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Implicit Three-Step Hybrid Block Method for 
Solving First Order Initial Value Problems in 
Ordinary Differential Equations 
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Zando1 

Recently, the development of numerical method for approximating solutions of 
initial value problems (IVPs) in ordinary differential equations (ODEs) has 
attracted considerable attention and many researchers have shown interest in 
constructing efficient methods with good stability properties for the numerical 
integration of ODEs. This research focuses on the derivation of new implicit 
three step block hybrid method for the solution of first order IVPs in ODEs. The 
new method is derived based on multistep collocation using Chebyshev 
polynomials as bases functions at some selected points to get a continuous 
linear multistep method. The continuous methods are evaluated at some off-grid 
points to generate the discrete schemes for step number k=3 which 

conveniently constitutes the block method. Basic properties of the developed 
method is examined and the method is found to be zero stable, consistent, 
convergent and of uniform order 8. The efficiency of the method is tested on 
some numerical examples in the literature. On comparison, the method 
developed performed favorably when compared with the existing methods. As 
such the method is recommended for the solution of general first order initial 
value problems in ordinary differential equations. 

Keywords: Differential Equation, Initial Value Problems, Linear multistep 
method, Chebyshev Polynomial, Block Method. 

1. Introduction 

Although, a very wide variety of numerical 
methods have been proposed, the number of 
methods with high order and good stability 
properties remains relatively small. Solutions to 
ordinary differential equations were derived using 
analytic or even exact methods. Most of their 
solutions are very useful such that it provides 
excellent insight into the behavior of some 
system. These include those that can be 
approximated with linear model and those that 
have simple geometry and low dimensionality. 
Conversely, many differential equations cannot 
be solved analytically, because most real life 
problems are non-linear and involve complex 
shapes and processes. 
Many researchers have developed different 
methods for solving first order ordinary 
differential equations among which are [1], [2], 
[5], multi-step collocation methods of [4], [10] just 
to mention but a few. In this research work, we 
considered the numerical computational methods 
for first ODEs of the form 

 ),(,0)(),,(' baxyayyxfy              (1) 

where 0x  is the initial point 0y  is the solution at 

the initial point and f  is assumed to be 

continuous and satisfy Lipschitz’s condition for 
the existence and uniqueness of solution.  
 Equation (1.1). occurs in several areas of 
engineering, sciences and social sciences. Many 
physical problems are modeled into first order 
problems. Some of these problems have proved 
to be either difficult to solve or cannot be solved 
analytically, hence the need for numerical 
methods for solving such problems. [4] and [5] 
posited that there are many methods for solving 
first order ordinary differential equations. One of 
the popular methods for solving (1.1) is by Linear 
Multistep Methods (LMM). This method of 
solution had been developed in various forms 
such as discrete and continuous linear multistep 
methods. Continuous linear multistep methods 
have greater advantages over the discrete 
methods as they give better error estimation, 
provide a simplified form of coefficients for further 
evaluation at different points, and provides 
solution at all interior points within the interval of 
integration than the discrete one [13].   
 
Recently we proposed, An Implicit Two-Step 
Hybrid Block Method based on Chebyshev 
Polynomial for Solving First Order Initial Value 
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Problems in Ordinary Differential Equations see 
[14], but in this paper effort is being made to 
extend the scope for k=3, combining the qualities 
of hybrid methods, block methods and 
approximate solution using Chebyshev 
polynomial as a trial function to derive a new 
method. 

2. Derivation of the Method 

The approach adopted in this section entails 
substituting into (1.1) an approximate solution of 
the form 


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where j  is unknown coefficients and )(xjT  are 

polynomial basis functions of degree  in a 

manner that kp 1  and 0q .The integer 

1k  denote the step number of the method. 
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T  is the Chebyshev polynomial generated 

by the formula: 
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For sake of reporting, we present some few 
terms of Chebyshev polynomial as 
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From (2) 
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Putting (4) into (1) we obtained  
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To derive the method, some off step points are 
carefully introduced to guarantee zero stability. 
 

3. Specification of the Method 

We interpolating (2) at 
2

1
,0,  pppnx   

and collocating (5) at 

3,
2

5
,2,

2

3
,1,

2

1
,0,  qx qn

  

leads to the system of equations UAX  . (6) 

Use Maple 18 software to solve (6) gives the 
unknown coefficient 
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 which are 

then substituted into equation (2) and simplified 
to give the continuous hybrid method of the form; 
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Now, evaluating (9) at 
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schemes which constitute the block form  
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Rewriting equation (9) in block form yields 
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4. Analysis of the Method 
 

4.1 Order and error constant of the Method 

We associate the Linear operator L  with the 
scheme and defined by: 
   

         
k
j njnj jhxyhjhxyhxyL 0 ': 

                               (11) 

where 
0  and 

0  are both non-zero 

and  xy  is an arbitrary test function that is 

continuously differentiable in the interval 

 ba, . Expanding  jhxy n 
 and 

 jhxy n '  in Taylor series about 
nx  

and collecting like terms in h and y gives: 
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   (12)      

Accordingly we say that the method has order 

p  if, 

,010  pccc   

01 pc  

Then, 
1pc  is the error constant and 
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pp xyhp

c 111 
 is the principal 

local truncation error at the point 
nx  

In this paper, since 

08210  cccc   

and 019  pcc  which implies 

that the schemes are of uniform order 8 and the 
error constant are  
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4.2 Consistency 
The hybrid block method is said to be consistent 
if it has an order more than or equal to one. 
Therefore, our method is consistent, since it is of 
eight (8).

