
Yakubu, M.B.1, Lawal K.M.1, Dewu B.B.M.2, Ikpokonte A.E.3

1 Department of Physics, Ahmadu Bello University, Zaria
2 Centre for Energy Research and Training, Ahmadu Bello University, Zaria
3 Department of Geology, Ahmadu Bello University, Zaria

Email: bashaish12@gmail.com

Abstract
The Nigerian sector of Iullemmeden Basin (Sokoto Basin and its adjacent region) contains sediments between the ages of Cretaceous and Tertiary covering the entire Basin. The area is bounded by latitude 12° 5′ – 14° 00′’N and longitude 4° 00′′ – 7° 00′′E. The study investigates geothermal energy resource potential over the Sokoto Basin using aeromagnetic and radiometric data. Seventeen (17) blocks of aeromagnetic and aero-radiometric data were gridded and processed using dimension of 55 km x 55 km. Spectral centroid method was employed to approximate depths to top and centroid of the magnetic sources of the study area. The results divulge that values of CPD range from 5.0 km to 12.5 km having a mean value of 8.8 km, whereby, the values of geothermal gradient range from 46.4 °C km-1 to 116.9 °C km-1 having a mean value of 81.6 °C km-1, while the values of heat flow range from 115.9 mW m-2 to 292.1 mW m-2 having a mean value of 204.1 mW m-2. The study also reveals that, the values of radiogenic heat range between 0.81 and 2.87 μW m-3. The zones having high concentration of thorium and uranium trending N-S and S-W extend to Niger Republic across mid-northern border. The result from this study also reveals that, Curie temperature could be attained at the depth of 6 km deep. Conclusively, those spots having shallow CPD and high heat flow may be potential for geothermal energy source.

Keywords: Radiogenic heat generation, Heat flow, Temperature variation, Curie point depths, Geothermal energy

INTRODUCTION
Temperature as a driven parameter in identifying geothermal energy resource potential zones in the earth’s crust differs and these distinctions depend on the geology and activities that had taken place within geologic ages. The heat emanated from these temperature variations may perhaps come as a result of magnetic anomalies and/or radio-elements concentration of potassium, uranium and/or thorium released through the radioactive decay of its isotopes.

Geothermal resource (energy) is a natural source of heat generated within the earth subsurface which is stored in a fractured rock’s unit (reservoir) in a form of hot water or steam. The resources can be extracted and utilize for heating and/or convert it into electric power. Thus, aeromagnetic and airborne radiometric data may well be employed to reduce noise, enhance the data and/or integrate by means of other geophysical data (Megwara et al., 2013).

Recently, geophysical investigation especially from works of Megwara (2013); Nwankwo & Shehu (2015); Olorunsola & Chukwu (2018); Ezekiel (2019); Olorunsola & Aigbogun (2017); Yakubu et al. (2022); Saada (2016); Quintero et al. (2019); showed immense potential for geothermal energy source and radiogenic heat generation within Sokoto, Bida, southern Anambra Basin, Kano, Nigeria, NW desert Egypt and Colombian Caribbean (NW South America) respectively, by estimating the Curie point depths to derive other important geothermal parameters such as heat flow and/or geothermal gradient in their respective areas of study.

Moreover, Curie-point depths (CPD) were determined from magnetic data by either spectral analyses method (Okubo et al., 1985) or any other statistical methods. The depths to Curie point may be deep or shallow depending on heat flow and/or composition of the rock type. Thus, 580 °C was considered as the Curie temperature for magnetite within the earth’s crust since magnetite is the majority magnetic mineral therein (Tanaka et al., 1999).

In addition to the magnetic anomalies, the heat within the upper crust may well be estimated using radiometric data of radio-element such as U, Th and/or K (Keary et al., 2002).

This study, estimates radiogenic heat generation, CPD, geothermal gradient, heat flow and temperature variation with depths to analyze the geothermal potential within the Sokoto Basin and its adjacent region covering sectors of the Iullemmeden Basin within Nigeria using aeromagnetic and aero- radiometric data of the study area. These data were acquired by Fugro between the year of 2003 and 2010 for Nigerian Geological Survey Agency (NGSA).

Thus, to my awareness, no work of this nature within the study area combines these parameters (especially, temperature variation with depths).

