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Abstract 
Objective: Tramadol and 3,4-methylenedioxy-methamphetamine (MDMA) use over an extended period is linked 
to deficits in memory encoding and retrieval. We aimed to determine the neurotoxic effects of co-administration of 
MDMA and tramadol (TRAM) on hippocampal function and investigate the potential of FMRFamide in attenuating 
resulting alterations in the Wistar rat model.  
Methods: Thirty adult male Wistar rats were grouped into six (n=5):  Control, FMRFamide, TRAM, MDMA, 
TRAM+MDMA, and TRAM + MDMA + FMRFamide groups. The opiates were administered orally at 20mg/kg each, 
while 2mg/kg of FMRFamide was administered intraperitoneally for 12 days using normal saline as a vehicle.  The 
Barnes and Morris water mazes were used to evaluate spatial learning and memory functions, followed by H&E 
staining, and immunohistochemical staining for glial fibrillary acid protein (GFAP).  
Results: The opiates significantly increased total latencies in the Barnes Maze test, indicating that short- and long-
term memory functions were impaired. Also, high levels of escape latency were observed following MDMA 
administration, suggesting that MDMA reduced the spatial navigation ability of the animals. These discrepancies 
were noticeably extreme in animals that received co-administration of opiates. However, FMRFamide showed 
significant potential in attenuating the damage induced by opiates, thus repairing and restoring memory formation 
and retention functions. 
Conclusion: FMRFamide may attenuate the Tramadol- and MDMA-mediated memory dysfunction by enhancing 
cholinergic and glutaminergic synthesis and transporting and restoring exploratory and navigational abilities in the 
hippocampus of male Wistar rats. 
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Plain English Summary 
Tramadol is a centrally acting synthetic opioid analgesic and serotonin/norepinephrine reuptake inhibitor that is 
similar structurally to codeine and morphine. Due to its ability to modulate the perception and response to pain and 
affect other pain modulators in the central nervous system, it is used in the treatment of several kinds of pain such 
as neuropathic pain, post-operative pain, lower back pain, osteoarthritis, fibromyalgia, and cancer. However, 
Tramadol can be abused alone or in combination with other substances such as 3,4-methylenedioxyl-
methamphetamine, of which prolonged use can lead to memory impairment. “In this study, ameliorative effects of 
FMRFamide were investigated on adult Wistar rats, including its effect on the co-administration of Tramadol and 
3,4-Methylenedioxyl-Methamphetamine by assessing their neurobehavioural changes and biochemical changes. 
The findings from this study showed that as a result of the coadministration of Tramadol and 3,4-methylenedioxy-
methamphetamine, short- and long-term memory functions were impaired, and reduced spatial navigation ability of 
the animals was noticed, However, FMRFamide showed significant potential in ameliorating the damages induced 
by the opiates. 
 
Introduction 
3,4-Methylenedioxyl-methamphetamine (MDMA) is a 
synthetic psychoactive drug that alters the mood and 
perception (awareness of surrounding objects) of its 
user; it causes euphoria, increased energy, and 
empathy and its effect can last for more than 3 hours 
(1). MDMA is illegal in most countries and although 
some theory claims it can be used to combat post-
traumatic stress disorder (PTSD), the fact remains that 
as of 2017, has no medical uses (2).  MDMA is known 
on the street as ‘ecstasy’, ‘molly’ or scientifically as 3,4-
methylenedioxyl-methamphetamine. MDMA is readily 
absorbed from the intestinal tract and reaches its peak 
concentration in the plasma about two hours after oral 
administration. The major metabolites of MDMA are 
3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-
methoxyamphetamine (HMA), and 4-hydroxy-3-
methoxymethamphetamine (HMMA).   The drug is 
broken down metabolically mainly in the liver where an 
enzyme designated CYP2D6 is chiefly responsible. 
CYP2D6 is the main enzyme involved in MDMA 
metabolism and therefore an important determinant of 
MDMA induced toxicity 3(3).  
Long-term use of MDMA in humans has been shown to 
produce marked neurodegeneration in occipital, 
prefrontal, hippocampal and striatal serotonergic axon 
terminals (4, 5). Studies have shown that the 
hippocampus is one of the regions of the brain that 
suffers extensive serotonergic neuron damage 
following MDMA consumption (6).  
Tramadol is a management therapy for moderate to 
severe pain. This medicine can be ingested orally or 
injected into the body. Long-term continued use of this 
opioid can result in dependence and addiction. 
Tramadol acts by altering the serotonin 
neurotransmitter system. Both enantiomers of tramadol 
are agonists of the μ-opioid receptor and its M1 
metabolite, O-demethylate, is also a μ-opioid receptor 
agonist but is 6 times more potent than tramadol itself. 
By independently enhancing noradrenergic and 
serotonergic activity, they work together to produce 
effects of analgesia in the central nervous system 

