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Efficient Numerical Approximation Methods for 
Solving High-Order Integro-Differential 
Equations 

Ayinde M. Abdullahi,1* Ishaq, A. Adam,2 Latunde Tolulope,3 and Sabo 
John4 

In this work, we developed an approximate solution of high-order integro-
differential equations (IDEs.) via the third kind of Chebyshev and Hermite 
Polynomials as basis functions using standard collocation method for Volterra 
and Fredholm integro-differential equations (IDEs). An assumed approximate 
solution is substituted into the given problem considered. After simplifications, the 
like terms of the unknown constants to be determined were collected and 

collocate at point 𝑧 = 𝑧𝑗, where 𝑧𝑗 are the zeros of the Chebyshev and Hermite 

polynomials. The resulting equations are then put into matrix form which is then 

solved via Maple 18 software to obtain the unknown constants 𝑐𝑖(𝑖 ≥ 0). These 

are substituted back to obtain our approximate solution. Comparison is made with 
the two basis functions aforementioned in terms of errors obtained. Given 
numerical examples shows that the methods are efficient, reliable and less 
computational for the numerical solution of the integro-differential equation. 

Keywords: Approximate Solution; Hermite Polynomial; Integro-Differential 
Equations; Standard Collocation Method; Third kind of Chebyshev Polynomial.

1. Introduction 

The term “Integro-differential equations” plays an 
important role in Mathematics right from the onset. 
It has been of great theoretical and practical 
importance. It is noticed recently that a score of 
problems in various fields such as theoretical 
physics, engineering and other disciplines do lead 
to the linear and nonlinear integral equation or 
integro-differential equation. To get these 
problems solved, some numerical approaches 
have been proposed by the researchers. 
Among these researchers are ([1], [6], & [11]), just 
to mention but few. Also, numerous polynomials 
like another new algorithm for calculating 
Adomian polynomials was established by [12] 
using parametrization approach,  Chebyshev and 
Legendre by [10], [9] employed trial solution  
constructed as Chebyshev form of fourier cosine 
series , Hermite polynomials [5] presents an 
approximate solution of non-homogeneous multi-
pantograph based on Hermite polynomials, [4] 
also proposes a techniques ton approximate the 
solutions of non-linear initial value problem with 
Hermite interpolation polynomial,Variational 
Iteration Decomposition Method (VIDM) [8] and 
Homotopy Perturbation Method (HPM) [2] and 
others have been used to derive solutions of some 
classes of integro-differential equations. 

 

The great work did by the researchers 
aforementioned motivated us and eventually led 
to the proposal of a numerical approximation 
method that is efficient, accurate and less 
computational to obtain an approximate solution 
of high order linear Volterra and Fredholm integro-
differential equations of the form 

𝑃01 𝜁
(𝑚)(𝑧) + 𝑃11 𝜁

(𝑚−1)(𝑧) + 𝑃21 𝜁
(𝑚−2)(𝑧) + ⋯+

𝑃𝑚1 𝜁(𝑧)𝜆 ∫ 𝐾(𝑧, 𝑡)𝜁(𝑡)𝑑𝑡
𝜎(𝑧)

𝜗(𝑧)
= 𝑓(𝑧)                (1)                      

Subject to the conditions  

𝜁(0) = 𝐶0,  𝜁
′(0) = 𝐶1,   𝜁

′′(0) = 𝐶2, 

+⋯+ 𝜁(𝑚−1)(0)(𝑧) = 𝐶 𝑚−1                               (2) 

where 𝜁(𝑚)(𝑧) is the kth derivative of 𝜁(𝑧). The 

kernel 𝐾(𝑧, 𝑠) and 𝑓(𝑧) are given real-valued 

function, 𝜆 is a complex-valued parameter. 𝑃′𝑠 are 
functions of the independent variable. 

2. Basic Definitions 

2.1 Integro-Differential Equation    
An integro-differential Equations (IDEs.) is  an 
equation in which the unknown function 𝜁(𝑧) 
appears under the integral sign and contains an 

ordinary derivative 𝜁(𝑘) as well. A standard 
integro-differential equation is of the  form: 

𝜁(𝑘)(𝑧) = 𝑓(𝑧) + 𝜆 ∫ 𝐾(𝑧, 𝑠)𝜁(𝑠)𝑑𝑠
𝜎(𝑧)

𝜗(𝑧)
              (3)                                       
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where 𝑖(𝑧) and ℎ(𝑧) are limits of integration 
which may be constants, variables or 
combined. 𝜆 is a constant parameter,   𝑓(𝑧) is a 

given function and 𝐾(𝑧, 𝑠) is a known function 

of two variables 𝑧 𝑎𝑛𝑑 𝑠, called the kernel.                                    