The area is bounded by latitude 12° 5’ – 14°00’N and longitude 4°00’ – 7°00’E. Geologically, Sokoto Basin (see figure 1) contains sediments between the ages of Cretaceous and Tertiary is also called the Nigerian sector of the Iullemmeden Basin (Kogbe, 1981; Obaje, 2009). These sediments thicken and dip gently slowly towards the NW, having maximum thickness greater than 1200 m which trend close to the boundary of Niger Republic.
Figure 1: Geological map of North-western Nigeria showing the study area (after NGSA, 2004)

MATERIALS AND METHOD
The study begins with obtaining the necessary materials needed as follow:

Acquisition and Processing of Data
The aeromagnetic (HRAM) data was acquired through a Survey conducted between 2003 and 2010 by Fugro using seven Cessna Caravan fixed-wing aircraft with each aircraft carrying three Scintrex Cesium vapor magnetometers. The survey carried out on row spacing of 500 m having average topographic gap of 80 m, which gives about 2 million row-km of data. The data sorting interval was 0.1 seconds and/or less than 7 minutes. The acquired data by Fugro was pile up in the following format; ‘X’ column represents longitude/easting, ‘Y’ column represents latitude/northing, and ‘Z’ column represents total field magnetic intensity (TMI, in nT). Thus, columns X and Y were geo-referenced in the UTM projection system and considered as the preferred columns. However, in order to produce the total magnetic field (TMI) of the study area, the datasets were gridded by employs projection technique using Universal Transverse Mercator (UTM) and WGS 84 as orientation to obtained the seventeen (17) blocks of the magnetic data (figure 2) with a dimension of 55×55 km window size.
The 17 blocks of the gridded data (Figure 2) were also processed using different techniques such as regional-residual separation (figure 2 and 3), tapering, fast-Fourier transform and zero-padding. Then spectral centroid technique was applied on the processed data to estimate the CPD using Oasis Montaj software.

Figure 3: Map of Regional Magnetic field of the study area.

Table 1: Thermal Conductivities and Densities of Common Rocks in the Study Area (After Horai, 1971; Cermak & Rybach, 1982)

<table>
<thead>
<tr>
<th>ROCK TYPES</th>
<th>RANGES OF THERMAL CONDUCTIVITY (W/m°C)</th>
<th>RANGES OF DENSITY (g/cm³)</th>
<th>MEAN VALUES OF THERMAL CONDUCTIVITY (W/m°C)</th>
<th>MEAN VALUES OF DENSITY (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.89 - 2.03</td>
<td>2.34 - 2.96</td>
<td>1.46</td>
<td>2.65</td>
</tr>
<tr>
<td>Shale</td>
<td>1.05 – 1.45</td>
<td>2.08 – 2.78</td>
<td>1.25</td>
<td>2.43</td>
</tr>
<tr>
<td>Migmatite</td>
<td>2.39 – 3.41</td>
<td>2.43 – 2.87</td>
<td>2.9</td>
<td>2.65</td>
</tr>
<tr>
<td>Granite</td>
<td>1.9 – 3.2</td>
<td>2.55 – 2.74</td>
<td>2.55</td>
<td>2.65</td>
</tr>
<tr>
<td>Silicate</td>
<td>2.41-3.39</td>
<td>1.98 – 3.32</td>
<td>2.9</td>
<td>2.65</td>
</tr>
<tr>
<td>Clay</td>
<td>1.38 - 2.70</td>
<td>0.90 – 1.50</td>
<td>2.04</td>
<td>1.2</td>
</tr>
<tr>
<td>Sandstone</td>
<td>2.5 – 3.2</td>
<td>2.0 – 2.6</td>
<td>2.85</td>
<td>2.85</td>
</tr>
<tr>
<td>Limestone</td>
<td>2.50 – 3.23</td>
<td>2.20 – 3.14</td>
<td>2.85</td>
<td>2.7</td>
</tr>
<tr>
<td>Schist</td>
<td>0.25 – 2.8</td>
<td>2.64 – 2.88</td>
<td>1.53</td>
<td>2.76</td>
</tr>
<tr>
<td>Alluvium</td>
<td>1.38 – 2.70</td>
<td>0.90 – 1.50</td>
<td>2.04</td>
<td>1.2</td>
</tr>
<tr>
<td>Gneiss</td>
<td>0.94 – 4.86</td>
<td>2.57 – 2.88</td>
<td>2.9</td>
<td>2.65</td>
</tr>
<tr>
<td>Dolorite</td>
<td>1.92-2.72</td>
<td>2.83 – 3.07</td>
<td>2.32</td>
<td>2.95</td>
</tr>
</tbody>
</table>

