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Abstract

A class of high order hybrid block methods (HOHBM) for the solution of initial value problems.
This set of schemes is obtained from a continuous approximation via interpolations means. The
order and the linear stability properties of the derived schemes are studied which makes it
appropriate for approximating stiff systems. Numerical illustrations are presented to confirm the
accuracy of the derived schemes.
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Introduction
It is worthy to note that numerical integration for initial value problems of ordinary differential
equations of the form

y' =f(xy), x € [xq,X], y(xo) = yo; f: RXRY — R (D
is the major problem of concern in numerical analysis. Here, f satisfies a Lipschitz condition.
Although backward differentiation formulas are the most widely used schemes for solving (1)
(Curtiss & Hirschfelder, 1952), but suffer the order and stability barrier in (Dahlquist, 1963). In
this regard, Bickart and Rubin (1974) noted that to have a schemes with good stability properties
for solving (1), the traditional linear multistep methods (LMMs) should be changed to a different
schemes.Base on this optimistic approach, Akinfenwa (2011), Cash (1981), Ehigie et al., (2014),
Enright (1974), Ogunfeyitimi and Ikhile (2020, 2021b), Yakubu (2016) developed special cases
of methods in (Obrehkoff, 1940). Hybrid scheme were also considered to circumvent the stability
barrier for LMMs, for instance see, Butcher (2003,2005), Gragg and Stetter (1964), Ikhile and
kuoughae (2007).
In this paper, the hybrid block scheme proposed is derived through multistep interpolation
(Gladwell & Sayers, 1976; Onumanyi et al., 1994). The newly derived scheme is implemented
without the use of a predictor, that is, we adopt the boundary value technique during
implementation, see (Axelson & Verwer, 1985; Brugnano & Trigiante 1998; Ogunfeyitimi &
Ikhile, 2021a). This allows the hybrid block schemes to obtain a block of numerical solutions
simultaneously on the entire interval for (1). The increase in accuracy of the new scheme is
obtained by adding hybrid points while retaining the grid-size constant. This flexibility is an added
advantage over conventional Runge-Kutta schemes. Moreso, the boundary value implementation
procedure has an attribute of overcoming the issues concerning the step-by-step algorithms
(Lambert, 1991) and also improves the stability properties of the schemes (Cash, 2000). We note
that our hybrid block methods are developed to overcome the Daniel moore conjecture for second
derivative methods (Daniel & Moore, 1974; Hairer & Wanner 1996).
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The paper is organized as follows: In Section 2, we state the procedure for deriving block methods.
The analysis and the implementation of the new schemes are reported in section 3 and 4. While
some numerical experiments are considered in section 5.

2.Development of the block scheme
The continuous extended hybrid method for solving (1) is of the form

2k i
1 Lo
Guowe = 3| D @i s, =1 D B vy = Vi aGnewe, |0 wi=3 0= 102k (2)
=0 j=i—1

on an off-step points t,, t4, ..., tx, Where the coefficients are determined by depending on the off-step
points through interpolation and collocation means. To obtain this scheme, y(x) is approximated by

a monomial basis function of the form
2k+3

y(x) = Y(x) = E cjx7 3)
=0
2k+3

1 .
Y@ Y= ) g )
=0
2k+3

YY) = 3 Y G~ e ()
=0

where the coefficients ¢; are unknown that lie in the [x,, x,,,,] block. Since the normalization of
the coefficients in (2) occur in the second derivative part, the basis polynomial in (5) shall be used
to derived the block hybrid schemes. The equations (3), (4) and (5) generate the set of k+4
equations

Y (Xn4w;) = Ynswp i = 0,1, ...,2k (6)

Y’(xn+wi) = fn+wi:i =i—1,i (7)

Y”(xn+wi) = gn+wi'i =i- 1 (8)
The compact form of equation (6), (7) and (8) is given as

UuQ =S )
where,
Q=(co €1 €3 €3 ... Cax Cops1 Cog+2 Cox3)T
S=0On Yntw: Yntw, Yntws -+ Yntwy fn+wi_1 fn+wi Intwi_)"
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1 0 0 0 ... 0 0 0 0
1 w wi wi o wik wik+1 wik+2 wik+3
1 w, wi ws ... wzk wik+1 wgk+2 wgk+3
1w, wi wi ... w3k wzk+1 wgk+2 wgk+3