We have Fredholm integro-differential equation 
if the limits of integration are constants and it is 
called Volterra integro-differential equation if 
the limit 𝜁(𝑧) is replaced with a variable of 
integration 𝑧.                              

2.2 Collocation Method  

Collocation method is a method involving the 
determination of an approximate solution in a 
suitable set of functions sometimes called trial 
solution and also is a method of evaluating a 
given differential equation at some points in 
order to nullify the values of an ordinary 
differential equation at those points.  

2.3 Exact Solution  

A solution is called exact solution if it can be 
expressed in a closed form, such as a 
polynomial, exponential function, trigonometric 
function or the combination of two or more of 
these elementary functions. 

2.4 Approximate Solution  

An approximate solution is an inexact 
representation of the exact solution that is still 
close enough to be used instead of exact and it 
is denoted by 𝜁𝑀(𝑧) , where 𝑀 is the degree of 
the approximant used in the calculation. 
Methods of the approximate solution are 
usually adopted because complete information 
needed to arrive at the exact solution may not 
be given. In this work, the approximate solution 
used is given as  

𝜁𝑚(𝑧) = ∑𝑐𝑖𝜑𝑖(𝑧)                                                (4)

𝑀

𝑖=0

 

where  𝑐𝑖,   𝑖 = 0, 1, 2, … ,𝑀 are unknown 

constants to be determined, 𝜑𝑖(𝑧)(𝑖 ≥ 0) is the 
basis functions which is either third kind of 
Chebyshev or Hermite Polynomials and 𝑀 is 
the degree of approximating Polynomials.  

2.5 Third kind Chebyshev polynomials 

The third kind of Chebyshev Polynomial in [-1, 
1] of degree m is denoted by 𝑈𝑚(𝑧) and defined 
by

 𝑈𝑚(𝑧) = cos
(𝑚 +

1
2
) 𝜗

cos (
𝜗
2
)
,                                       (5) 

where 𝑧 = cos 𝜗                                Source [7]                                                                                                                                    

This class of Chebyshev Polynomials satisfied 
the following recurrence relation is given as 

𝑈0(𝑧) = 1,    𝑈1(𝑧) = 2𝑧 − 1, 𝑈𝑚(𝑧) =
2𝑧𝑈𝑚−1(𝑧) − 𝑈𝑚−2(𝑧), 𝑚 = 2, 3,⋯                 (6)                                                                

 The third kind of Chebyshev Polynomial in 
[𝛼, 𝛽] of degree, m is denoted by 𝑉𝑚

∗(𝑧) and is 

defined by  

   𝑈𝑚
∗ (𝑧) = cos

(𝑚+
1

2
)𝜗

cos(
𝜗

2
)

,cos 𝜗 =
2𝑧−(𝛼+𝛽)

𝛽−𝛼
,          

  𝜗  𝜖 [0, 𝜋]                                                                   (7) 

All the results of Chebyshev polynomials of the 
third kind can be easily transformed to give the 
corresponding results for their shifted ones. The 
orthogonality relations of  𝑈𝑚

∗ (𝑧) on [𝛼, 𝛽] with 

respect to the weight functions √
𝑧−𝛼

𝛽−𝑧
 is given by  

∫ √
𝑧−𝛼

𝛽−𝑧

𝛽

𝛼
= {

(𝛽 − 𝛼)
𝜋

2
, 𝑚 = 𝑛

0,   𝑚 ≠ 𝑛
                             (8)     

                                                         Source [3]                                                                                                                                                                                                                                                               

2.6 Hermite polynomials 

The Hermite polynomials are defined as  

𝐻𝑚(𝑧) =∑(−1)𝑗
𝑀

𝑗=0

𝑚!