METHODOLOGY

The Spectral analysis method was used to estimate Curie point depths (CPD) of each of the 17 blocks of the processed magnetic data for the assessment of the geothermal potential over the area of study. Though different approaches exist but to achieve the estimation of depth to the bottom of magnetic sources by estimating depths to the top and centroid; the centroid technique is the most commonly used, because it presents better results for depths estimation with less errors in contrast with other methods (Ravat et al., 2007). This approach was also adopted in this work. The centroid method is based on mathematical evaluation of the shape of isolated magnetic anomalous body buried in the earth’s crust and statistical properties of magnetic bodies (Bhattacharyya & Leu 1975; Spector & Grant 1970).

The depth to the centroid of the magnetic source is estimated using the low wave number and/or high wave length part of the power spectrum given in equation 1:

\[\frac{\ln(P(k)^{1/2})}{k} = \mathcal{A} - |k|Z_o \]

where, \(k \) is wave number, \(\mathcal{A} \) is a constant and \(Z_o \) is the centroid depth and \(P(k) \) is power spectrum.

Likewise, the depth to the top of the magnetic sources was derived from the slope of the medium to low wave length and/or high wave number portion of the power spectrum as expressed in equation 2:

\[\ln(P(k)^{1/2}) = \mathcal{B} - |k|Z_t \]

where, \(Z_t \) is depth to the top of magnetic sources and \(\mathcal{B} \) is a constant. The depth to the bottom (CPD) of the magnetic source (\(Z_b \)) is obtained from the relation in equation 3 (Okubo et al., 1985):

\[Z_b = 2Z_o - Z_t \]

Other parameters such as thermal gradient and heat flow were further estimated using the results computed from the CPD depth (\(Z_b \)).

More so, the geothermal gradient (\(dT/dZ \)) was estimated using equation 4 as (Ross et al., 2006):

\[dT/dZ = \theta_c/Z_b \]

Where, \(\theta_c \) is the Curie-temperature which depends on magnetic materials in the rock, 580°C is assumed to be Curie temperature for magnetite (Fe₃O₄) will be consider as such throughout this work because magnetite is commonly abundant magnetic mineral in the crust.

Likewise, the heat flow (\(q_z \)) within the study area was estimated using equation 5:

\[Q_z = -k(dT/dZ) \]

where \(k \) is thermal conductivity of different rocks type within the area of study which values were shown in (Table 1). According to Braun (2009), the conductivity of rocks increases with decrease in temperature and vice versa, this means that thermal conductivity in the lower crust is smaller than in upper or on the surface.

The negative sign in heat flow equation (equation 5) indicates the direction of flow of heat which moves in the opposite direction to the depth of the source.

Acquisition and processing of airborne radiometric data

The contribution of radio-elements such as Uranium (U), Thorium (Th) or Potassium (K) to the earth’s interior heat is much common in crustal rocks. Moreover, aero-radiometric data were obtained and gridded to determine the concentration of each radio-element within the study area.
Estimation of Radioactive Heat Production
The most prominent isotope decay series which are common in rocks are thorium series (\(^{232}\)Th), decay of the potassium isotope (\(^{40}\)K) and uranium series (\(^{238}\)U and \(^{235}\)U). So, radioactive heat production (HTP) was determined by substituting values of each of the radionuclide content of the gridded aero-radiometric data in equation 6 as shown in Rybach (1988).
\[
HTP = 9.25Cu + 2.56Cth + 3.48Ck
\]
where, HTP is the radioactive heat production due to the concentration of uranium and thorium (in ppm), and potassium (in %).

Estimation of Radiogenic Heat Generation
The radiogenic heat generation (\(R_g\)) in \(\mu\)Wm\(^{-3}\) produced due to the concentrations of potassium, uranium, and thorium using the computed values of radioactive heat production and multiplying by the density of rock types in the area as shown in equation 7 (Rybach, 1988).
\[
R_g = 10^{-5}\rho HTP
\]
where \(\rho\) is density of the rock (in kgm\(^{-3}\)) and HTP is the radioactive heat production. The values of radiogenic heat were computed and used to produce the map of radiogenic heat generation.

