SCREENING OF CASSIA SINGUAENA, COMMIPHORA KERSTINGII, KHAYA SENEGALENSIS FOR BRINE SHRIMP LETHALITY AND ANTIPLASMODIUM ACTIVITY

Saidu, J.,"Adoum O.A. and "Mukhtar, M.D.

1Department of Pure and Industrial Chemistry, Bayero University, Kano.
2Department of Biological Sciences, Bayero University, Kano.
*Correspondence author: adoum01@yahoo.com

ABSTRACT

Extracts of Cassia singueana, (twigs), Commiphora kerstingii (stem) and the bark of Khaya senegalensis were screened for antimalaria activity. Brine shrimp lethality assay was also employed as activity guide. Chloroform extracts of C. singueana was found to be the most active in both brine shrimp lethality (BST) and anti-malaria assay. The aqueous extract of K. senegalensis and Commiphora kerstingii were found to be in-active against brine shrimp larvae. The phytochemical analysis of crude plants under investigation showed presence of saponins, tannins, glycosides and sterols.

Keywords: Screening of Cassia singueana, Commiphora kerstingii, Khaya senegalensis, brine shrimp test.

INTRODUCTION

Medicinal plants contain substances that can be used for therapeutic purposes or which are precursors for the synthesis of useful drugs (Sofowora, 1982; Basile et al., 1999). Africa in general and Nigeria in particular where malaria fever is one of the most prevalent diseases still rely on traditional medicine as an alternative medicine. C. singueana Del. (Fabaceae), C. kerstingii Engl. (Burseraceae) and K. senegalensis Desr. (Meliaceae), grow in the savanna regions to humid forests of Northern Nigeria. The plants are found in Kano, Sokoto, Bauchi and Plateau States of Nigeria (Blench, 2005).

The aerial parts of C. singueana “Runfu” in Hausa, together with leaves of Tamarindus indica are boiled together in a form of concoction for the treatment of pyrexia and malaria.

C. kerstingii (“Arrabii’ Hausa) is used for the treatment of diarrhea and dysentery in Hausa folk medicine. The methanol extract of the stem bark of the plant exhibited remarkable antimicrobial activity due to presence of flavonoids and alkaloids (Ajoku et al., 2007).

The bark of K. senegalensis “Madachi” in Hausa is bitter and is commonly used as anti-malaria and stomachache reliever agents. The plant is also used in the indigenous system of medicine in Burkina Faso to treat inflammatory diseases (Lombo, 1993), fever and gastrointestinal pain (Kerharo and Adams, 1974). Traditional medical practitioners in some parts of Nigeria use the seed oil of K. senegalensis to treat diabetes mellitus (Ayo et al., 2007). The water-, methanol, chloroform, and petroleum ether extracts of the plant showed some degree of antibacterial activity (Umeh et al., 2005), while the ethanol extract of the stem bark was found to be associated with antioxidant activity (Darius, 2007). The limonoides components which were isolated from the stem bark of K. senegalensis were found to have insecticidal properties (Amit and Sheilendra, 2007).

Scopoletin, β-quercitin, and rutin where also isolated from the leaves of the plant (Olmo et al., 1997).

C. singueana, C. kerstingii, and K. senegalensis were employed in this paper to study the antiplasmodium activity as well as the cyctoxicity in brine shrimp larvae (BST) of the three plants.

MATERIAL AND METHODS

Plant Materials

The plant materials used in this study were collected in September, 2007, from Yako village in Kiru Local Government Area of Kano State, Nigeria. The plants were identified by Mallam Baba Ali Garko (Former Staff of Bayero University Herbarium, Kano) and authenticated by Dr. B.S. Aliyu, Department of Biological Sciences, Bayero University, Kano.

Extraction and Fractionation

Air-dried and ground plant materials were extracted and fractionated as described by Fatope et al., (1993). Each plant sample (200g) was percolated with absolute ethanol and the residue (F1) was solvent partitioned to give chloroform (F2), ethylacetate (F3), and water (F4) soluble fractions. The chloroform soluble, fraction of each plant was further partitioned between n-hexane and methanol to give n-hexae (F5) and methanol (F6) soluble fractions. All the fractions were concentrated in vacuum, weighed, and stored in a freezer until tested.

Brine Shrimp Lethality Test (BST)

Each plant extract was screened against brine shrimp larvae of Artemia salina according to protocols described by Mayer et al., (1982) and Fatope et al., (1993). In this test, sea water obtained from Lagos Beach was used to cultivate the larvae. Dimethylsulphoxide (DMSO) was added to test and control vials to enhance the solubility of test materials.
Antimalaria Assay
Collection of Blood Sample
Human blood samples positive for *Plasmodium falciparum* were collected from Nassarawa Hospital, Kano and transported to the laboratory in potassium edentate (K₃EDTA) in a thermocool flask at 4°C as demonstrated by Dacie and Lewis (1968). The blood samples were kept in a freezer until use.