 

 [9].

 

4.3 Zero Stability  
 

 
The hybrid method, with four off grid collocation 
points expressed in the form 
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Hence, the method is zero-stable. 
4.4 Convergence 
Theorem (Henrici, 1962). 
Zero stability and consistency are sufficient 
conditions for a linear multistep method to be 
convergent. Since the method is consistent and 
zero-stable, by [8] the hybrid method is 
convergent. 
4.5 Region of Absolute Stability  
To plot the region of absolute stability of the 
method, the methods were formulated ([6]) and 
stability polynomial for method is computed as 
           

 

 
           

 

 
           

 

 

                

Thus, the stability region of the method is plotted 
and shown below 
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4.5.2 Numerical Examples  
In order to study the efficiency of the developed 
method, we present some numerical experiments 
with the following four problems. 
Problem 4.1   
 The SIR model is an epidemiological model that 
computes the theoretical number of people 
infected with a contagious illness in a closed 
population over time. The name of this class of 
models derived from the fact that they involve 
coupled equations relating the number of 
susceptible people  tS , number of people 

infected  tI  and the number of people who 

have recovered  tR . This is a good and simple 

model for many infectious diseases including 
measles, mumps and rubella. The SIR model is 
described by the three coupled equations 

                       
  ISS

dt

dS
  1

 

                      
ISII

dt

dI
 

 

                      
IR

dt

dR
   

where  and,  are positive parameters. 

Defined y  to be  

                                              
RISy   

Adding these equations gives 
                                                          yy  1'   

Taking 5.0  and attaching an initial condition 

  5.00 y  (for a particular closed population), we 

obtain 
                                      

      5.00,15.0'  yyty
 

Whose analytic solution is   

                                       
  tety 5.05.01 

 
Source: [11]  
 
Problem 4.2   
Highly stiff problem   
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   
100

1
,10,20,40,204'  hxyyyy

 
With the exact solution 

 
  xexy 435    

Source: [3]. 
Problem 4.3   
Highly stiff problem of ordinary differential 
equation which was solved by [11] 

    xFxFyy '' 0     with initial   

    01.0,1.0,0,00  hxyxy  

With the exact solution 
 

    1exp0  xyxy   .  where 

  10,0,10 00  yandxxF  

Source: [11]. 
 

Table 4.1 Comparing the absolute errors in the new methods with error from [11] for problem 
4.1 

X Error in new method Error in [11] 

0.1 9.6400e-18 1.714000e-14 

0.2 9.5000e-18 3.260000e-14 

0.3 9.8400e-18 4.653000e-14 

0.4 1.7660e-17 5.902000e-14 

0.5 1.7070e-17 7.018000e-14 

0.6 1.6950e-17 8.011000e-14 

0.7 2.3270e-17 8.891000e-14 

0.8 2.23800e-17 9.665000e-14 

0.9 2.18700e-17 1.034200e-13 

1.0 2.69700e-17 1.093100e-13 

 
Table 4.2 Comparing the absolute errors in the new methods with error from [3] for problem 
4.2 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4.3 Comparing the absolute errors in the new methods with error from [12] for problem 
4.3 

X Error in our new method Error in [11] 

0.1 8.6877e-15 1.079154e-12 
0.2 8.1407e-15 1.952918e-12 
0.3 8.0997e-15 2.650610e-12 
0.4 1.37648e-14 3.197828e-12 
0.5 1.26622e-14 3.616893e-12 
0.6 1.20007e-14 3.927240e-12 
0.7 1.56266e-14 4.145766e-12 
0.8 1.42931e-14 4.287136e-12 
0.9 1.33356e-14 4.364056e-12 
1.0 1.55987e-14 4.387513e-12 

 
 

5. Conclusion 
 

The efficiency of the new method has been 
demonstrated on some standard numerical 
examples. Details of the numerical results are  
 

displayed in Table 4.1, 4.2 and 4.3. The 
inclusion of off grid points allowed the adoption 
of linear multistep procedure which circumvents 
the ‘zero-stability barrier, up graded the order of 
accuracy of the methods and to obtain very low 
error constants. The order, error constant, 
consistency, zero stability and region of absolute 

X  Error in our new method   Error in [3] 

0.1 7.7000(-18) 2.0000(-14) 
0.2 7.900(-18) 3.0000(-14)  
0.3 8.300(-18) 8.0000(-14)  
0.4 1.500(-17) 1.2000(-12)  
0.5 1.4700(-17) 1.0000(-12)  
0.6 1.4800(-17) 2.6970(-11)  
0.7 2.0300(-17) 5.5800(-12)  
0.8 1.9900(-17) 6.2140(-10)  
0.9 1.9700(-17) 2.7048(-10)  
1.0 2.4400(-17) 1.4571(-8)  
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stability of the methods including its hybrids form 
was determined.  
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