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Online Anomaly Detection with Uncertainty 
Estimation and Concept Drift Adaptation using 
Quantile Regression  

Ahmad I. Tambuwal1* and Habiba M. Sani2  

Deep learning algorithms played an important role in big data applications 
that open other opportunities to study their applicability in anomaly 
detection. These algorithms are used in prediction-based anomaly detection 
methods for detection of anomalies in time series data. Various Recurrent 
Neural Networks (RNN) structures particularly based on Long Short-Term 
Memory (LSTM) or Gated Recurrent Unit (GRU) have been reported to be 
used for time series anomaly detection. Despite the performance of these 
methods, they are affected using a fixed threshold, and the assumption of 
Gaussian distribution on the prediction error to identify anomalous values. In 
addition, these techniques do not consider uncertainty in their predictions 
that may lead to over-confident predictions especially when there is limited 
training data. This impression motivates our previous research work that 
proposed a new anomaly detection method called Deep Quantile 
Regression Anomaly Detection (DQR-AD) that used confidence interval to 
identify anomalies in time series. However, the speed at which the time 
series data arrives and the dynamic change of normal behavior in a non-
stationary environment will affect the offline training of DQR-AD using 
historical data.  To mitigate these problems, this paper proposed an online 
DQR-AD that will enable the adaptation of concept changes in the data. 
Experiments conducted indicate that online DQR-AD method has better 
performance than its counterpart methods with relatively 10% margin. This 
result demonstrates how concept drift adaptation strategies adopted in the 
proposed method improve the performance of anomaly detection in time 
series. 
 
Keywords: Time Series, Prediction Interval, Uncertainty Estimation, Quantile 

Regression, Concept Drift Adaptation.

1. Introduction

Deep learning algorithms played an important 
role in big data applications which open other 
opportunities to study their applicability in 
anomaly detection [1]. These algorithms are 
used in prediction-based anomaly detection 
methods for detection of anomalies in time series 
data. Various deep learning techniques 
particularly based on Long Short-Term Memory 
(LSTM) [2], [3], [4], Gated Recurrent Unit (GRU) 
[5], Convolutional Neural Network (CNN) [6] and 
Autoencoder [7], [8], [9], [10], [11], [12] have 
been reported to be used for time series anomaly 
detection. However, the dynamic nature of time 
series will affect the performance of deep 
learning-based anomaly detection methods due 
to changes in the distribution of data that result in 
concept drift.  Concept drift means changes in 
the characteristics of data over time where the 
characteristic of the new data is different from the 
previous data [13], [14], [15]. For example, when 

the computer’s software is updated or its 
configuration is changed, data such as CPU 
utilization and the speed of reading or writing 
data in the disk will change. In anomaly detection 
system, the definition of abnormal behavior often 
changes with the change in data characteristic. 
As such, anomaly detection methods should be 
able to adapt to the new data and redefine the 
meanings of abnormal behaviors to accurately 
detects anomalies in the new data. These 
challenges results in the need for online anomaly 
detection methods which are able to adapt to 
concept drift [13], [16], [17]. The key idea of 
these methods is to adapt to concept changes in 
the data by updating model parameters in an 
incremental manner as the new data arrives. 
Examples of models that fall under this category 
includes Hierarchical Temporal Memory (HTM) 
[13], RNN [5], Autoencoder [11], and Sparse 
Gaussian Process (SGP) [16]. 
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However, most of these methods does not take 
into account uncertainty in their predictions which 
may lead to over-confident predictions especially 
when there is limited training data[18]. 
Quantifying uncertainty is particularly important in 
critical applications such as clinical diagnosis 
[18], where a realistic assessment of uncertainty 
is important in determining disease status and 
appropriate treatment. In addition, such approach 
is most welcome in anomaly detection 
applications requesting better-informed decisions 
and mitigate against false anomaly alerts. 
Various approaches have been developed to 
address uncertainty in deep neural networks for 
anomaly detection. They range from Bayesian 
approach [19] to interpreting dropout as 
performing variation inference [20], [21]. These 
methods, used prediction interval (PI) in 
regression tasks that quantifies the level of 
uncertainty associated with the point forecasts, 
thereby offering an interval of confidence for a 
prediction of lower and upper bounds [21]. In 
another approach, conditional quantile 
regression is used which capture statistical 
uncertainty on probability-weighted outcomes 
[22]. The aim of conditional quantile regression is 
to estimate quantiles of interest. In an attempt to 
find out which method can detect anomalies in 
an unlabeled multivariate time series data in real-
time settings, Van de wiel et al [23] compared 
both univariate and multivariate regression-
based anomaly detection methods. Their results 
show that multivariate anomaly detection 
methods perform better out of which quantile 
regression-based methods was overall the best 
approach for time series anomaly detection. This 
result motivates our previous work which created 
a new method called DQR-AD that used 
confidence interval to identify anomalies in time 
series data [24]. Despite the performance of this 
method compared with other anomaly detection 
methods, the speed at which the time series data 
arrives and the dynamic change of normal 
behavior in a non-stationary environment will 
affect its anomaly detection performance.  
As such, this paper proposed an online DQR-AD 
that incorporates uncertainty estimation and 
concept drift adaptation to improve the 
performance of anomaly detection in time series 
data. In summary, this paper makes the following 
contributions: 