(CNS). Tramadol is converted by CYP450 enzymes 
3A4 and 2D6 into 3 major metabolites; O-
desmethyltramadol (M1), N, N-didesmethyltramadol 
(M3) and N, O-didesmethyltramadol (M5), 2 of which 
are active (7). Tramadol administration impairs memory 
function in rodent models by activation of μ-opioid 
receptors (8, 9). Chronic administration of tramadol has 
been associated with histological abnormalities such as 
increasing apoptosis in rat cerebral cortex and 
hippocampus (10, 11). 
FMRFamide is a neuropeptide that has been described 
as an anti-opioid peptide. It plays a role in opioid anti-
nociception, dependence and tolerance. It was first 
isolated out of molluscs and has a lot of functions from 
anti-opiate functions to modulation of muscle 
contraction in cardiac and non-cardiac muscles such as 
gut contraction and heart rate. Previous research 
showed that FMRFamide exhibits therapeutic potential 
in pain management because it mimics the analgesic 
benefits of opiates without causing opiate dependence. 
FMRFamides are also regarded as a type of anti-opiate 
peptide, because of their capacity to block opioid 
signalling in research on mammals. Some 
FMRFamides may lessen opiate tolerance, which 
makes them useful in drug addiction treatment plans 
(12, 13, 14).  
Over 20 million people worldwide suffer from a 
substance use disorder, which includes alcohol, 
methamphetamines, and opioids. When taking 
prescription painkillers, some people become 
dependent on them. It has been demonstrated that 
medication-assisted treatment increases patient 
compliance, lowers opioid use and overdose rates, and 
lowers the risks of opioid use disorder. However, the 
potential of FMRFamide as an alternative treatment to 
the neurotoxic effects caused by opioids has not been 
explored despite its powerful anti-opioid properties. 
This research aimed to study the combinatory effects 
of MDMA and Tramadol on hippocampal integrity and 
the potential of FMRFamide to alleviate the damages 
associated with this condition. Our specific objectives 
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were to assess the behavioural inconsistencies in the 
animals and access the neurotransmitter activity levels. 
 
Materials and Methods 
Experimental animals 
Thirty (30) adult male Wistar rats each weighing 
between 145g-165g were obtained, housed and 
maintained in the Institutional Animal Holding Facility at 
Babcock University, Ilishan-Remo, Ogun State, using 
standard-sized home cages under suitable 
environmental conditions (at 23 ± 10 C, a 12-h light/dark 
cycle and ad libitum food and water).  
 
Procurement, Preparation, and Administration of 
Opioids and FMRFamide 
Tramadol capsules were obtained from the 
pharmaceutical department of Babcock University 
Teaching Hospital (BUTH) with a prescription for 
research purposes. MDMA tablets were purchased 
from Sigma-Aldrich, St Louis, Missouri, USA. These 
opioids were administered to the animals at 20mg/kg in 
a ml of normal saline (vehicle) with the aid of an oral 

cannula (11, 15). Synthetic FMRFamide powder was 
obtained from St Louis, Missouri, USA. FMRFamide 
was administered to the rats at 2mg/kg in 0.5ml of 
normal saline (vehicle) intraperitoneally using a needle 
and syringe. 
 
Research Design 
The thirty (30) Wistar rats were grouped into six (6), 
n=5, to prevent overcrowding and provide easy 
identification during the research process in correlation 
with the experimental design. Control group received 
1ml of normal saline (vehicle only), Group B received 
2mg/kg of FMRFamide in normal saline, Group C 
received 20mg/kg of Tramadol (TRAM) in normal 
saline, Group D received 20mg/kg of MDMA in normal 
saline, Group E received 20mg/kg each of MDMA and 
Tramadol in normal saline, Group F received 20mg/kg 
each of MDMA and Tramadol and 2mg/kg of 
FMRFamide using normal saline as vehicle. MDMA 
and Tramadol were administered orally while 
FMRFamide was done intraperitoneally consecutively 
for 12 days.