Variation of Temperature with Depth
A model was derived to determine the variation of temperature with depth within the area of study using the solution to 1- Dimensional heat flow equation as shown in equation 8.
\[
T_d = T_o + \frac{q_s d}{k} + \frac{A_s c(c-d)}{k} - \frac{A_s c^2 \exp(-d/c)}{k}
\]
where; \(q_s\) is heat flow obtained from the magnetic data, \(T_o\) surface temperature, \(c\) is the empirical heat production depth distribution parameter assumed to be 10 km, (Ravat et al., 2016) and \(k\) is thermal conductivity of the rock type (Table 1), \(T_d\) is Temperature at d-depth (variation of temp-with-depth) and \(A_s\) radiogenic heat generation.

RESULTS AND DISCUSSION
The results of this study were computed from the following:

Interpretation of Magnetic Data
The values in table 2 present results of the estimated parameters from all the 17 blocks of the gridded aeromagnetic data. The depths to the top and centroid of the magnetic sources were estimated using spectral analysis method (see figure 4). It was gathered that the values of depths to the top range between 0.62 and 3.60 km with a mean value of 2.11 km. Likewise, the values of depths to the centroid of the range between 4.28 and 6.76 km with a mean value of 5.52 km. Also, the values of the CPD range between 5.0 and 12.50 km with a mean value of 8.75 km.

Figure 4: graph of Spectral plot of block 31.

Table 2: computed values of the parameters analyzed within the area of study.

<table>
<thead>
<tr>
<th>BLOCK No</th>
<th>Rocks Types</th>
<th>(Z_t) (km)</th>
<th>(Z_o) (km)</th>
<th>CPD (km)</th>
<th>Geothermal gradient ((^\circ \text{C} \text{km}^{-1}))</th>
<th>Heat Flow ((\text{mW} \text{m}^{-2}))</th>
<th>Lat</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alluvium</td>
<td>2.10</td>
<td>5.40</td>
<td>8.70</td>
<td>66.70</td>
<td>166.75</td>
<td>4.25</td>
<td>13.75</td>
</tr>
<tr>
<td>2.</td>
<td>Alluvium</td>
<td>1.98</td>
<td>5.11</td>
<td>8.24</td>
<td>70.38</td>
<td>175.96</td>
<td>4.75</td>
<td>13.75</td>
</tr>
<tr>
<td>3.</td>
<td>Dolorite</td>
<td>1.70</td>
<td>5.31</td>
<td>8.92</td>
<td>65.03</td>
<td>162.56</td>
<td>5.25</td>
<td>13.75</td>
</tr>
<tr>
<td>4.</td>
<td>Shale</td>
<td>1.50</td>
<td>4.91</td>
<td>8.32</td>
<td>69.74</td>
<td>174.35</td>
<td>5.75</td>
<td>13.75</td>
</tr>
<tr>
<td>5.</td>
<td>Limestone</td>
<td>3.60</td>
<td>4.28</td>
<td>4.96</td>
<td>116.86</td>
<td>292.14</td>
<td>6.25</td>
<td>13.75</td>
</tr>
<tr>
<td>6.</td>
<td>Alluvium</td>
<td>1.61</td>
<td>4.75</td>
<td>7.88</td>
<td>73.56</td>
<td>183.91</td>
<td>4.25</td>
<td>13.25</td>
</tr>
<tr>
<td>7.</td>
<td>Shale</td>
<td>1.50</td>
<td>4.35</td>
<td>7.20</td>
<td>80.58</td>
<td>201.46</td>
<td>4.75</td>
<td>13.25</td>
</tr>
<tr>
<td>8.</td>
<td>Shale</td>
<td>1.52</td>
<td>4.72</td>
<td>7.92</td>
<td>73.24</td>
<td>183.10</td>
<td>5.25</td>
<td>13.25</td>
</tr>
<tr>
<td>9.</td>
<td>Granite</td>
<td>1.23</td>
<td>4.46</td>
<td>7.70</td>
<td>75.36</td>
<td>188.40</td>
<td>5.75</td>
<td>13.25</td>
</tr>
<tr>
<td>10.</td>
<td>Granite</td>
<td>1.05</td>
<td>5.35</td>
<td>9.65</td>
<td>60.14</td>
<td>150.34</td>
<td>6.25</td>
<td>13.25</td>
</tr>
<tr>
<td>11.</td>
<td>Granite</td>
<td>0.67</td>
<td>5.17</td>
<td>9.68</td>
<td>59.93</td>
<td>149.83</td>
<td>6.75</td>
<td>13.25</td>
</tr>
<tr>
<td>12.</td>
<td>Schist</td>
<td>1.56</td>
<td>6.24</td>
<td>10.93</td>
<td>53.07</td>
<td>132.69</td>
<td>4.25</td>
<td>12.75</td>
</tr>
<tr>
<td>13.</td>
<td>Migmatite</td>
<td>1.52</td>
<td>5.78</td>
<td>10.04</td>
<td>57.76</td>
<td>144.39</td>
<td>4.75</td>
<td>12.75</td>
</tr>
<tr>
<td>14.</td>
<td>Granite</td>
<td>1.40</td>
<td>5.52</td>
<td>9.64</td>
<td>60.15</td>
<td>150.37</td>
<td>5.25</td>
<td>12.75</td>
</tr>
<tr>
<td>15.</td>
<td>Alluvium</td>
<td>1.02</td>
<td>6.76</td>
<td>12.50</td>
<td>46.39</td>
<td>115.98</td>
<td>5.75</td>
<td>12.75</td>
</tr>
<tr>
<td>16.</td>
<td>Alluvium</td>
<td>1.40</td>
<td>5.56</td>
<td>9.71</td>
<td>59.74</td>
<td>149.34</td>
<td>6.25</td>
<td>12.75</td>
</tr>
<tr>
<td>17.</td>
<td>Alluvium</td>
<td>0.62</td>
<td>4.29</td>
<td>7.95</td>
<td>72.92</td>
<td>182.30</td>
<td>6.75</td>
<td>12.75</td>
</tr>
</tbody>
</table>