1. To carryout uncertainty estimation, we 
used quantile regression model to 
estimate quantile values. Literature [18] 
shows that quantile regression can 
capture aleatoric uncertainty.  

2. To obtain a probabilistic threshold, the 
proposed model estimates lower and 
upper quantiles which are used to 
threshold the input sequence for 
anomalies. Specifically, the anomaly 

detection is done by directly estimating a 
95% confidence interval. 

3. To provide concept drift adaptation, we 
compute anomaly likelihood using Q-
function to define the abnormal degree of 
the current data point based on the 
previous data points. The likelihood is 
used to update the model parameters to 
adapt to the changes observed aver a 
significant period. 

The rest of the paper is organized as follows: 
Section 2 provides review of related work. In 
section 3, we provide a detailed description of 
materials and methods. Section 4 describes the 
experiments and comparison of proposed 
method with other state-of-the-art methods. 
Finally, conclusion and future works are 
discussed in section 5. 

 

2. Literature Review 

Researchers have proposed some new methods 

for online anomaly detection [25]. These 

methods are generally categorized into two 

based on the approach they used. First is to build 

a new online model using a single incremental 

learning algorithm that will be train and test in 

real time [26], [27] or a stationary model that is 

initially train with historical dataset which is later 

updated to capture the features of new incoming 

data instance [5]. While the second involves an 

ensemble learning theory [28], [25] that trains 

multiple individual models for different part of the 

data streams. Research in the literature have 

proved the performance of online ensemble 

learning in handling concept drift in data streams 

[29]. The performance is due to their utmost 

predictive accuracy and stability-elasticity 

property. This property makes it easy for them to 

incorporate new data into the model, by training 

and adding new members to the ensemble, and 

naturally, forget irrelevant knowledge by 

removing the old members from the ensemble 

[30]. Despite this performance, they are slow and 

have higher computational cost. As such, the 

focus of this review will be on deep learning 

methods that used single incremental learning 

algorithm. The review is structured into 

paragraphs each highlighting our review on the 

methodology used for identifying anomalies in 

each technique.  

To handle sequential and temporal nature of time 

series, a Hierarchical Temporal Memory (HTM) is 

used for an online anomaly detection in data 

streams [13]. This method models the temporal 

nature of the data stream at a given time and 

makes predictions for the next time step. At each 

step, the actual instance is compared with the 

predicted instance to compute anomaly score 
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that is threshold to determine whether the point is 

anomalous or not. The likelihood of a point to be 

anomaly is determined by assumption of 

Gaussian distribution on prediction error. In a 

similar context, a study in [31] proposed a 

decision support mechanism for outlier detection 

in the concept drifting environment. This is 

achieved by implementing resistance learning 

concept with envelop module using single layer 

feed-forward neural network. A sequence-based 

moving window is also used to demonstrate 

incremental learning process where incoming 

data streams are added into learning process 

while older ones are discarded. This will allow 

the model to adapt with the dynamic changes in 

the time series and differentiate them with 

outliers.  