Table 1: The Experimental Design 

GROUPS (n=5) TREATMENT SCHEDULE 

Control Normal saline (0.9% NaCl) (16).  
FMRFamide Intraperitoneal administration of FMRFamide in normal saline at 2mg/kg (16). 
TRAM Oral administration of Tramadol in normal saline at 20mg/kg (11). 
MDMA Oral administration of MDMA in normal saline at 20mg/kg (15).  
TRAM+MDMA Oral administration of MDMA at 20 mg/kg+ Oral administration of Tramadol at 

20mg/kg in normal saline. 
TRAM+MDMA+FMRfamide Oral Co-administration of MDMA 20mg/kg + Tramadol at 20mg/kg with 

FMRFamide at 2mg/kg using normal saline as vehicle 

 
The rats were allowed to acclimatize for seven days 
upon procurement. Administration lasted for twelve 
days. After the end of administration, Barnes Maze and 
Morris Water Maze tests were carried out. 
 
Neurobehavioral Testing Procedure  
Barnes maze test was done to assess memory 
formation and retention (short and long term) and the 
Morris water maze was carried out to test spatial 
memory and spatial navigation. 
For the Barnes maze, the rats were first trained about 
three times with different time limits to get them 
accustomed to the position of the escape box. On the 
probe day, the amount of time that it took the rat to 
locate and enter the escape hole was recorded (Total 
latency) (17).  
For the Morris water maze, the rats first went through a 
learning probe, with a set time (120 secs). The probe 
day for memory and spatial navigation is done 24 hours 
after the training or last acquisition period. The rats 
were placed at each cardinal point and the time taken 

for the rat to find the escape platform (Escape Latency) 
was then recorded with a time limit of 60secs (18). 
 
Animal Sacrifice 
Sacrifice was carried out the next day after the 
completion of the neurobehavioral test. Experimental 
rats were anaesthetized with diethyl ether, after which, 
they were perfused intracardially with 100 mL 
phosphate buffered saline (PBS; 0.1 M, pH 7.4), 
followed by 250 mL of neutral buffered formalin. 
  
Biochemical Procedure  
The hippocampus was dissected and homogenized. It 
was then centrifuged (4,000 rpm for 10 min), and its 
supernatant was preserved at −20°C for further 
biochemical analysis. The neurotransmitters 
(serotonin, dopamine, glutamate) were analysed via 
Enzyme-Link Immunosorbent Assay (ELISA) at 450 nm 
using a microplate reader. The analysis was done 
according to the manufacturer’s instructions in the 
ELISA kits. 
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Statistical Analysis  
In this research, all the results were represented as 
grouped data and analysed using the GraphPad Prism 
8.0 software using one-way analysis of variance 
(ANOVA). The results were expressed as Mean±SEM. 
 
Results 
Relative Brain Weight  
Fig 1 shows the relative brain weight of the animals 
across the groups; Control (0.787 ± 0.009), 

FMRFamide only (0.946 ± 0.033), Tramadol only (0.89 
± 0.063), MDMA only (0.96 ± 0.105), Tramadol + 
MDMA (0.86 ± 0.023), and Tramadol + MDMA + 
FMRFamide (0.837 ± 0.018). There was a slight 
observable increase in the relative brain weights of 
animals that were treated compared with the control 
group. However, these changes were not significant at 
p<0.05.