𝑗! (𝑚 − 2)!
 𝑧(𝑚−2𝑗),   

−1 ≤ 𝑧 ≤ 1.                                                (9) 

where    𝑀 =
𝑚

2
, for 𝑚 is even and 𝑀 =

(𝑚−2)

2
 for 

 𝑚  is odd.                                                                                     

and the Hermite Polynomials are  

𝐻0(𝑧) = 1,  𝐻1(𝑧) = 2𝑧   

The recurrence relation is 

𝐻𝑚(𝑧) = (−1)
𝑚𝑒𝑧

2 𝑑𝑚

𝑑𝑧𝑚
 (𝑒−𝑧

2
)                     (10)                      

is known as Rodrigue’s formula, and offer 
another method of expressing the Hermite 
Polynomials.                                                 

Since 

𝐻𝑚+1(𝑧) = 2𝑧𝐻𝑚(𝑧) − 2𝑚𝐻𝑚−1(𝑧),
𝑓𝑜𝑟    𝑚 ≥ 1                                                         (11) 

we have  

 𝐻2(𝑧) = 4𝑧2 − 2, 𝐻3(𝑧) = 8𝑧
3 − 2𝑧,  
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  𝐻4(𝑧) = 16𝑧
4 − 48𝑧2 + 12,  

  𝐻5(𝑧) = 32𝑧
5 − 160𝑧2 + 120𝑧, and so on. 

                                                      Source [5] 

 

3. Problem Considered and 
Methodology  

Here, we applied standard collocation method 
to solve equation (1) using the following basis 
functions: 

i. Third kind of Chebyshev 
Polynomials, and 

ii.  Hermite Polynomials. 

3.1 Standard Collocation Method by Third 
kind Chebyshev Polynomials 

To solve the general problem given in equation 
(1) subject to the conditions given in equation 
(2) using the standard Collocation Method, we 
assumed an approximate solution of the form: 

𝜁𝑚(𝑧) =∑𝑐𝑖𝑈𝑖
∗(𝑧)                                           (12)    

𝑀

𝑖=0

 

where  𝑐𝑖,   𝑖 = 0, 1, 2, … ,𝑀 are unknown 

constants and 𝑈𝑖
∗(𝑧)(𝑖 ≥ 0) are Chebyshev 

polynomials of the third kind defined in equation 
(5) to (7). 𝑀 is the degree of approximating 
Polynomials, where in most cases the better 
approximate solution (i.e. closer to the exact 
solution) is produced by larger 𝑀, and 𝑐𝑖 is the 
specialized coordinate called Degree of 
freedom. 

Thus, differentiating equation (12) with respect 
to z mth-times, we obtain 

𝜁′
𝑚
(𝑧) = ∑ 𝑐𝑖𝑈𝑖

∗′(𝑧)   𝑀
𝑖=0

𝜁′′
𝑚
(𝑧) = ∑ 𝑐𝑖𝑈𝑖

∗′′(𝑧)    𝑀
𝑖=0

⋮

𝜁(𝑚)(𝑧) = ∑ 𝑐𝑖𝑐𝑖𝑈𝑖
∗(𝑚)

   𝑀
𝑖=0 }

 
 

 
 

                      (13)                                                                                                                                                                                                    

Hence, substituting equation (12) & (13) into 
equation (1), we obtain 

𝑃01 ∑𝑐𝑖𝑈𝑖
∗(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑃11 ∑𝑈𝑖
∗(𝑚−1)(𝑧)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝑈𝑖
∗(𝑚−2)

𝑀

𝑖=0

+⋯+ 𝑃𝑚1 ∑𝑈𝑖
∗(𝑚)(𝑧)

𝑀

𝑖=0

 

+𝜆∫ 𝐾(𝑧, 𝑡) (∑𝑐𝑖𝑈𝑖
∗(𝑚)(𝑡)

𝑀

𝑖=0

)𝑑𝑡
𝜎(𝑧)

𝜗(𝑧)

= 𝑓(𝑧)  (14) 

Evaluating the integral part of the equation 
(14) to obtain  

𝑃01 ∑𝑐𝑖𝑈𝑖
∗(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝑈𝑖
∗(𝑚−1)(𝑧)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝑈𝑖
∗(𝑚−2)(𝑧)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝑈𝑖
∗(𝑧)

𝑀

𝑖=0

 

+𝜆𝐺(𝑧) = 𝑓(𝑧)                                                   (15) 

where 𝐺(𝑧) = ∫ 𝐾(𝑧, 𝑡)(∑ 𝑐𝑖𝑈𝑖
∗(𝑧)𝑀

𝑖=0 )𝑑𝑧
𝜎(𝑧)

𝜗(𝑧)
   

Thus, collocating equation (15) at the point 

 𝑧 = 𝑧𝑗, we obtain 

𝑃01 ∑𝑐𝑖𝑈𝑖
∗(𝑚)