In a different approach, a deep learning-based 

anomaly detection method is proposed where 

RBF classifier is used to identify engine fault 

using real data analysis [32]. This is done by 

training an offline model whose parameters are 

updated in real time to adapt with model 

uncertainties and dynamic changes caused by 

environment or mechanical wear of engine part. 

Fault detection is done using a Gaussian basic 

activation function that model the prediction error 

as normal distribution to identify faulty data when 

the prediction error exceeds a specified 

threshold. A more recent approach that used 

Recurrent Neural Network to detect anomalies in 

real time was proposed in [5]. This approach 

used instances of data that arrives continuously 

and trained the model incrementally thereby 

adapting to the changes that may occur in the 

data distribution. The authors used model 

prediction error to determine when to update the 

model based on the changes that occur in the 

data and whether those changes are anomalies 

or not. The predicted result is compared with the 

actual observed sequence and prediction error 

will be used for anomaly score computation 

thereby updating next step RNN model using 

BPTT. The likelihood of the predicted window to 

be anomaly is determined by assumption of 

Gaussian distribution on prediction error. The 

challenge remains as to find out whether the 

incoming data distribution matches the normal 

distribution. However, data do not necessarily 

follow a clear distribution and defining or 

assuming a distribution in modelling step is often 

difficult or inappropriate.  

An alternative approach is the use of prediction 

interval that is computed by taking into accounts 

the uncertainty in both the data and data driven 

model. Hill and Minsker proposed an anomaly 

detection method that combine model prediction 

and its corresponding prediction interval to detect 

anomalies in data streams [33]. This method 

provides a principal framework for selecting a 

threshold where a data point is classified as 

anomalous or not based on whether it fall outside 

a given PI. The type of prediction interval used is 

t-interval that relies on Student’s t-distribution 

where the prediction levels guide the selection of 

the interval width. This demonstrates the benefit 

of using PI over an arbitrary threshold value. The 

method also used AD strategy for processing 

future data points after flagging an anomaly. AD 

was used because its long-term performance is 

unaffected by previous miss-classifications.  

Similarly, Chebyshev’s inequality that proves 

most of the distribution values are clustered 

around the distribution mean can also be used to 

define an interval for identification of anomalies. 

The study in [34] used Chebyshev inequality 

condition to define a prediction interval that 

provides the same anomaly detection result 

without any assumption of the distribution of the 

data. The proposed method combines the 

application of TEDA for fault detection in 

industrial process. This density-based anomaly 

detection approach analyses the density of each 

data sample by computing its distance from all 

other samples read so far. Similarly, Ferdowsi et 

al [35] avoids the use of fixed threshold for 

identification of anomalies. The authors proposed 

an online outlier detection system that defined an 

interval using Chebyshev’s inequality to declare 

outliers. Because of dynamic changes in an 

online system which lead to change in the 

distribution of the data, the authors used a fixed 

time window and assumed the measurement in 

each time window to have a fixed distribution. 

With this a data point at given time can be 

identified as outlier when it exceeds the interval 

defined using Chebyshev’s inequality. In another 

approach, Reunanen et al, also utilized 

Chebyshev’s inequality to identify anomalies in 

data streams [11]. This method combines 

Autoencoder and Logistic Regression for outlier 

detection and prediction in sensor data streams. 

The Autoencoder reconstruct the input data and 

produce hidden representation of the input that 

can be used to create the required labels for 

Logistic Regression to classify anomalous points. 

A data point is classified as anomalous when its 

reconstruction cost exceeds the expected 

reconstruction cost with three standard deviation 

that represents an upper bound of the inequality. 

Although no assumption of the distribution of the 

data is required but the method assumes the 

descriptive statistics of the unknown normal 

values to be initially defined.  

