
CaJoST, 2023, 2 123-126 © 2023 Faculty of Science, Sokoto State University, Sokoto. |123 

 

 

 

                           ISSN: 2705-313X (PRINT); 2705-3121 (ONLINE)  Short Communication 
Open Access Journal available at: https://cajost.com.ng/index.php/files and https://www.ajol.info/index.php/cajost/index  

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 
DOI: https://dx.doi.org/10.4314/cajost.v5i2.5   

Article Info 

Received: 21st April 2022 

Revised: 27th February 2023 

Accepted: 3rd March 2023 

 

1Department of Chemistry, University of 

Uyo, Uyo, Akwa Ibom State, Nigeria 

2Department of Chemical Sciences, 

Topfaith University, Mkpatak, Nigeria 

3Department of Mathematics, Topfaith 

University, Mkpatak, Nigeria 

 
*Corresponding author’s email:  

inemesitakpan@uniuyo.edu.ng    

Cite this: CaJoST, 2023, 2, 123-126 

The collision theory of unimolecular reactions: 

A second possibility to Lindemann’s proposal 

Inemesit A. Akpan1*, Nnanake-Abasi O. Offiong2 and Uwem P. Akai3 

Lindemann’s collision theory of unimolecular reactions was studied 
theoretically with comparative real-life assumptions. The result holds that 
there is a second possibility to the Lindemann’s proposal by applying 
quantitative/mathematical models, and assuming that in a bimolecular 
collision, both molecules are equally energized. This represents the second 
possibility of Lindemann’s proposal and is hereby presented to enhance the 
study of chemical kinetics. 
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1. Introduction 

Determination or modelling of systems with 
varying rates of chemical interactions have remain 
an important subject of inquiry in various 
disciplines of endeavors such as chemistry, 
physics, biology, and engineering (Yin 2015; 
Mortiner 2008; Roselar 1975). Various 
modifications and treatments of models help us 
improve on the existing theories of unimolecular 
reactions (Turanyi and Tomlin 2014). The aim is 
to enhance the study of chemical kinetics of 
different systems. The objective of the present 
study is to apply some theoretical and quantitative 
treatment to the Lindemann’s proposal regarding 
unimolecular reactions.  

Let us consider a case of a typical football match. 
When two players collide head-on, it is most likely 
that one of them will receive the pain more than 
the other. The less affected has no alternative 
than to say to the affected “I’m sorry”. When this 
is said, energy is taken away from the angry or 
more pained player and both of them will resort to 
normal players. On the other hand, the pain of 
head-on collision may affect both of them and they 
are both angry and lie down both for a while 
groaning with none to appease the other. After a 
while, both of them will rise up as normal players 
and continue to play. The second scenario is the 
case in consideration in this paper. Perhaps, it is 
better to present Lindemann’s unimolecular 
reaction mechanism proposal before the second 
scenario, in order to appreciate that there is a 
second possibility. 
 

2. Lindemann’s postulate of 
mechanism of unimolecular reactions 
 

Lindemann (1922) made use of collision theory to 
explain the mechanism of unimolecular reactions, 
say reactant (A) would undergo the following 
process: 

      A    Product(s)          (1) 

In unimolecular processes, only one molecule 
participates in the reaction, and consequently we 
need to ask how the single molecule acquire the 
energy of activation to start reacting. Lindemann 
provided the answer to this puzzle in 1922 (Saha 
and Dua 2013). He suggested the behavior of 
unimolecular reactions could be explained on the 
basis of bimolecular collisions provided we 
postulate that a time lag exists between activation 
and reaction during which activated molecules 
may either react or be deactivated to ordinary 
molecules (Maron and Lando 1974). 
Consequently, the rate of reaction will not be 
proportional to all the molecules activated, but to 
those which remain active. 

The Lindemann hypothesis can be formulated by 
the following scheme: 

A+ A
K

1

K
2

A* + A

          (2) 
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3 Pr ( ) (3)KA oduct Slow    

where A represents inactive and A* activated 
molecules, and the various K’s the rate constants 
for the respective processes. 

Further, the rate of reaction will be proportional to 
the concentration of A* (i.e., Eqn. (3) and is the 
rate- determining step).  

Hence, 

   
−𝑑[𝐴]

𝑑𝑡
 =𝐾3 [𝐴∗]                       (4) 

Since [𝐴∗] is not known, it is necessary to obtain 
its concentration in terms of other concentrations. 
To do this, we resort to a postulate known as 
steady state approximation (principle) or 
stationary state approximation (principle). The 
principle states that: “when short-lived reaction 
intermediates exist at low concentration in a 
system, the rate of formulation of the 
intermediates is equal to their rate of 
disappearance” (Maron and Lando 1974). 

Applying this principle to 𝐴∗, we see that it is 

formed in Eqn. 2 with rate 𝐾1[𝐴2] and it disappears 
with rate 𝐾2 [𝐴] [𝐴∗], and also disappears with rate 

𝐾3 [𝐴∗] in Eqn. 3.  