Figure 5 is the CPD map of the study area which reveals two distinctive zones of varying Curie depths. These include shallow and deep CPD zones.

The shallow CPD zones have values ranging from 5.0 to 8.70 km which dominate almost the entire northern parts, covering places such as Kurdula, Wurno and Kaura Namoda areas respectively.

The deep CPD zones with values ranging from 9.0 and 12.50 km in the South, SW and SE boundaries which sweep through the central area including; Talata Mafara, Argungu, Gulma, Shinkafe, Moriki, Sokoto and Maradun.
Figure 6 shows the geothermal gradient map of the study area which was produced using the values of geothermal gradient in table 2. The result reveals that the values range between 46.39 and 116.86 °C/km with a mean value of 81.63 °C/km. This map reveals two dissimilar spots of varying geothermal gradient which are the high and low geothermal gradient.

The high geothermal gradient values range between 70.6 and 116.86 °C/km covering the majority parts of the north with pocket in the southern boundary that include; Kurdula, Wurno and Kaura Namoda respectively.

The low geothermal gradient values range between 46.39 and 68.4 °C/km in the SE, SW and south boundaries through the central parts to include; Talata Mafara, Argungu, Gulma, Shinkafe, Moriki, Sokoto and Maradun.
Figure 6: showing Map of geothermal gradient of the area of study.

Figure 7 shows the heat flow map of the study area. The result reveals that the values of heat flow range between 115.9 and 292.14 mWm\(^{-2}\) with a mean value of 204.06 mWm\(^{-2}\). From this map, the area can be categorized into the low and high heat flow zones.

The Low heat flow have values ranging from 115.9 to 147.8 mWm\(^{-2}\) in NW, central parts and SW boundary that include Argungu, Gulma Maradun, Sokoto and Kurdula.

Similarly, zones with high heat flow values ranging from 151.4 and 292.14 mWm\(^{-2}\) in the NE, NW, North and Southern border sides including places like Wurno, Shinkafe, Moriki, Kaura Namoda, and Talatu Mafara.
Interpretation of Radiometric Data
In order to present a plain result of this analysis, the work therefore estimates the radiogenic heat generation using aero-radiometric data of the study area.

Figure 8 reveals high concentration of potassium (K) in SE part with values range between 0.23 and 1.96 % while low values of K concentration dominated almost the area with range between 0.12 and 0.22 %.

Figure 9 shows high values of Thorium (Th) concentration range between 6.10 and 16.91 ppm, to the North, NE, SW and SE boundaries. Likewise, low values of concentration of thorium range between 2.71 and 5.95 ppm was observed in south, NE, SW and NW parts of the study area.

Figure 10 divulges high values of uranium (U) concentration range between 1.65 and 8.95 ppm, to the northern, SW boundaries and central portion scattering in all the entire area. Similarly, low values of uranium concentration range between 0.21 and 1.53 ppm dominated almost the entire locations.