(𝑧𝑗)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝑈𝑖
∗(𝑚−1)

(𝑧𝑗)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝑈𝑖
∗(𝑚−2)

(𝑧𝑗)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝑈𝑖
∗(𝑧𝑗)

𝑀

𝑖=0

 

+𝜆𝐺(𝑧𝑗) = 𝑓(𝑧𝑗)                                            (16) 

and 

𝑧𝑗 = 𝛼 +
(𝛽 − 𝛼)𝑗

𝑀 + 1
; 

𝑗 = 1, 2, … ,𝑀                                                  (17) 

Thus, equation (16) is then put into matrix form 
as 

𝑃𝑧 = 𝑞                                                                     (18)  

where  

𝑃 = 

(

 
 

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

⋯

𝑝1,𝑚
𝑝2,𝑚
𝑝3,𝑚

⋮ ⋱ ⋮
𝑝𝑚,1 𝑝𝑚,2 𝑝𝑚,3 ⋯ 𝑝𝑚,𝑚)

 
 
          (19) 

𝑧 = (𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑚)
𝑇                                   (20) 

𝑞 = (𝑓(𝑞1), 𝑓(𝑞2), 𝑓(𝑞3)… , 𝑓(𝑞𝑚))
𝑇              (21)                                                                            

Thus, equation (16) gives rise to (𝑀 +
1) system of linear algebraic equations in 
(𝑀 + 1) unknown constants and 𝑛 extra 
equations are obtained using the conditions 
given in equation (2). Altogether, we now have 
 (𝑀 + 𝑛 + 1) system of linear algebraic 
equations. These equations are then solved via 
Maple 18 software to obtain  (𝑀 + 1) unknown 

constants 𝑐𝑖 (𝑖 ≥ 0) which are then substituted 
back into the approximate solution given by 
equation (6).  
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3.2 Standard Collocation Method by Hermite 
Polynomial Basis 

To solve the general problem given in equation 
(1) subject to the conditions given in equation 
(2) using the standard Collocation Method, we 
assumed an approximate solution of the form 

    𝜁𝑚(𝑧) = ∑𝑐𝑖𝐻𝑖(𝑧)                                          (22) 

𝑀

𝑖=0

 

where 𝑐𝑖,   𝑖 = 0, 1, 2, … ,𝑀 are unknown 

constants and 𝐻𝑖(𝑧)(𝑖 ≥ 0) are Hermite 
polynomials defined in equations (8) and (9). 𝑀 
is the degree of approximating Polynomials, 
where in most cases the better approximate 
solution (i.e. closer to the exact solution) is 
produced by larger 𝑀. 

Thus, differentiating equation (22) with respect 
to z mth-times, we obtain 

𝜁′
𝑚
(𝑧) = ∑ 𝑐𝑖𝐻𝑖

′(𝑧)   𝑀
𝑖=0

𝜁′′
𝑚
(𝑧) = ∑ 𝑐𝑖𝐻𝑖

′′(𝑧)    𝑀
𝑖=0

⋮

𝜁(𝑚)(𝑧) = ∑ 𝑐𝑖𝐻𝑖
(𝑚)
   𝑀

𝑖=0 }
 
 

 
 

                         (23)                                                                                                                                

Hence, substituting equations (22) and (23) into 
equation (1), we obtain 

𝑃01 ∑𝑐𝑖𝐻𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝐻𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝐻𝑖
(𝑚−2)(𝑧)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝐻𝑖(𝑧)

𝑀

𝑖=0

 

+𝜆∫ 𝐾(𝑧, 𝑡) (∑𝑐𝑖𝐻𝑖(𝑡)

𝑀

𝑖=0

)𝑑𝑡 = 𝑓(𝑧)
𝜎(𝑧)

ℎ(𝑧)

    (24) 

Evaluating the integral part of the equation (24) 

𝑃01 ∑𝑐𝑖𝐻𝑖
(𝑚)(𝑧)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝐻𝑖
(𝑚−1)(𝑧)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝐻𝑖
(𝑚−2)(𝑧)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝐻𝑖(𝑧)

𝑀

𝑖=0

 

+𝜆𝐺(𝑧) = 𝑓(𝑧)                                              (25) 

where 𝐺(𝑧) = ∫ 𝐾(𝑧, 𝑡)(∑ 𝑐𝑖𝐻𝑖(𝑡)
𝑀
𝑖=0 )𝑑𝑡

𝜎(𝑧)

