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Abstract

Seventeen commercial timbers of Nigeria were assessed with respect to their quantitative anatomical
characteristics and static bending strength along the grain. The results showed positive correlations
between static bending strength of the timbers and fibre cell wall thickness, Runkel ratio, slenderness
ratio and fibre content. Negative correlations were recorded between static bending strength and fibre
length, fibre diameter, fibre lumen diameter, fibre coefficient of flexibility, vessel diameter and vessel
length. Prediction equations from regression analyses between static bending strength and the various
anatomical parameters were statistically valid for fibre length, fibre coefficient of flexibility, slenderness
ratio and vessel diameter. From the foregoing indications, it would appear that prediction of static
bending strength of timbers from quantitative anatomical characteristics stands as an alternative to the
laboratory and service tests currently available to structural engineers.
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{ntroduction

Over the years, wood has found tremendous usage
in  shipbuilding, housing, railway sleepers,
transmission poles, pit props in mines, fencing
posts, bridges, furniture and in the manufacture of
various semi-synthetic products (Tsoumis, 1968).
According to Anon (1974), timber is wood obtained
from tree trunks and prepared specially for building
construction and carpentry. It is cut exclusively from
conifers and dicotyledons. The strength properties
of timbers are relevant to their utilization.

There is considerable variability in the
structural and strength properties of timbers and the
problem that these pose to the utilization of the
material in most situations where uniformity and
stability are desirable are rather challenging. In
making use of timber in his work, where heavy load
is involved for example, the structural engineer is
expected to use timber commensurate in size and
strength. This goes a long way in the erection of
long-lasting structures, thus reducing the chances
of accidents due to structural failures. The
application of a sound knowledge of strength and
other properties of timber definitely gives the timber
greater reliability in service.

Providing the essential anatomical
principles, Esau (1965), indicated that the
composition of the xylem tissue and the structural
arrangement  of the component elements
considerably determine the physical properties of
woods and their suitability for commercial usage.
The author further pointed out that such factors as
fibre content of wood, fibre length, fibre cell wall
thickness, vessel abundance and distribution, axial
parenchyma abundance and distribution,
percentage ray volume, growth layer width and
proportion of late wood, had direct or indirect
influence on the specific gravity and strength
properties of wood. The relationships were,
however, not spelt out for specific timber species.

To determine the strength properties of
wood, two standard alternative test methods are

available: the service test and the laboratory
methods (Desch and Dinwoodie, 1981). Service
tests are carried out under the conditions to which
the timber is exposed in service, and data collection
takes a long period. In the laboratory methods, two
classes of tests are made; tests on small, clear
specimens and tests on timbers of structural size.
These alternative test methods are rigorous and
expensive to perform. In the circumstance, the need
arises to explore any other reliable approach for
determining the strengths of structural timbers. The
present paper presents our studies on the
possibility of the quantitative anatomical approach.

Materials and Methods
Seventeen commercial timbers of Nigeria of
marketable size and age were selected across ten

families (Table 1).

Table 1: Selected timber species and their
families

Species Families

1. Alstonia boonei De wild Apocynaceae

2. Ceiba pentandra (Linn.) Gaerth. Bombacaceae

3. Canarium schweinturthii Engl. Burseraceae

4. Terminalia superba Engl and Diels -Combretaceae

5. Diospyros méspiliformis Linn. Ebenaceae

6. Afzelia Africana sm. Fabaceae-
Caesalpinoidae

7 Berlinia auriculata (Benth) Fabaceae-

Caesalpinoidae

8. Brachystagia nigerica Hoyle and Fabaceae-
A.P.D. Jones Caesalpinoidae

9. Detarium microcarpum Guil. and Fabaceae-
perr. Caesalpinoidae

10. Gossweilerodendron balsamiferum Fabaceae-
(verm) Harms Caesalpinoidae

11, Periscopsis elata Fabaceae
papilionoidae
12. Khaya ivorensis A. Chev. Meliaceae
13. Antiaris toxicaria var. africana Moraceae
14. Milicia excelsa (Welw.) CL Berg Moraceae

15, Mansonia altissima A. Chev. Sterculiaceae
16.  Triplochiton scleroxylong. K schum  Sterculiaceae
17. Gmelina arborea Roxb. Verbenaceae
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Table 4: Prediction equations, correlations coefficient (r), slopes (b), and intercepts (a) of the different

parameters measured for the timber species_investigated

Timber  Parameters Prediction equations Correlation Slopes Intercepts Validity
Species Y =a+ bx Coefficient (b) (a)
1 Fibre length 175.580-69.40x -0.426 69.480™* 175.580** +
2 Fibre diameter 137.050-1.820x -0.497 1.820" 137.050™ -
3 Fibre lumen