As such, deep learning algorithms combined with 

quantile regression are required to predict target 

value accompanied with its quantile values. To 

demonstrate the performance of regression-
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based anomaly detection methods, van de Wiel 

et al [23], carried out experimental comparison 

real-time quantile regression-based anomaly 

detection methods for both univariate and 

multivariate time series data. All the anomaly 

detection methods used in the paper are quantile 

regression-based where the prediction of a target 

variable is accompanied with the quantile values. 

Their results shows that multivariate anomaly 

detection methods perform better out of which 

quantile regression-based methods was overall 

the best approach for time series anomaly 

detection. This impression motivates our 

research work in [24] where we proposed a new 

method called DQR-AD that used quantile 

interval compared with a fixed threshold to 

identify anomalies in time series data. Despite 

the performance of this method compared with 

other anomaly detection methods, the speed at 

which the time series data arrives and the 

dynamic change of normal behavior in a non-

stationary environment will affect its anomaly 

detection performance.  

As such, there is need to update DQR-AD to an 

online method that can handle concept changes 

that can occur in the time series. Specifically, this 

paper will propose an online DQR-AD method 

that incorporates uncertainty estimation and 

concept drift adaptation to improve the 

performance of anomaly detection in time series 

data. 

 

3. Materials and Methods 

Let’s consider a multivariate time series 

, where t is the length of the 

time series and each point  (for 

) in the time series is an m-

dimensional vector corresponding to the m 

features. To formulate the anomaly detection 

problem in an online setting, we used a sliding 

window to segment the time series with the aim 

to predict the next time step given a window of 

previous time steps. As such, a window of w 

previous time series points  

  is used to forecast 

the next sequential time series point . An 

observe point is then classified as anomaly if it 

deviates from its forecasted value using  as 

input. In summary, the proposed approach 

involves the following steps beginning at time : 

(1) Use DQR model that takes  as input to 

forecast upper and lower quantiles that 

corresponds to the expected value at time . 

(2) The upper and lower quantiles are used to 

calculate the quantile interval (QI) within which 

the actual point should lie. (3) When the current 

data point at time  arrives, it is compared 

with the QI and when it is outside the QI range, it 

is classified as anomalous otherwise classified 

as normal data point. (4) The anomaly likelihood 

is determined using Q-function. (5) when the 

likelihood is less than or equal to a threshold, the 

predicted mean  is added to  using 

ADAM strategy, otherwise, the current data point 

 is added to the  using AD strategy to 

update DQR model. This will allow the model to 

learn new characteristics of the data and redefine 

the meanings of abnormal behaviors. (6) Repeat 

steps 1 to 5. These steps are illustrated using a 

flowchart in fig.1. which are fully describe in the 

following subsections. 

 

Figure 1 Schematic representation of proposed online 
DQR-AD method 

3.1 Autoencoding 

Prior to time series prediction, we first employ 
autoencoder that can extract meaningful 
representations from the time series. The 
Autoencoder model consists of an encoder and a 
decoder with two layers of LSTM each. The basic 
idea involves non-linear mapping of the input 
sequence to a fixed dimensional vector 
representation through an encoder, which is then 
followed, by another non-linear mapping of the 
vector representation back to the time series 
sequence using decoder. Specifically, the 

encoder read the history window  of  time 

steps and constructs a fixed-dimensional state 
from which the decoder constructs the following 
sequence of representations 

.  After the autoencoder 

perform the feature extraction, the DQR model 
then works on the reconstructed sequence 
received from the decoder to forecast the next 
time series point. 