 

 
Figure 2: Graph Illustrating the Relative Brain Weights Across the Groups 

Values expressed as Mean±SEM. CON: Control; FMRF: FMRFamide only; TRAM: Tramadol only; MDMA: MDMA only; TRAM+MDMA: 
Tramadol + MDMA; TRAM+MDMA+FMRF: Tramadol + MDMA + FMRFamide 

 
Neurobehavioral Analysis 
Table 2 summarizes the data obtained from the 
behavioural studies of the animals across the groups. 
Under our experimental conditions, Tramadol and 
MDMA significantly increased the short- and long-term 
latencies of the animals. However, FMRFamide 
showed strong attenuating potential from our findings. 
From the Barnes maze, there was a significant 
increase in total latencies following opioid 
administration when compared with the control group 
and the animals that received FMRFamide. More so, 

the Morris Water Maze showed a significant increase 
in the escape latencies of animals that received MDMA 
when compared with other groups. These findings 
indicate deficits in short-term and long-term memory as 
well as reduced spatial navigation ability of the animals 
following opioid administration at 20mg/kg.  
However, under our experimental conditions, 
FMRFamide at 2mg/kg restored memory and 
navigation function as suggested by the obvious 
significant increase in escape latencies of animals that 
received FMRFamide after opioid administration.

 
Table 2: The Latencies of the animals across the groups 

Groups Short-Term Latency Long-Term Latency Escape Latency 

Control 24.40 ± 4.250 50.00 ± 4.858 $ 11.53 ± 3.566 
FMRFamide only, 104.4 ± 20.61 56.80 ± 7.768 $ 9.133 ± 3.540 
Tramadol only 291.6 ± 6.787 *#$ 300.0 ± 0.0 *#$ 27.00 ± 6.089 
MDMA only 228.6 ± 43.87 *#$ 225.8 ± 45.47 *#$ 36.67 ± 7.391*#$ 
Tramadol + MDMA 274.4 ± 25.60 *#$ 283.4 ± 11.73 *#$ 27.20 ± 4.212 
Tramadol + MDMA + FMRFamide 33.80 ± 11.52 151.6 ± 33.69 *# 10.40 ± 2.004 

Values expressed as Mean±SEM. #: Statistical significance when compared to Control. #: Statistical significance when compared to FMRF. $: 
Statistical significance when compared to T+M+ FMRF 

 
Neurotransmitter Analysis 
There was an obvious increase in glutamate levels 
(µgg-1) of the animals that received Tramadol (0.134 ± 
0.005), MDMA (0.132 ± 0.003), and opioid co-

administration (0.140 ± 0.008) at 20mg/kg when 
compared with the control (0.128 ± 0.001) and 
FMRFamide (0.129 ± 0.002) groups but these 
differences were not significant as shown in Figure 3.  
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Similarly, in Figure 4, there was a slight increase in 
acetylcholine levels (µgg-1) of the animals that 
received Tramadol (0.129 ± 0.007), MDMA (0.128 ± 
0.007), and opioid co-administration (0.129 ± 0.008) at 

20mg/kg when compared with the control (0.12 ± 
0.003) and FMRFamide (0.123 ± 0.006) groups but 
these differences were not significant. 

 

 
Figure 3: Glutamate Levels Across the Groups. 

Values expressed as Mean±SEM. CON: Control; FMRF: FMRFamide only; TRAM: Tramadol; MDMA; TRAM+MDMA: Tramadol + MDMA; 
TRAM+MDMA+FMRF: Tramadol + MDMA + FMRFamide 

 

 
Figure 4: Acetylcholine Levels Across the Groups 

Values expressed as Mean±SEM. CON: Control; FMRF: FMRFamide only; TRAM: Tramadol; MDMA; TRAM+MDMA: Tramadol + MDMA; 
TRAM+MDMA+FMRF: Tramadol + MDMA + FMRFamide 

 
At p-value (<0.05), there was no statistical significance 
across all the groups when compared to control and 
each other. 
 
Discussion 
Abuse of Tramadol and 3, 4-
methylenedioxymethamphetamine (MDMA) singly or 
together have been associated with deteriorations in 
memory formation and retention. Previous research 
has revealed that memory recall is impaired in patients 
with pain using opioid medication and stimulants. The 
well-studied positive (pleasure) and negative (stress, 
depression, and anxiety related to withdrawal) effects 