diameter 120.060-1,932.380x -0.509 1,932.380"™ 120.060 ™ -
4 Fibre cell wall £4.440+4,278.890x 0.120 4278.890"™ 64.440" -
5 Runkel ratio 59.550+30.020x 0.497 30.020* 59.550" -
6 Fibre coefficient

of fiexibility 194.060-148.380x -0.540 148.380% 194.0600* +
7 Vessel diameter

in tangential

direction 179.600-551.960x -0.680 -551.960" 179.600** +
8 Vessel diameter

in radial direction 179.740-460.000x -0.703 -460.000* 179.740* +
9 Fibre slenderness 41.741+0.897x 0.313 0.897* 41.741* +
10 Number of

vessels per field

of view 71.679+1.329x 0.618 1.329™ 71.679* -
LN No. of fibres per

' field of view 55.750+1.862x 0.312 1.862" 56.750** -

12 Vessel length 128.403-92.321x -0.382 -92.321™ 128.403** -
13 Number of axial

parenchyma per

field of view 87.073+0.007x -1.235 0.007™ 87.073* -

* = significant at 5% of level; ** = highly significant at 1% of level n. s = not significant; (+) valid prediction equation (-} = non-
valid prediction equation. 1 = Alstonia booner 2 = Ceiba pentandra 3 = Canarium schweinfurthii 4 = Terminalia superba 5 =
Diopyros mespiliformis 6 = Afzeliz africana 7 = Berlinia auriculata 8 = Brachystagia nigerica 9 = Detariurm microcarpum 10
= Gossweilerodendron balsamiferum 11 = Periscopsis elata 12 = khaya ivorensis 13 = Antiaris toxicria 14 = Milicia excelsa
16 = Mansonia altissima 16 = Triplochiton scleroxylon 17 = Gmelina arborea

The timbers were properly identified, and their
heartwood samples prepared for static bending
strength determination along the grain and for
quantitative anatomical characterization.

The test method used in the determination
of static bending strength was the laboratory test
method. Small, clear (free from defects) samples of
the timber species cut to the dimensions (20 mm x
20 mm x 300 mm) along the grain were subjected
to static bending test (Anon. 1957). The tests were
carried out with the Hounsfield Tensometer in the
Civil Engineering laboratory of University of Nigeria,
Nsukka, and the amount of force (in Newtons)
which caused each of the samples to rupture was
noted.

The samples for quantitative anatomical
characterization were prepared in two stages.
Firstly, sections of about 30um thick were cut from
each of the wood specimens, with the aid of a
Reichert sledge microtome, in the transverse,
tangential longitudinal and radial longitudinal
planes. These were immersed in distilled water in
separate Petri-dishes. Some sections were stained
with acidified phloroglucinol, others in iodine
solution and then examined under a calibrated
ordinary light microscope. Thirty counts were taken
on each of the wood samples for the following
parameters: Number of fibres per field of view (fibre
content) at 400 x mag; vessel content at 100 x mag
and number of cells in the maximum ray width.
Radial and tangential diameters of vessels were
measured as seen in the transverse sections
(Purvis, 1964).

The second stage of the anatomical
studies involved the maceration of the wood
samples by the Schultze’s method as adopted by
Kpikpi and Olatunji (1990) and Uju and Ugwoke

(1997), using potassium chlorate (KClO3) crystals
and concentrated nitric acid (Conc. HNOs).
Measurements of the wood elements Oladele
(1991), were taken under a calibrated ordinary light
microscope. The measurements taken were: - Fibre
length (L); Fibre cell wall thickness (C); Fibre
diameter (D), Fibre lumen diameter (l) and Vessel
member length (V1). The mean values for the thirty
measurements were calculated for each of the
parameters. Derived fibre values were calculated as
follows: - Runkel ratio (RR) = 2C/l; coefficient of
flexibility (CF) = /D and slenderness ratio (SR) =
L/D.

The various measured parameters of the
timber species were analyzed and then compared
with  their static bending strengths. The
experimental design used in the study was the
completely randomized design (CRD). The means
of the various parameters were separated using the
Duncan’s New Multiple Range Test (DNMRT). The
means of the parameters were regressed against
the static bending strengths, and regression
equations derived. The slopes and the intercepts of
the significant (r-values) were further tested for
significance to obtain valid prediction equations.