3.2 Deep Quantile Regression (DQR) 

We consider a regression model that can 

forecast next time step based on previous time 
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steps to be suitable method for learning temporal 

characteristics of time series. However, the focus 

here is to develop a regression model that can 

forecast time series points considering 

uncertainty. This is achieve via quantile 

regression that estimate conditional quantiles as 

oppose to classical regression which estimate 

the conditional mean of the respond variable 

[18]. The goal of quantile regression is to 

estimate conditional quantiles of interest which is 

applied in cases where parametric likelihood 

cannot be specified [43]. From the literature 

reviewed, it has been shown that quantile 

regression is able to captured aleatoric 

uncertainty [18]. As such, we quantify uncertainty 

in our model estimates using conditional quantile 

regression that estimate multiple quantiles of 

interest. To perform quantile regression on our 

LSTM model, we replace the Gaussian likelihood 

term in the LSTM loss function with the quantile 

loss that penalizes errors based on the quantile 

values generated. In this context, we specifically 

estimate lower quantile (LQ) and upper quantile 

(UQ) which corresponds to the median and one 

standard deviation from the mean respectively. 

These LQ and UQ are then used to calculate the 

mean μ and variance δ that can be used to 

obtain the corrected p-values for anomaly 

detection. We also reduce the chance of quantile 

overlapping via bootstrapping which allow the 

regression model to be iterated n times, thereby 

storing the predicted values in an array that is 

finally used to compute the desired quantiles. 

3.3 Online Anomaly Detection 

To obtain a probabilistic threshold, we train the 

DQR model to estimate LQ and UQ. We adapted 

the approach in [18] where  we assume the 

output of DQR to be Gaussian. As such, we can 

use the two estimated quantiles to characterize 

the Gaussian distribution. Specifically, DQR 

estimate 0.15-th and 0.5-th quantiles that 

corresponds to the median and one standard 

deviation from the mean respectively. These LQ 

and UQ are then used to calculate the mean (μ) 

and variance (δ) which can be used to obtain the 

corrected p-values. The p-values are used for 

anomaly detection task where a probabilistic 

threshold is set at α= 0.05 significance level. This 

means, we perform the anomaly detection task 

by estimating a 95% confidence interval where 

an approximate αlevel prediction interval is 

computed by , where 

 is the upper  quantile of standard 

normal. The prediction interval will serve as the 

threshold for identifying whether the data point is 

anomalous or not. The new data point is 

classified as normal when it is within the 

prediction interval; otherwise, it is classified as 

anomaly. In order to reduce the number of false 

positives, the threshold is selected based on the 

corrected p-values calculated to control the False 

Discovery Rate (FDR) [18]. Specifically, we 

chose the threshold corresponding to an FDR 

corrected p-value of 0.05. 

3.4 Concept Drift Adaptation 

To adapt to concept drift, the model needs to be 

updated in incrementally as new data arrives.  To 

achieve this, this paper employs anomaly 

likelihood that is computed using Q-function to 

define the abnormal degree of the current data 

point based on the previous data points. The 

likelihood of the data point at time  is define 

in equation 1: 

            (1)
 

Where  is the actual observe point at . 

The Q-function measure the abnormal degree of 

the data point relative to the previous data points. 

The smaller the value of the Q-function, the 

higher the abnormal degree of the current data 

point and vice versa. As such, when the current 

data point at time  is classified as anomaly, 

 is computed which determine when the 

model will be updated to adapt to the new 

changes. This is achieved by comparing  

with user defined threshold . When  < , the 

predicted mean  is added to  using 

ADAM strategy, otherwise, the current data point 

 is added to the  using AD strategy. When 

 is added to the , the earliest data point 

 is removed from . Specifically, when 

concept drift occurs, our proposed method will 

mark the current data point as anomalous. 

However, when the abnormal behavior continues 

for a longer period, the abnormal degree of the 

current data point will be low compared to the 

previous data points using . As such, the 

current data point is added to the  to retrain 

the DQR model. This will allow the DQR model to 

learn the new characteristics of the data and 

hence adapt to the concept changes thereby 

redefining the abnormal behavior.  

4. Experiments 

This section describes experiments conducted to 

evaluate the performance of the proposed online 

DQR-AD method. We evaluate the performance 
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of the method via comparison with other state-of-

the-art anomaly detection methods. Specifically, 

we compare our proposed method with VAE-

LSTM [12], NumentaTM [13], online RNN-AD [5], 

data-driven-AD [35], AE-AD [11], SGP-Q [16], 

and DQR-AD [146]. The section starts with 

dataset description, followed by experimental 

design, and ends with experimental results and 

discussions. 