Figure 8: showing Map of concentration of Potassium (K) in the study area.

Figure 9: showing Map of concentration of Thorium (Th) in the study area.
Composition of radio-elements in the crust

The Ternary map presents clear pictures of the arrangement of radio-elements in the crust which appears in a form of triangular plot of the three prominent types of radio-elements. Likewise, this plot usually gives a better reflection of the geology (Salem et al., 2005).

Figure 11 reveals that uranium which signifies the occurrence of pegmatites and granites in dominated the area. Thus, minute quantity of potassium appear in the SE boundary implies high concentration of granite and felsic igneous basalt rocks. Similarly, thorium occupies small segment this means that the area has high concentration of mafic igneous rocks. Also, the trend of uranium and Thorium through N-S to S-W extended to Niger Republic across the mid-northern border.
Interpretation of Radiogenic Heat Generation
Figure 12 shows high values of radiogenic heat generation range between 0.81 and 2.87 µWm$^{-3}$ which trend from SW boundary through the central parts to the NE, north down to SE which almost dominated the entire area. Likewise, low values range between 0.78 and 0.35 µWm$^{-3}$ in the NW and NE parts of the study area.

Modeling of Variation of Temperature with Depths
The estimated values of variations of temperature with depths the in the area (table 3) were computed using varying depths of 0 km, 2 km, 4 km, 6 km, 8 km, and 10 km. The values were used in plotting temperature against depth graph (figure 13) showing the graphical picture of the variations. The model helps in identifying the depths to Curie temperature in the area.

Table 3: Computed values of variation of temperature with depths in the study area.

<table>
<thead>
<tr>
<th>DEPTHS</th>
<th>0 km</th>
<th>2 km</th>
<th>4 km</th>
<th>6 km</th>
<th>8 km</th>
<th>10 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>162.138</td>
<td>294.776</td>
<td>427.006</td>
<td>558.900</td>
<td>690.521</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>168.380</td>
<td>308.078</td>
<td>447.218</td>
<td>585.902</td>
<td>724.211</td>
<td></td>
</tr>
<tr>
<td>27.8</td>
<td>156.821</td>
<td>284.034</td>
<td>409.766</td>
<td>534.286</td>
<td>657.813</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>165.739</td>
<td>301.801</td>
<td>436.079</td>
<td>568.896</td>
<td>700.519</td>
<td></td>
</tr>
<tr>
<td>27.3</td>
<td>260.535</td>
<td>492.929</td>
<td>724.633</td>
<td>955.773</td>
<td>1186.452</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>175.711</td>
<td>321.686</td>
<td>467.058</td>
<td>611.937</td>
<td>756.411</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>188.736</td>
<td>348.718</td>
<td>492.929</td>
<td>666.938</td>
<td>825.381</td>
<td></td>
</tr>
<tr>
<td>27.8</td>
<td>173.781</td>
<td>319.229</td>
<td>464.003</td>
<td>608.299</td>
<td>752.204</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>177.889</td>
<td>327.698</td>
<td>477.033</td>
<td>625.978</td>
<td>774.605</td>
<td></td>
</tr>
<tr>
<td>27.3</td>
<td>146.909</td>
<td>265.348</td>
<td>382.830</td>
<td>499.528</td>
<td>615.583</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>144.803</td>
<td>261.742</td>
<td>377.155</td>
<td>491.319</td>
<td>604.460</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>134.719</td>
<td>239.686</td>
<td>344.036</td>
<td>447.883</td>
<td>551.316</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>142.791</td>
<td>256.312</td>
<td>368.792</td>
<td>480.421</td>
<td>591.352</td>
<td></td>
</tr>
<tr>
<td>27.8</td>
<td>147.597</td>
<td>266.521</td>
<td>384.731</td>
<td>502.356</td>
<td>619.503</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>119.753</td>
<td>211.078</td>
<td>301.643</td>
<td>391.586</td>
<td>481.020</td>
<td></td>
</tr>
<tr>
<td>27.3</td>
<td>145.675</td>
<td>262.119</td>
<td>376.985</td>
<td>490.556</td>
<td>603.069</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>171.058</td>
<td>314.742</td>
<td>457.300</td>
<td>598.937</td>
<td>739.819</td>
<td></td>
</tr>
</tbody>
</table>