𝜗(𝑧)
   

Thus, collocating equation (25) at the point 

 𝑧 = 𝑧𝑗, we obtain 

𝑃01 ∑𝑐𝑖𝐻𝑖
(𝑚)(𝑧𝑗)

𝑀

𝑖=0

+ 𝑃11 ∑𝑐𝑖𝐻𝑖
(𝑚−1)(𝑧𝑗)

𝑀

𝑖=0

 

+𝑃21 ∑𝑐𝑖𝐻𝑖
(𝑚−2)(𝑧𝑗)

𝑀

𝑖=0

+ ⋯+ 𝑃𝑚1 ∑𝑐𝑖𝐻𝑖(𝑧𝑗)

𝑀

𝑖=0

 

+𝜆𝐺(𝑧𝑗) = 𝑓(𝑧𝑗)                                         (26) 

 

and 

𝑧𝑗 = 𝛼 +
(𝛽 − 𝛼)𝑗

𝑀 + 1
; 

𝑗 = 1, 2, … ,𝑀                                               (27) 

Thus, equation (27) is then put into matrix form 
as 

𝑄𝑧 = 𝑑                                                                 (28)  

where  

𝑄 = 

(

 
 

𝑞11 𝑞12 𝑞13
𝑞21 𝑞22 𝑞23
𝑞31 𝑞32 𝑞33

⋯

𝑞1,𝑚
𝑞2,𝑚
𝑞3,𝑚

⋮ ⋱ ⋮
𝑞𝑚,1 𝑞𝑚,2 𝑞𝑚,3 ⋯ 𝑞𝑚,𝑚)

 
 
       (29) 

𝑧 = (𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑚)
𝑇                              (30) 

𝑑 = (𝑓(𝑑1), 𝑓(𝑑2), 𝑓(𝑑3)… , 𝑓(𝑑𝑚))
𝑇   (31) 

Thus, equation (26) gives rise to (𝑀 +
1) system of linear algebraic equations in 
(𝑀 + 1) unknown constants and 𝑛 extra 
equations are obtained using the conditions 
given in equation (2). Altogether, we now have 
 (𝑀 + 𝑛 + 1) system of linear algebraic 
equations. These equations are then solved via 
Maple 18 software to obtain  (𝑀 + 1) unknown 

constants 𝑐𝑖 (𝑖 ≥ 0) which are then substituted 
back into the approximate solution given by 
equation (22). 
 

4. Numerical Experiments 
In this section, we have demonstrated the 
standard collocation approximation method on 
high-order integro-differential equations using 
Chebyshev of the third kind and Hermite 
Polynomial as the basis functions, and our 
result are compared with each other on three 
problems to test for the effectiveness and 
efficiency of our methods via the Maple 18 
software. 

4.1 Numerical Example 1  
Consider the second-order linear Fredholm 
integro-differential equation  

𝜁′′(𝑧) = 𝑒𝑧 − 𝑧 + 𝑧∫ 𝑡𝜁(𝑡)𝑑𝑡
1

0

                    (32) 

with initial conditions 
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𝜁(0) = 1,             𝜁′(0) = 1                                    (33)  

The exact solution is given as 
𝜁(𝑧) = 𝑒𝑧                                                                (34) 

                                                          Source [2]                                                                                                   
4.2 Numerical Example 2   
Consider the third-order linear Volterra integro-
differential equation  

𝜁′′′(𝑧) = −1 + 𝑧 − ∫ (𝑧 − 𝑡)𝜁(𝑡)𝑑𝑡
𝑧

0

           (35) 

with initial conditions 

𝜁(0) = 1,    𝜁′(0) = −1,     𝜁′
′(0) = 1              (36) 

The exact solution is given as 
𝜁(𝑧) = 𝑒−𝑧                                                                (37)    
                                                       Source [2]                                                                                                                           
4.3 Numerical Example 3   
Consider the fouth-order linear Fredholm 
integro-differential equation  

𝜁(′𝑣)(𝑧) = 3𝑒𝑧 + 𝑒2𝑧 −∫ 𝑒2(𝑧−𝑡)𝜁(𝑡)𝑑𝑡
1

0

      (38) 

with initial conditions 

𝜁(0) = 0,    𝜁′(0) = 1,    𝜁′
′(0) = 2,

𝜁′′′(0) = 3                                                               (39)  

The exact solution is given as 

𝜁(𝑧) = 𝑧𝑒𝑧                                                              (40) 
                                                       Source [2] 
                                                                                                                                   
Remark: We defined absolute error as:  
 
𝐸𝑟𝑟𝑜𝑟 = |𝜁(𝑧) − 𝜁𝑀(𝑧)|;   
 
where, 𝜁(𝑧) is the exact solution and 𝜁𝑀(𝑧) is 
our approximate solution obtained for the 
various value of M.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Comparison of Results and Errors between Chebyshev and Hermite for example 1 

Z Exact Result Chebyshev 
Computed result for 
case M = 5 

Hermite Computed result 
for case M = 5 

Error In 
Chebyshev. 