4.1 Datasets 

The proposed method is evaluated on two 
commonly used anomaly benchmark datasets in 
the literature. These datasets include Yahoo 
Webscope dataset and Numenta Anomaly 
Benchmark (NAB) dataset. The choice of these 
datasets is because of the availability of the 
anomaly labels that we can used to validate our 
model. 

  

4.2 Experimental Design 

4.2.1 Models Training 

To train all the models for time-series anomaly 

detection, records of each time-series are 

organized in 80% training set and 20% test set. 

From the training set, 20% of it will be used for 

validation. Fig. 2. illustrate the training and 

validation loss behavior on the nyc_ taxi dataset. 

A sliding window technique is used to segment 

both training, testing and validation sets into 24 

hours samples of history  and prediction  

windows. The size of the sliding window is set up 

by looking at the data and notice the presence of 

hourly pattern in all the time-series. Each input to 

the model is scaled between 0 and 1 for 

numerical stability during model training. The  

is pass as input to the autoencoder which 

produced reconstructed sequence . The DQR 

model will then takes the reconstructed 

sequence as input and predicts the quantile 

values. An autoencoder is constructed with two 

layers of LSTM cells that comprises 128 and 32 

hidden states for both encoder and decoder. 

Deep quantile regression model is constructed 

using LSTM with two fully connected layers of 64 

and 16 hidden units with Adam activation 

function. We also train each models using mini-

batch gradient descent where a batch size of 128 

is used and 100 number of epochs. For DQR-AD 

and online DQR-AD, we make use of 

bootstrapping by reactivating the dropout with 

value 0.5 and iterate for 100 times, thereby  

storing the predicted values in an array which is 

finally used to compute the desired quantiles.  

 

Figure 2 Training and Validation Loss 

4.2.1 Anomaly Detection 

The trained DQR model estimates 0.15-th and 

0.5-th quantiles which corresponds to the median 

(μ) and one standard deviation (δ) from the mean 

respectively. The mean and variance can then be 

used to obtain the corrected p-values. The p-

values are used for anomaly detection task 

where a probabilistic threshold is set at an α= 

0.05 significance level. This means, we perform 

the anomaly detection task by estimating a 95% 

confidence interval where an approximate αlevel 

prediction interval is computed by 

, where  is the upper 

 quantile of standard normal. Fig. 3. shows 

the actual data plot against the prediction interval 

for nyc_taxi test set. The prediction interval will 

serve as the threshold for identifying whether the 

data point is anomalous or not. The new data 

point is classified as normal when it is within the 

prediction interval; otherwise, it is classified as 

anomaly. 

 

Figure 3 Predicted test set sample from nyc taxi data. 
Actual values are shown in blue with prediction interval 

shown in orange. 

4.3 Experimental Results and Discussion 

To evaluate the performance of online DQR-AD 

based on uncertainty estimation and concept drift 

adaptation, we conducted two levels of the same 

experiment. On the first level, we compare online 

DQR-AD with VAE-LSTM [12] and DQR-AD [24] 

using precision, recall, and F-score (2) which are 
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the most commonly used metrics to evaluate the 

performance of anomaly detection methods in 

terms of false-positive rate [24].  

           (2) 

Table 1 shows the metrics scores of each of the 

three methods on the seven time series data 

used. It can be observed from this table that 

online DQR-AD has good performance in terms 

of f-score where out of seven datasets, online 

DQR-AD is minimally 18% better than both DQR-

AD and VAE-LSTM on five datasets as indicated 

in bold. This is because online DQR-AD can 

identify large number of true anomalies with a 

smaller number of false positives. Although, 

DQR-AD and VAE-LSTM have better precision 

and recall respective in most of the datasets, 

online DQR-AD obtained relatively good score in 

both precision and recall. In order to evaluate the 

performance of online DQR-AD in terms concept 

drift adaptation, its compared with other online 

anomaly detection methods that includes 

NumentaTM [13], online RNN-AD [5], data-

driven-AD [35], AE-AD [11], and SGP-Q [16]. 