Results

The results are presented in Tables 2 ~ 4 and in
plates 1 a - ¢ and 2a-b. As outlined in table 2, the
mean values for the timbers studied ranged from
0.921 + 0.16 mm in Diospyros mespiliformis to
1.660+ 0.27 mm in Ceiba pentandra for fibre length;
0.018 + 0.03 mm in Diospyros mespififormis to
0.056 + 0.014 mm in Alstonia boonei for fibre lumen
diameter; 0.004 + 0.001 mm in Canarium
schweinfurthii, Detarium microcapum and Gmelina
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arborea to 0.007 + 0.002 mm in Periscopsis elata
for fibre cell wall thickness; 0.302 % 0.122 in
Alstonia boonei to 2.358 % 1.548 in Periscopsis
elata for Runkel ratio; 0.327+ 0.115 in Periscopsis
elata to 0.773x0.06 in Alstonia boonei for
Coefficient of flexibility, 26.248+7.710 in Alstonia
boonei to 74.615+25.790 in Khaya ivorensis for
slenderness ratio; 0.286 + 0.085 mm in Gmelina
arborea to 0.903+0.173 mm in Alstonia boonei for
vessel member length, 0.103 + 0.030 mm in
Periscopsis elata to 0.277 +0.06 mm in Ceiba
pentandra for vessel diameter in the radial direction;
0.23240.027 mm in Mansonia altissina to
0.23240.053 mm in Ceiba pentandra for vessel
diameter in the tangential direction; 7.033 +1.771 in
Ceiba pentandra to 25.033+4.476 in Milicia excelsa
for fibre content and 4.667+1.62 in Detarium
microcarpum to 34.400+5.531 in Periscopsis elata
for vessel content. The static bending strength
along the grain ranges from 26.667N in Ceiba
pentandra to 150.000N in Periscopsis elata.

198pmI

X650
Plate 1a: Arrangement of wood elements:
Gmelina arborea in transverse plane

' 198;.1m|
x650

Plate 1b: Arrangement of wood elements:
Gmelina arborea in tangential longitudinal
plane
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l 198um '

x650

Plate 1c: Arrangement of wood elements:
Gmelina arborea in radial longitudinal
plane

198um

x240
Plate 2a: fibres of Gmelina arborea from the
macerated wood tissue

198um

x650
Plate 2b: fibres and vessel member of Gmelina
arborea from the macerated wood tissue
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There were highly significant differences
among the species in all the parameters measured
(p=0.01). The mean separations using the
(DNMRT) are shown in Table 3. Table 2 shows the
Mean values of the quantitative anatomical
parameters and the static bending strengths of the
timber species. Table 4 shows the prediction
equations Y = a + bx correlation coefficient (r),
slopes (b) and intercepts (a) of the different
parameters. Plate 1 a to ¢ shows the arrangement
of the wood elements of Gmelina arborea in the
transverse, tangential longitudinal and radial
longitudinal planes respectively. Plate 2a and b
show the fibres and vessel members of Gmelina
arborea from the macerated wood respectively.

Discussion

The results presented show that species with thick
fibre cell wall are mostly associated with high static
bending strength as against those with thin walls.
Periscopsis elata which has a cell wall thickness of
0.007 + 0.002 mm has the highest static bending
strength of 150.000N, while Ceiba pentandra of wall
thickness of 0.005 * 0.001 mm has strength of
26.667 N. Some species show deviation from this,
and the explanation could come from other factors
within the specimens.

Species with narrow fibre lumen show
higher static bending strength than those whose
lumina were wide. This was seen in Periscopsis
elata, Afzelia africana, Diospyros mespiliformis,
Khaya ivorensis, Milicia excelsa and Mansonia
altissima, whose fibre lumina were narrow and
static bending strength high. Species with high
coefficient of flexibility showed low bending strength
as against those with low coefficient of flexibility
whose bending strengths were found to be high.
Alstonia boonei, Ceiba pentandra and Antiaris
toxicaria had high Coefficient of flexibility and low
static bending strength. Diospyros mespiliformis,
Afzelia africana, Periscopsis elata, Khaya ivorensis
and Milicia excelsa showed low coefficient of
flexibility and a corresponding high bending
strength.

Species with narrow vessel diameter, high
fibre content and high vessel content showed high
static bending strength, while those with wide
vessel diameter, low fibre content and low vessel
content showed low bending strength.

The results therefore support the earlier
indications of Esau (1965), that the composition of
the xylem tissue and the structural arrangement of
the component elements considerably determine
the strengths of wood and their suitability for
commercial usage.

The various quantitative anatomical
parameters whose prediction equations are valid
can serve as reliable indicators of static bending
strength along the grain. These as in table 4 include
fiore length, fibre coefficient of flexibility,
slenderness ratio, and vessel diameter. If the mean
value of any of these valid parameters is substituted
for (X) in the equation ¥ = a + bx, the static bending
strength can be calculated without using the
Tensometer. Thus the static bending strengths
along the grain of these timbers could be reliably

determined using the quantitative wood anatomical
approach.

It must however be pointed out that the
present study is limited to relationships with static
bending strength and if strength in general, the
collectivity of properties enabling the wood to resist
various forces or loads Esau (1965), is to be
brought in full view, further studies are needed to
explore the relationships with other strength
parameters.
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