Productive Performance Of The Grasscutter (Rodentia: Thryonomyidae) Reared Under Three Different Housing Systems

O. O. Ikpeze¹ and C. I. Ebenebe²

¹Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.
²Department of Agricultural Education, Nwafor Orizu College of Education, Nsugebe.

Correspondence Address: Dr. O. O. Ikpeze. DVM, MSc, MNSP, MEHSON. Raw Materials Research and Development Projects (Rawdev). Box 36, Afoigwe, Anambra State, Nigeria. Phone: 08035838255

Abstract

The floor housing, open-cage and closed-cage housing systems for rearing grasscutters in captivity were respectively used to evaluate the performance of the grasscutter (Thryonomyx swinderianus Temmnick, 1827) in the humid tropics of southern Nigeria. There was no significant difference (P>0.05) in the average initial weights of the grasscutters reared under the three different housing systems. But there were significant differences (P<0.05) in the average final weights, average weight gains, average daily weight gains, average total feed intake, and feed efficiency in favour of the floor (3434g, 2534g, 8.75g/d, 287230g, and 0.00914) over the open-cage (2985g, 2181g, 7.27g/d, 278580g, and 0.00782) and the closed-cage (2972g, 2167g, 7.22g/d, 279810, and 0.00774) housing systems, respectively. Performance evaluation of the resultant grasscutter rats showed no significant differences (P>0.05) in the mean litter sizes, average litter mortality, and average number of litters weaned. But the numerical values of mean litter sizes and average number weaned were floor housing (2.85 and 2.44) greater than closed-cage (2.65 and 2.22) greater than open-cage (2.45 and 1.88) housing systems. The mortality rates (%) occurred in the reverse order of floor-housing (21.50) less than closed-cage (22.60) less than open-cage (24.90) housing systems. There were significant differences (P<0.05) in the mean litter birth-weights, average weaning weights, weight gains, and average daily weight gains in favour of the floor-housing (149.25g, 451g, 301.75g, and 7.18g/d) over closed-cage (135g, 410.70g, 275.70g, and 6.56g/d) and open-cage (133.75g, 383.50g, 249.75g, and 5.95g/d) housing systems, respectively. This result is an indication that the Floor is superior to the Cage housing systems for rearing the grasscutter in captivity.

Key words: Captive grasscutter, Housing systems, Performance evaluation, Nigeria.

Introduction

The existing acute shortage of animal protein in the diets of many Nigerians has necessitated a search into alternative sources of animal protein. The average daily consumption of 10.6g of animal protein per person in Nigeria represents a shortfall of about 31.17% of the recommended 34.9g per person per day (FAO/WHO, 1983). FAO (1980) had suggested the integration of wildlife farming into conventional farming system as a strategy to improve animal protein supply. Ajayi (1983) called for the domestication of the grasscutter (Thryonomyx swinderianus) - a wild species that could be suitable for farming, based on its adaptability to captive management, growth performance and acceptability (Hemmer, 1992).

Grasscutter farming in Nigeria is still at its rudimentary stage and few of the existing Farms rear grasscutters in metal cages. But the high cost of rearing grasscutters in metal cages would be a deterrent to prospective grasscutter farmers in Nigeria and elsewhere. This study was therefore undertaken to evaluate the performance of captive grasscutters under the floor housing, open-cage, and closed-cage housing management systems in Nigeria.

Materials and Methods

Thirty-six 2-months-old newly weaned grasscutters of different sexes that originated from Adagro Grasscutter Farms Ijegun, Lagos-Nigeria were used in the present study. Twelve animals were randomly assigned to each of the housing systems namely, the Floor, Open-cage, and Closed-cage housing systems, respectively. There were three replicates per housing system, with one male to three females per replicate to simulate the colony behaviour of grasscutters in the wild. The floor housing system was a high-walled building. The floor space, measuring 3m long and 4m wide were equally partitioned into three with expanded metal frames. Each partition had a separate entrance and was lined with strong wire netting. The cages, which were constructed with steel metal rods, were covered
with strong wire netting. The dimension of each cage was 2m by 1m by 0.5m as proposed by Awah (2000). The inlet to each cage, which had a sliding 'door', measured 30cm by 25cm while the base was made from perforated galvanized metal sheet – the openings being large enough to permit the dropping of fecal pellets into aluminum receptacles placed under each cage. The major difference between the open-cages and the closed-cages was the wooden boards used to cover both ends of the closed-cages, in order to stimulate nocturnal habits of grasscutters, and provide hiding places for the animals when frightened.