U=|: :
1 owy Wi o who .. wik wiett wit? wiet?
0 1 2w, 3w, ... 2kw2t 2k + w2k, (2k + 2)wikrt (2k + 3)wzkt?
0 1 2w 3wZ ... 2kw?kt 2k + Dw?k (2k + 2)wik+t (2k + 3)wzk+?
0 1 2 6wy ... 2kQk—Dw? 2k + D2kwFt 2k +2)(2k + DwP, 2k +3)(2k + 2)wFH

This is solved simultaneously to get the constants c;,j = 0(1)2k + 3. The continuous schemes
is developed by replacing the coefficient values of ¢; into (5) and after several algebraic
manipulation, the scheme is given as

2k i
1
gx) = nz Z i jYn+w; — h Z Bij fr+w; — R%Yi i1 Gn+w, (10)
j=0 j=i-1
Replacing x = x,,w,n for 1 = 1,2, ... 2k in (10) gives the block schemes
AYpiy = AgYn + h(BFpiq + BoF,) + h*(DGpyy + DoGr) (11)

Where,

T T
Yni1 = (Yn+w1: Vn+w,» ---JYn+wzk) Yo = (Yn—wzk_lf o Yn—wys yn)

T T
Foy1 = (fn+w11 fn+wzl ---:fn+w2k ) B = (fn—wzk_lf --wfn—wlf fn )

T T
Gpyr = (gn+w1: In+wyr = Intw,y, ) G = (gn—wzk_lf o 9n-wr Gn )
and the matrices 4, A, B, By, D, D, are defined as follows

x11 A 13 ... 12k a0
a1 a32 U3 ... Q2 LX)
A=| 1 A3z Q33 ... Az2r |, Ay =] Oypkx—1| ¥30 |,
Uok1  Azk2 QA3 .. Ozgok “2k,o/
/:81,1 \ 5
P21 P2y / | 1,0\
| I B8 | 0
B = i 32 P33 i,Bo = Oze2k-1| 0 |
\ /Y
Bak2k-1  Bakz2k
1
Y21 1 Y10
14 1 0
3,2
D= ’ Dy = 02k,2k—1 0
0

Yakzk-1 1
3.Analysis of the hybrid block schemes
Adopting the approach of Fatunla (1989), let the local truncation error (LTE) corresponding with
(2) to be the linear difference operator such that
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[y(x);h]=z @,y Ce+wih) — h Z By (x4 wih) = 12 (vay" G+ wish) +y" G+ wih)) - (12)

j=0 j=i-1
Assuming that y(x) is sufficiently differentiable function, the terms in (12) is expanded through
Taylor series about the point x to have
LIy(x); h] = Coy(x) + Cih y'(x) + C.h%y" (x) + -+ + C,hPyP (x) + -

where,
2k

CO =Zaij
Cl - Z] aij — Z ﬁl]
2 2|Z] al] Z ].BL] )/l]
i
C3 = 521'3 Xij =5 Z J2Bij— (= Dy —i
1 2k
— ; . p—-1 _ -2
]:

j=i1
According to Henrici (1962) we have the foIIowmg definition,
Definition 1. The method in (2) has order p if,
C;=0,j=0(1)p and C,4; #0
Where C,., is the error constant of the scheme in (2) and the principal LTE at point x is given as
Cpi1 AP yP*1(x) 4+ 0(hP*2).
3.2 Zero stability
In the spirit of Jator (2010) and Akinfenwa (2011), zero-stability deals with the stability of the
scheme (11) in the limit as h approaches to zero. That is, as h — 0, the hybrid block scheme in
(11) equivalents to
AYpy1 =AYy (13)
Then the first characteristics polynomial associated with (13) is given as
p(r) =det(rA—Ay,) =r*"1(r—1) (14)
Following Fatunla (1991) the block method (11) is zero-stable for k > 1, since from (14), p(r) =
0 possesses only one root on the unit modulus.
3.3 Linear stability
We analyze the stability properties of the hybrid block method in (11) by applying them to the test
equations
_ y' =21y, y' =2y
to give
Ypi1 = (A—zB —z?D)"1 (Ay + zBy + z°Dy) Yy, (15)
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The boundary loci of the hybrid block schemes coincide with the imaginary axis (see Figure 1). In
particular, the stability region is the left half complex plane C. The newly derived scheme is A-
stable for k = 1(1)5 with order p = k + 3. This shows that the newly derived scheme overcome

the Daniel and Moore (1970) conjecture of second derivative linear multistep methods.