145

DISCUSSION

The Curie point depth in the was revealed Shallow zones covering places such as Kurdula, Wurno, Kaura Namoda and a deep CPD zones which include places such as Talata Mafara, Argungu, Gulma, Shinkafe, Moriki, Sokoto and Maradun. Although, Shallow Curie isotherm depths are due to thin crust while deep CPD could be ascribe to thick crust (Yakubu et al., 2022). Thus, this implies that, shallow Curie point depth indicates Crustal thinning/intrusion/updoming that may lead to the high temperature close to the surface. However, the shallow CPD regions may propose crustal thinning, whereas a deep one suggests thick crust. This, result agreed with findings from earlier work using magnetic and gravity prospective over the Sokoto Basin by Umegu (1990), which reported that the Basin is generally shallow and that the underlying Basement rocks are gently folded.

The geothermal gradient of the area presents locations with high geothermal gradient in places such as Kurdula, Wurno, Kaura Namoda and locations with low geothermal gradient which include Talata Mafara, Argungu, Gulma, Shinkafe, Moriki, Sokoto and Maradun. The locations with deep Curie point depth matched to those with low geothermal gradient and likewise, those locations with low CPD match up with the one that have high geothermal gradient.

The heat flow of the area reveals spots with Low heat flow these are, Argungu, Gulma Maradun, Sokoto, Kurdula, these spots match up with deep CPD and low geothermal gradient zones in the area. Similarly, the high heat flow spots covering Wurno, Shinkafe, Moriki, Kaura Namoda, and Talatu Mafara, correspond to the shallow CPD and high geothermal gradient.

Figure 13: showing graph of variation of temperatures with depths in the study area.

The heat flow of 80 mWm$^{-2}$ to 100 mWm$^{-2}$ indicates a viable good geothermal condition (Ludvik, 2009), however, a heat flow values greater than 100 mWm$^{-2}$ was considered to be for anomalous geothermal condition (Jessop et al., 1977).

The result of this work shows that, almost all the study area present high heat flow values, >100 mW/m2, and suggest good geothermal potential in the area.

High radiogenic heat generation range between 0.81 and 2.87 μWm$^{-3}$ trending to SW boundary through the central parts and to the NE, north, SE which confirm the high geothermal energy potential in the area. Equally, low values range between 0.78 and 0.35 μWm$^{-3}$ at the NE and NW.

The radiogenic heat of 2.87 μWm$^{-3}$ reported in this study falls within the average continental crust values of radiogenic heat which is between 2.5μWm$^{-3}$ and 2.9μWm$^{-3}$ (Alistair et al., 2014; Wollenberg & Smith 1987). The high concentration zones of thorium and uranium trend in the area extends to the S-W and NS bordering Niger Republic, which also follows the path of radiogenic heat generation.

Thus, at 580°C, demagnetization occurred in a magnetite rich rocks (Salem et al., 2005). For hydrocarbon exploration for instance in places like Red Sea, temperature ranges between 65 and 145°C for oil and 165°C for gas were reported (Staplin, 1977). Thus, in this work; Curie temperature was obtained at a minimum depth of 6 km while sedimentary maturation may perhaps occur at a minimum depth of 2 km.

CONCLUSION

This study indicates that the crust is thin within spots of shallow CPD. In the low temperature zones thermal maturation of sediments does not take place, while; high temperature zones support thermal maturation of sediments and possible oil exploitation. This work also provides thermal information that lead to the identification and utilization of geothermal energy in the area. Thus, high heat flow with a corresponding high concentration uranium/thorium and radiogenic heat generation gives the area high potential for geothermal resources that could be converted to energy source for electricity generation which will boost the power capacity in the area. Moreover, at a minimum depth of 6 km the Curie temperature might be reach within the Basin and sedimentary maturation take place at least within a depth of 2 km.

ACKNOWLEDGEMENT

The author expresses his profound gratitude to the Department of Physics Ahmadu Bello University, Zaria for the opportunity of providing guide and facilities. Also to Nigerian Geological Survey Agency (NGSA), for releasing the data used in conducting this study.

REFERENCES

Lúdvík, S-G 2009 ‘Geophysical methods used in geothermal exploration United Nations University Geothermal Training Programme Orkustofnun’: Reykjavik, ICeland lsg@os.is

NGSA 2004 ‘Geological map of North-western Nigeria showing the study area’: for Nigerian Geological Survey Agency.