Consequently, 

𝐾1[𝐴]2 =K2 [𝐴][𝐴∗] + 𝐾3[𝐴∗]         (5) 

[𝐴 ∗] = 
𝐾1[𝐴]2

𝐾3+𝐾2[𝐴]
             (6) 

Substitute Eqn. (6) in Eqn. (4), we have: 

−𝑑[𝐴∗]

𝑑𝑡
 = 

𝐾1𝐾3[𝐴]2

𝐾3+𝐾2[𝐴]
                       (7) 

Equation 7 predicts two limiting possibilities: 

1. When 𝐾2[𝐴] >>𝐾3, the equation reduces to: 

−𝑑[𝐴]

𝑑𝑡
 = 

𝐾1𝐾3[𝐴]2

𝐾2[𝐴]
         (8) 

 

           = 
𝐾1 𝐾3

𝐾2
 [𝐴]  

 

 
−𝑑[𝐴]

𝑑𝑡
   = K [𝐴]          (9) 

where K = 
𝐾1𝐾3

𝐾2
. 

This case corresponds to a situation in the 
reaction where the concentration of A is high 
enough to produce appreciable deactivation of A* 
by collision with inactive molecules. Deactivation 
or reserve rate K2[𝐴][𝐴∗] is fast. Product formation 
rate 𝐾3[𝐴] is slow. Under such condition, Eqn. (9) 
predicts a first order reaction at high pressure. 

2. On the other hand, when K3 >> K2[𝐴], Eqn. (7) 
reduces to: 

−𝑑[𝐴∗]

𝑑𝑡
 = 

𝐾1𝐾3

𝐾3
 [𝐴]2  

 
−𝑑[𝐴∗]

𝑑𝑡
 = 𝐾1[𝐴]2         (10) 

That is, the reaction should be second order. This 
situation is obtained at low concentration of A 
where the rate of deactivation becomes so slow 
as to be rate-determining (K2 [𝐴][𝐴∗]  is slow and 

K3 [𝐴]∗ is fast and deactivation becomes rate –
determining). 

Such changes from first order in gaseous reaction 
at high pressure to second order at low pressure 
have been observed in many gaseous reactions 
(Keszei 2021). Depending on the reaction and the 
temperature, the transition from first to second 
order generally starts at pressures between 10 
and 200 mmHg and it is usually not completed 
until the pressure gets fairly low. A hypothetical 
representation is presented in Figure 1, which 
depicts the decomposition of azomethane: 

(CH3)2 N2              C2 H6 + N2 

 

Figure 1. The plot of K1 versus Pi for decomposition of 
azomethane (CH3)2N2 at 330 °C 

 
3. The second possibility to 

Lindemann’s proposal 

Here, we consider a situation where there is a 
bimolecular collision and both molecules are 
equally energized with none to withdraw the 
energy from the other. This can be represented 
with the scheme: 

     Pr ( ) (11)A oduct s    
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A+A                            A* + A*  
     (12) 

3 Pr (13)KA A oduct    

where A represents inactive, and A* represent 
energized or activated molecules, and all K’s are 
rate constants for the respective processes. 
Further, the rate of reaction will be proportional to 
the concentration of the energized molecules 
available (i.e., A*) 

The differential rate law is given as:  

      
−𝑑[𝐴]

𝑑𝑡
 =𝐾3 [𝐴∗]2   (14) 

Since [𝐴∗] is not known, it is necessary to obtain 
its concentration in terms of other concentrations. 
To do this, we make use of steady state 
approximation where the rate of formation of the 
short-lived intermediates or energized molecules 
is equal to the rate of disappearance. Applying the 
principle to A*, we see that it is formed in Eqn. (12) 

with a rate 𝐾2[𝐴∗]2 and it disappears with a rate 

K2[𝐴∗]2 and also disappears with a rate K3 [𝐴∗]2 in 
Eqn. (13). Consequently, 

 
2 22

1 2 3 (15)k A k A k A          

or 

   
22

1 2 3k A A k k     

 
2

2 1

2 3

k A
A

k k

    
 

 1

2 3

(16)
k

A A
k k

    
 

Substituting Eqn. 16 into Eqn. 14 

 
 

2

1
3

2 3

d A k
k A

dt k k

 
    

 

or 

 
 

21 3

2 3

(17)
d A k k

A
dt k k





 

 
 

2
(18)

d A
K A

dt


   

where 
1 3

2 3

k k
K

k k



 

This corresponds to a situation in the reaction 
where the concentration of A is very high enough 
to produce appreciable deactivation of 𝐴∗ by 
collision with inactive molecules. Deactivation or 
reverse rate 𝐾2[A][ 𝐴∗] is fast while product 

formation rate  𝐾3[𝐴∗] is slow. Under such 
condition, Eqn. (18) predicts a second order 
reaction at high pressure. 
 

4. Conclusion 

By applying quantitative models, and assuming 
that in a bimolecular collision, both molecules are 
equally energized to achieve activation energy. 
This second possibility of Lindemann’s theory of 
unimolecular reactions reveal that unimolecular 
reactions are mainly second order reactions. Few 
cases may occur mostly in gaseous reactions 
where a transition occurs from first order to 
second order reaction at high and low pressure 
respectively. 
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