|
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L
10

Figure. 1 Regions of absolute stability of hybrid block schemes (11).
4. Implementation of hybrid block methods

The gaussian elimination via pivoting is applied directly to solve linear problem while for a non-
linear problems, a modified Newton-Raphson method is considered as details in Jator (2010) (see
also, Ogunfeyitimi & Ikhile, 2021a).

Using a particular case of k = 2 orderp = 7 in

(11), the coefficient matrices are defined as
1

27 1 0 o 1447
206 103 1648 1648
446 2 1 1
A= 459 51 918 | 4 _ 102
9 459 . 9 [0 0 1
223 446 892 892
16 216 1648 ) 0 1
447 1447 1447 1447
~T03 © 0 0
147
2 4 000 ——
5 TT7 0 0 824
B = 54 51 ,Bo 0 0 O 0
0 —= - 0 000 O
223 223 000 0
0 336 294
1447 1447
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The seventh order Hybrid methods in (11) is denoted by HOHBM2

5.0 Numerical Experiments

We consider a linear and non-linear standard problem to show the accuracy of the hybrid block
schemes. The numerical result were obtained using MATLAB 2010a.

Example 1: Consider the linear system

=21 19 =20 1
y'={19 =21 20 Jy,y(0)=| 0 (4.1)
40 —-40 —-40 -1
e~ 2% 4+ e~*%% (cos(40x) + sin(40x))
y(0) = | e™?* — e*%% (cos(40x) + sin(40x))

2e74%% (cos(40x) — sin(40x))

We compare the HOHBM2 of order p = 7 with SDAM of order p = 8 in Jator and Sahi (2010)
and method of order p = 8 Amodio and Mazzia (1995). From Table 1, It is observed that the new
hybrid block scheme is superior in accuracy than the SDAM of Amodio and Mazzia (1995), and
perform slightly better than the method of Jator and Sahi (2010) at lower order p = 7.

Table 1: The numerical result of Example 1, Error=Max|y(x) — y|

Step HOHBM k =2 SDAM k =3 Amodio and Mazzia
P=7 P=8 K=7P=8
20 5.4x107° 7.5x107% 2.9x1072
40 2.1x107° 1.9x107° 6.8x1073
80 2.0x1078 1.4x1077 7.8x107°
160 1.6x10710 6.4x10°10 4.7x1077
320 1.2x10712 2.5x10712 2.3x107°
The error from ODE15s at x = 1 is 3.660087954199254e¢ — 5
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Example 2: Vander Pol
y'+uly?* =1y +y=0;y(0)=2,y'(0)=0,u>0. (4.4)
This is solved by transformation into a first-order system of two ODEs given by
Vi =Yz (4.5)
vy = =y1 + uy(1 = ¥9); ¥:(0) = 2,¥,(0) = 0. (4.6)

The Vander Pol equation is presented to show how robust the hybrid block scheme are in solving
stiff system of equations. The Example 2 is solved for u=10 and 100 with step size h=0.001. The
graph of the computed solution is displayed in the Figures 2 and 3. It was observed from Figure 2
and 3 that the numerical solution of the HOHBMZ2 coincide with ODE15s.

15 T T
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il ¢} ODE153yz |
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Figure 2: Numerical results for Example 2 using HOHBM2 with u = 10.
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Figure 3: Numerical results for Example 2 using HOHBM2 with u = 100.
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Conclusion

A class of HOHBM (11) for solving IVVPs in (1) is considered. The HOHBM (11) is A-stable for
k <5 with order p = 2k + 3. The newly derived scheme in (11) has an advantage of being self-
starting and good accuracy. The HOHBM2 has been implemented on some known problems with
promising results (see Table 1, Figures 2 and 3).
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