and emotion, as well as the incentive salience that 
distinguishes opiate use, are also connected to the 
opioid-dependent effects. The hippocampus plays a 
very important role in memory formation, consolidation, 
and recall. The opioids’ effects on memory and learning 
are likely mediated by the hippocampus (19, 20). 
This research sought to investigate the behavioural 
changes that the drugs have on the hippocampus and 
the potential of FMRFamide as an ameliorative agent. 
The results of this study demonstrated that although, 
MDMA abuse had more neurotoxic effect than 
tramadol, co-abuse of MDMA and tramadol elicited the 
most neurotoxic effect. 
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The hippocampus is essential for cognition, learning, 
and spatial navigation. For awareness of conscious 
knowledge, hippocampal neurons send/receive input 
to/from higher cortical areas, thus maintaining the 
balance between memory encoding and retrieval. 
Damage to these neurons will hamper the memory for 
the sequence of several recently visited spatial 
locations (21,22). Under our experimental conditions, 
the groups Tramadol only, MDMA only, and Tramadol 
+ MDMA had significantly higher total latencies in the 
Barnes maze suggesting impaired short- and long-term 
memory functions. These findings are similar to reports 
on opiate use disorder from both Razavi et al. 2014 (23) 
and Liu et al. 2016 (24). Animals that received 
FMRFamide after co-administration of MDMA and 
tramadol had significantly lower latencies indicating 
that FMRFamide was able to repair the discrepancies. 
Although the total latency was relatively lowered in this 
group, the damage the opiates caused was still evident. 
These findings are congruent with findings from 
Matthys et al. 2011 (25). The results from the Morris 
Water maze test showed a higher escape latency for 
the groups TRAM only, MDMA only and TRAM+MDMA 
in comparison to the other groups. However, the 
difference was only significant for the animals in the 
MDMA group. This suggests that MDMA has the most 
negative effect on the spatial navigation and memory of 
animals which correlates with findings from Arias-
cavieres et al. 2010 (26) and Baghishani et al. 2018 
(11). 
With continued use, opiates trigger dependencies in 
humans and animals by altering functional 
neurotransmitter pathways leading to tolerance and 
later, addiction. Dopamine, Serotonin, gamma-
aminobutyric acid (GABA), glutamate and 
norepinephrine are established pathways affected by 
opioid use disorder (27, 28). In this study, we checked 
levels of glutamate and acetylcholine which play 
important roles in hippocampal mediation of cognition, 
learning, mood, and spatial navigation (29, 30, 31). 
There was a slight increase in the levels of glutamate 
and acetylcholine post-opiate administration; contrary 
to findings from Olatunji et al., 2020 (32) and Mowaad 
et al., 2022 (33), respectively. The differences were not 
significant; consistent with findings from Abdel-Salam 
et al. 2016 (34) who reported that the acetylcholine 
system was not affected by tramadol. Also, in 
combination with tramadol, MDMA did not alter brain 
glutamate and acetylcholine activity. This suggests that 
tramadol has a modulatory action on the effects of 
MDMA on glutamate and acetylcholine activity in the 
hippocampus. The animals who received FMRFamide 
only had similar results to those of the control. It was 
observed that FMRFamide treatment after opiate 
administration slightly lowered the levels of glutamate 
activity; hinting at the modulatory effects of this 

neuropeptide reported by Raffa and Bianchi in 1986 
(35). 
 
Conclusion 
In conclusion, this study examined the effects of 
Tramadol, MDMA and FMRFamide on the 
hippocampus. It was observed that Tramadol and 
MDMA given separately and in co-administration 
produced alterations in hippocampal structure, which 
were observed to be alleviated by the introduction of 
FMRFamide. Also, it examined the effects of Tramadol 
and MDMA when administered individually and 
together, as well as the effects of FMRFamide on short, 
long term and spatial memory. The damaging effects of 
Tramadol and MDMA on the short-term, long-term and 
spatial memories of the animals were corrected and 
restored to a certain extent by FMRFamide. However, 
in this study, we observed that these drugs caused 
minimal to no alterations in levels of acetylcholine and 
glutamate. All these conclusively show that 
FMRFamide attenuated the spatial and memory 
dysfunction induced by the co-administration of 
Tramadol and MDMA in the hippocampus of male 
Wistar rats. 
We recommend that further investigations be carried 
out on the effectiveness of FMRFamide in the 
treatment of neurodegeneration caused by these 
psychoactive drugs. We also recommend that actions 
targeted at Methamphetamine and opioid use disorder 
awareness should be done to sway public perceptions 
on the damaging effects of these psychoactive drugs to 
influence behaviours and reduce abuse. 
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