards to weather and with regards to previous droughts. These local weather information 

centres can provide farmers with modern sources of weather forecasting. 

Third, education is critical in the drive to improve technical efficiency of maize farmers. 

Programmes in education such as basic education assistance module (BEAM) should continue to 

receive support from the government and other developmental partners. Secondary education is a 

necessary condition for improving efficiency in agriculture especially in this era of 

mechanization. Fourth, access to credit increases farmers’ technical efficiency. This finding 

points to an important policy implication that farmers can improve their quality of inputs hence 

productivity if they have access to credit. The result suggests that financial inclusion through 

establishment of rural banks and expansion of other rural financial services such as mobile 

banking is crucial for improving technical efficiency of maize farmers in Hurungwe. 

Last, the impact of farm size on technical efficiency indicates that, on one hand, giving more 

land to farmers with farms less than 17 hectares will go a long way in increasing productive 

efficiency of maize farmers. The diminishing effects of farm size point to an important policy 

implication that when distributing land, the government should seriously consider the optimal 

land size. On the other hand, farmers with farms exceeding 17 hectares can have their excess 

land redistributed to those with smaller farms. The collected data however show that most 

farmers set aside a very small proportion of land for maize production while leaving the larger 

proportion for cash crops such as tobacco or leaving it fallow. It is in this view that this article 

recommends the government to carry out national campaigns which encourage farmers to expand 

maize hectrage. Future research should consider studying productive efficiency of maize farmers 

in other districts. Furthermore, future research should also look at optimal farm sizes and optimal 

other inputs such as fertilizer, labour and maize seed.
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