All animals were identified and allowed one-month pre-conditioning period in their respective housing systems. They were also subjected to similar management and husbandry conditions of feeding and hygiene except that litter materials and fecal pellets accumulated in the floor housing system. Animals in each replicate were fed ad libitum for 300 days with the same quantity and quality of forage and concentrates.

Data collected on individual and group treatments were subjected to statistical analysis of variance (ANOVA) and Student's t-test at 5% level of significant (Mmaduakonam, 1998).

Result

Productive performance of grasscutters in the three different housing systems is presented in Table 1. There was no significant difference (P>0.05) in the average initial weights of the grasscutters reared under the three different housing systems. But there were significant differences (P<0.05) in the average final weights, average weight gains, average daily weight gains, average total feed intake, and feed efficiency in favour of the floor (3434g, 2627g, 8.75g/d, 287230g, and 0.00914) over the open-cage (2985g, 2181g, 7.27g/d, 278580g, and 0.00782) and the closed-cage (2972g, 2167g, 7.22g/d, 279810, and 0.00774) housing systems, respectively.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Mean performance of grasscutters in different housing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing system</td>
<td>Initial weight for 300 days (g)</td>
</tr>
<tr>
<td>Floor</td>
<td>807</td>
</tr>
<tr>
<td>Open cage</td>
<td>804</td>
</tr>
<tr>
<td>Closed cage</td>
<td>805</td>
</tr>
</tbody>
</table>

*ADG = Average daily weight gain. Means within the columns with different superscripts are significantly different (P<0.05)

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Litter size, birth weight, mortality and weaning weight of grasscutters in different housing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing system</td>
<td>Litter size (g)</td>
</tr>
<tr>
<td>Floor</td>
<td>2.85</td>
</tr>
<tr>
<td>Open cage</td>
<td>2.45</td>
</tr>
<tr>
<td>Closed cage</td>
<td>2.65</td>
</tr>
</tbody>
</table>

*ADG = Average daily weight gain. Means within the columns with different superscripts are significantly different (P<0.05)

Productive performance of resultant grasscutter rats in the three different housing systems is shown in Table 2. There were no significant differences (P>0.05) in the mean litter sizes, average litter mortality, and average number of litters weaned. But the numerical values of mean litter sizes and average number weaned were floor housing (2.85 and 2.44)>closed-cage (2.65 and 2.22)>open-cage (2.45 and 1.88) housing systems. Young rats' mortality rates (%) occurred in the reverse order of floor-housing (21.50) < closed-cage (22.60) < open-cage (24.90) housing systems. Mean litter birth-weights, average weaning weights, average weaning weight gains, and average daily weight gains for the first 42 days, were significantly higher (P<0.05) in floor-housing (149.25g, 451g, 301.75g, and 7.18g/d) than the closed-cage (135g, 410.70g, 275.70g, and 6.56g/d) and open-cage (133.75g, 383.50g, 249.75g, and 5.95g/d) housing system.
Discussion

Results from this study showed that with the same levels of feeding there were significant average final weight and weight gains for grasscutters in Floor over those in open-cage system and closed-cage housing systems. This is in line with the observation of Fielding (1991) on rabbits. According to Fielding (1991) rabbits in the floor system translated their instinctive ‘wisdom’ to augment their feed by eating the fibrous litter materials to balance their fiber requirements. Nnor (1995) and Timibitei (1998) have reported that the rabbit obtained about 18% of digestible crude fiber from this source. This instinctive ‘wisdom’ may be in operation in grasscutters in floor systems. Stress inherent in the cage housing systems may also be responsible for the lower weight gains recorded for grasscutters in cages. Hemmer (1982) observed that stress factors, which operate on caged animals caused reduction in food utilization and decreased body weight. This observation may explain the significantly higher total feed intake, average daily weight gain, and feed efficiency in grasscutters in the floor housing system than those in open-cage and closed-cage housing systems (P<0.05). Mean litter birth-weight was significantly different (P<0.05) in favor of the floor system, but this parameter could be influenced by litter size and sexes of little, i.e., Birth weight for males was generally higher than for females. However, litter sizes and mean birth weights are all inversely related, but the litter size and birth weights were not investigated in this study. The floor environment, which encourages melting ability (Mobolaji-Bukola, 2000) may explain the differences in litter weights in favor of the floor system. It is generally believed that cage-housing systems restrain natural behaviors and free expression of grasscutters; biology hence the significant decrease in body weight gain for the first 42 days in favor of the grasscutters which were reared with reduced stress level in the floor housing system. This may explain the pattern of mortality rate (open-cage-closed-cage housing systems) reported in the study.

Acknowledgements

We are grateful to the staff of the Akpaka Forest Reserve Onitsha, Nigeria for their expert technical assistance during this study.

References