Table 2 shows the AUC score of the five 

methods with best performance result indicated 

in bold. In this table, online DQR-AD method has 

better performance than its counterpart methods 

with relatively 10% margin on six out of the 

seven datasets. This performance is due to 

feature extraction and concept drift adaptation 

strategies adopted in the proposed method which 

improve its anomaly detection performance in 

time series. 

 

 

Table 1: Comparative evaluation of Online DQR-AD with two other anomaly detection methods (DQR-AD and 

VAE-LSTM) on 7 time series. F-Score, Precision, and Recall are reported in this Table. 

Datasets DQR-AD VAE-LSTM Online DQR-AD 

 F-Score Prec Recall F-Score Prec Recall F-Score Prec Recall 

Nyc_taxi 0.49 1 0.33 1 1 1 0.87 0.98 0.78 

Amb Temp 0.11 1 0.06 0.89 0.81 1 0.99 0.98 1 

CPU 0.67 1 0.50 0.81 0.69 1 0.98 0.97 0.99 

EC2 0.82 1 0.70 0.99 0.99 1 0.99 0.99 1 

Mach Temp 0.50 0.50 0.50 0.72 0.56 1 0.99 0.99 1 

Key hold 0.09 1 0.05 0.03 0.02 0.10 0.85 1.00 0.74 

Key updown 0.17 0.50 0.1 0 0.11 0 0.96 0.99 0.93 

 
Table 2: Comparative evaluation of Online DQR-AD with five other online anomaly detection methods 

(NumentaTM, Online RNN-AD, Data-driven-AD, AE-AD, and SGP-Q) using AUC. 

 

Datasets NumentaTM Online RNN-AD Data-driven-AD AE-AD SGP-Q Online DQR-AD 

Nyc_taxi 0.74 0.89 0.48 0.61 0.42 0.97 

Amb Temp 0.83 0.83 0.56 0.66 0.88 0.98 

CPU 0.54 0.71 0.80 0.73 0.55 0.72 

EC2 0.70 0.89 0.72 0.71 0.90 0.99 

Mach Temp 0.33 0.55 0.50 0.60 0.54 0.71 

Key hold 0.43 0.33 0.22 0.50 0.48 0.64 

Key updown 0.40 0.24 0.23 0.42 0.38 0.59 

 

5. Conclusion and Future Works

This paper proposed a new online anomaly 
detection method that incorporate feature 
extraction, uncertainty estimation, and concept 
drift adaptation to improve the performance of 
anomaly detection in time series data. This is 
achieved by combining autoencoder with quantile 
regression model to estimates lower and upper 
quantiles which are used to threshold the input 
sequence for anomalies. In addition, an anomaly 
likelihood is computed using Q-function that is 
used to update the model parameters for concept 
drift adaptation. To evaluate the performance of 

online DQR-AD based on uncertainty estimation, 
it is compared with DQR-AD and VAE-LSTM 
anomaly detection methods using seven time 
series from the NAB datasets. Results in Table 1 
shows that online DQR-AD has good 
performance in terms of f-score where online 
DQR-AD is 18% better than both DQR-AD and 
VAE-LSTM on five datasets.  To demonstrate the 
performance of online DQR-AD on concept drift 
adaptation where it is compared with five other 
online anomaly detection method. Results in 
Table 2 shows that online DQR-AD method has 
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better performance than its counterpart methods 
with relatively 10% margin on six out of the 
seven datasets. This result demonstrates how 
feature extraction and concept drift adaptation 
strategies adopted in the proposed online DQR-
AD improve the performance of anomaly 
detection in time series.  

Our future work will involves extending the 
proposed method to detect a continuous faulty 
data from faulty sensor as an anomaly. In 
addition, computational complexity of the 
algorithms will be considered in the future as one 
of the metrics to be use for performance 
evaluation.
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