Discovery and Innovation

Log in or Register to get access to full text downloads.

Remember me or Register

Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems

JL Kituyi, HM Thairu, J Irina, KH Schroder


Amalgam voltammetric method has been used to study heavy metal interaction in model lake water in KNO3 at 23¼C at concentration levels of genuine lake water of total ionic strength 1.44 M. Hanging drop amalgam electrode was prepared in situ before exchanging the medium containing Zn2+ ions for the sample solution with ligands of known concentrations. Half-wave potentials at the actual metal ion concentration in the lake and at a much lower one (10-2 times) were experimentally determined. Shifts in half-wave potentials are used to compute metal complex formation constants. The study reveals the existence of various species and a prediction is made of the distribution of the major labile complex species of Zn2+ present in the lake water. The concentration level of Zn2+ ions in the lake seems to play a role in determining the number of complexes formed and their stabilities. The results show that hydroxo/chloro and hydroxo/fluoro mixed
ligand complexes have free Zn2+ ions as predominant species at the natural pH of the lake water and these systems are, therefore, potentially polluting. However, the contribution of OH- ions to the speciation of Zn is of no consequential effect because in its normal state, the [OH-] of the lake water is quite low and the aquatic life is, therefore, not threatened. The CO3 2- ions are the major contributors to the speciation of zinc in the lake water because the natural [CO3 2-] of 0.5 M is high. The normal lake water is thus, dominated by the carbonato complexes [ZnCO3Cl4]4-, [ZnCO3Cl2]2-, [ZnCO3Cl]- and to a less
extent, ZnCO3.

Keywords: Heavy metals, hanging drop electrode, amalgam voltammetry, speciation.

Discovery and Innovation Vol. 19 (3) 2007: pp. 188-194
AJOL African Journals Online