Error in 
Hermite. 

0.0 1.0000000000000 1.0000000000000000 0.999999999899999 0.00000e+00 1.00000e-10 

0.2 1.2214027581602 1.2213929138390528 1.221392913813536 9.84432e-06 9.84500e-06 

0.4 1.4918246976413 1.4918027202345216 1.491802720054752 2.19774e-05 2.19790e-05 

0.6 1.8221188003905 1.8220841490924544 1.822084148146848 3.46513e-05 3.46520e-05 

0.8 2.2255409284925 2.2254924488172032 2.225492446228064 4.84797e-05 4.84820e-05 

1.0 2.7182818284590 2.7181704811200000 2.718170476020000 1.11347e-04 1.11352e-04 

 

Table 2. Comparison of Results and Errors between Chebyshev and Hermite for example 2 

Z Exact Result Chebyshev 
Computed result for 
case M = 5 

Hermite Computed 
result for case M = 5 

Error In 
Chebyshev. 

Error in 
Hermite. 

0.0 1.00000000000000 0.99999999980000 1.00000000000000 2.0000e-10 0.00000e+00 

0.2 0.81873075307798 0.81873352529753 0.81873352526950 2.7722e-06 2.7722e-06 

0.4 0.67032004603564 0.67033384005778 0.67033383978527 1.3794e-05 1.3798e-05 

0.6 0.54881163609403 0.54884481246803 0.54884481193343 3.3176e-05 3.3176e-05 

0.8 0.44932896411722 0.44938546598356 0.44938546516737 5.6502e-05 5.6501e-05 

1.0 0.36787944117144 0.36792015475300 0.36792015363300 4.0714e-05 4.0712e-05 
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Table 3. Comparison of Results and Errors between Chebyshev and Hermite for example 3  

Z Exact Result Chebyshev 
Computed result for 
case M = 8 

Hermite Computed 
result for case M = 8 

Error In 
Chebyshev. 

Error in 
Hermite. 

0.0 0.00000000000000 0.00000003034775 -0.00000151539200 3.0300e-08 1.5154e-06 

0.2 0.24428055163203 0.24428058337374 0.244280249234661 3.1800e-08 3.0240e-07 

0.4 0.59672987905651 0.59672996415055 0.596730754193489 8.5100e-08 8.7500e-07 

0.6 1.09327128023431 1.09327152428490 1.093273088792861 2.4400e-07 1.8090e-06 

0.8 1.78043274279397 1.78043330528754 1.780435083327691 5.6300e-07 2.3420e-06 

1.0 2.71828182845905 2.71828239893951 2.718283701152300 5.7100e-07 1.8730e-06 

Table 1, 2, and, 3 show the numerical solution 
obtained in terms of approximate solution and 
the errors for the linear integro-differential 
equations solved through third kind 
Chebyshev and Hermite Polynomials basis 
function. We also observed from the examples 
solved that both methods converge close to 
the exact solution in a view iterations and 
lower error. 
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5. Conclusion 

In this work, we have demonstrated Collocation 
Approximation Method for Solving high-order 
integro-differential equations of various order 
using the third kind of Chebyshev Polynomial and 
Hermite Polynomial as basis functions and 
compared it with each other. The results obtained 
by the third kind of Chebyshev Polynomial basis 
performed better over the Hermite Polynomial in 
some examples. However, we also observed that 
as M (degree of approximant) increases, the 
results obtained yield a good approximation to the 
exact solution only in a few iterations in all the 
problems considered (as it can be seen from 
tables of results). We, thus, conclude that both 
methods were feasible and effective for the class 
of problems considered.  This work is limited to 
linear integro-differential equation, it is therefore 
recommended for the immediate solution of other 
types of equations, for example, Fractional 
differential equations, Integro-differential 
difference equations, and Partial differential 
equations. 
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