In Vitro Test
The assay was performed using RPMI 1640 as the culture medium used for cultivation of *P. falcifarum* as demonstrated by Devo et al., (1985). Dilution was prepared from each plant extract and the final concentrations prepared by dilution were 5000, 2000, 1000 and 500µgml⁻¹. Controls were prepared without the plant extracts. Each test extract (0.1ml) and culture medium (0.2ml) were added into vial containing 0.1ml of 5% parasitemia erythrocyte and was then mixed thoroughly. The sensitivity of the parasites to the test fractions was determined microscopically after incubation for 24 and 48 hours at 37°C.

Phytochemical Screening of Plant Extracts
All the plants fractions obtained from *C. singueana*, *C. kerstingii* and *K. senegalensis* were screened for the presence of phytochemicals using methods described by Sofowora (1984).

RESULTS AND DISCUSSION
Preliminary screening of solvent partitioned extracts of *C. singueana*, *C. kerstingii* and *K. senegalensis* against brine shrimps showed that about 90% of the plant extracts were active in BST (Table 1). Only the aqueous extracts of *C. kerstingii* and *K. senegalensis* were inactive at LC₅₀ 1000µgml⁻¹. The ethanol (F₁) and ethyl acetate (F₃) soluble fractions of *C. kerstingii* and *K. senegalensis* showed very high activity in BST both at LC₅₀ 1.7 µgml⁻¹ (See Table 1). While the cytotoxicity in BST of all the tested fractions of *C. singueana* were moderate. These results suggest potency in the plants extracts under investigation. The development of antimalaria drugs was facilitated when *P. falciparum* was successfully cultured (Trager and Johnson, 1976). Results (Table 2) shows a good antiplasmodium potency at high concentrations of all the fractions of the three plants.

Phytochemical screening result (Table 3) revealed the presences of saponins, glycosides and sterols in the targeted plants.

Table 1: The activity (in BST) of the various extracts form the plants under investigation

<table>
<thead>
<tr>
<th>Plants</th>
<th>Sample</th>
<th>Ethanol (F₁) µg/ml</th>
<th>Chloroform (F₂) µg/ml</th>
<th>Ethylacetate (F₃) µg/ml</th>
<th>Aqueous (F₄) µg/ml</th>
<th>LC₅₀ µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassia singueana</td>
<td>16.14</td>
<td>10.58</td>
<td>12.50</td>
<td>31.52</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>Commiphora kerstingii</td>
<td>679.29</td>
<td>147.34</td>
<td>1.70</td>
<td>>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khaya senegalensis</td>
<td>1.70</td>
<td>116.97</td>
<td>133.30</td>
<td>>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC₅₀ is determined at 95% confidences interval

Table 2: The anti-plasmodium activity results (in percentage) for various fractions of *Cassia singueana*, *Commiphora kerstingii* and *Khaya senegalensis*.

<table>
<thead>
<tr>
<th>Plants sample</th>
<th>Conc. µg/ml</th>
<th>Ethanol (F₁) %</th>
<th>Chloroform (F₂) %</th>
<th>Ethylacetate (F₃) %</th>
<th>Aqueous (F₄) %</th>
<th>n-hexane (F₅) %</th>
<th>Methanol (F₆) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassia singueana</td>
<td>500</td>
<td>85.7</td>
<td>96.4</td>
<td>82.1</td>
<td>50.0</td>
<td>98.6</td>
<td>82.1</td>
</tr>
<tr>
<td>Commiphora kerstingii</td>
<td>1000</td>
<td>92.9</td>
<td>96.4</td>
<td>96.4</td>
<td>96.4</td>
<td>84.3</td>
<td>96.4</td>
</tr>
<tr>
<td>Khaya senegalensis</td>
<td>5000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3: Phytochemical screening results of plant extracts

<table>
<thead>
<tr>
<th>Plants</th>
<th>Saponins</th>
<th>Glycosides</th>
<th>Sterols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassia singueana</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Commiphora kerstingii</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Khaya senegalensis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Phytochemicals of crude plant extract of Cassia singueana, Commiphora kerstingii and Khaya senegalensis.

<table>
<thead>
<tr>
<th>Phytochemical components</th>
<th>Cassia singueana</th>
<th>Commiphora kerstingii</th>
<th>Khaya senegalensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Sterols</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Sugars</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: + = present, - = absent

CONCLUSION
From the BST results, ethyl acetate and ethnol soluble fractions of C. kerstingii and K. senegalensis, showed the highest activity in BST at LC50 1.7 µg/ml while 95% of the fractions of C. singueana showed moderate cytotoxicity in BST and anti-plasmodium activity. These results suggests that, further study should be carried out on C. singueana to isolate and synthesize anti-malaria drugs. However, the phytochemical results predicts some secondary metabolites such as tannins, glycosides, sterols and alkaloids which may be responsible for the activity of these plants especially C. singueana.

REFERENCES

