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Abstract 
This model has examined the motion of an infinitesimal particle when both primaries are radiating 
and triaxial in the framework of the Circular Restricted Three Body Problem (CR3BP). It was 
observed that the equations of motion were affected by perturbing forces (triaxiality and radiation 
pressures) of the primary bodies. Analytically, the locations of equilibrium points were obtained and 
applied to the binary systems Kruger 60 (AB) and Achird to obtain the numerical results with the 
help of MathLab software. Numerical investigations reveal that locations of equilibrium points of this 
problem have been determined and the effect of increasing triaxiality on the position of equilibrium 
point were obtained with graphical results. It reveal that the infinitesimal mass moves in the direction 
of the bigger primary towards the line joining the primary bodies. The linear stability of the 
equilibrium points has also been examined and a numerical solution of the analytical result was 
applied to the binary stars Kruger 60. It was found that the triangular points are unstable which 
means that the instability exist as a result of the presence of perturbation forces (Radiation and 
Triaxiality).  
 
Keywords:  Model, Motion, Infinitesimal, Radiating, Triaxial. 
 
INTRODUCTION 
Examination of the Restricted Three-Body Problem (R3BP) has been a subject of interest to 
researchers for over two hundred years and has had significant impact in numerous 
scientific fields including, among others, celestial mechanics, chaos theory, galactic 
dynamics and molecular physics. It also finds application in the dynamics of solar and 
stellar systems, lunar theory and artificial satellites. The R3BP describes profoundly, the 
motion of three masses in space whose initial positions, velocities and accelerations are 
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known leading to the predictions of their future motions. In this motion, the masses are such 
that they have a common gravitational attraction with the two massive bodies, called 
primaries, influencing the motion of the third body referred to as, infinitesimal mass having 
an insignificant effect on the motion of the primaries. Formulation of the restricted three-
body problem evolved from the approximate circular motion of planets around the Sun. The 
satellite of these planets together with small masses of asteroids are compared to the masses 
of the Sun and the planets. The R3BP constitutes one of the most recognized problems in 
dynamical astronomy. The exploits witnessed in attempt to understand and explain the 
dynamics of the R3BP has allowed great historical, theoretical, practical and educational 
thrive by mankind. The gravitational problem of three bodies in its traditional sense dates in 
substance from 1687, when Isaac Newton published his "Principia" (Philosophiae Naturalis 
Principia Mathematic). Newton took the first steps in the definition and study of the problem 
of the movements of three massive bodies subject to their mutually perturbing gravitational 
attractions and then applying his results to the lunar theory, the motion of the Moon under 
the gravitational influence of the Earth and the Sun. However, the accuracy of the lunar 
theory was low, due to the perturbing effect of the Sun, and planets, on the motion of the 
Moon around the Earth. The general three-body problem is governed by 18 first order, 
coupled and non-linear differential equations. Nevertheless, only ten integrals are known to 
exist and are derived from the conservation of linear momentum, angular momentum, and 
energy. Hence, these equations of motion do not have a complete analytical solution. 
Lagrange (1772), in his endeavor to solve the problem, reduced the “three-body problem 
(3BP)” to the so-called “restricted three-body problem (R3BP)”, in which the moon was 
assumed to have infinitesimal mass. The substantiating distinction between the general 
three-body problem and the restricted three-body problem is that primarily, for the latter 
only two masses are taken arbitrary; with the third mass having an insignificant affection the 
other two masses. The general three-body problem allows any set of initial conditions for all 
masses involved; the restricted three-body problem requires the orbit of the masses to be 
circular or elliptic for which motion is described as either circular or elliptic restricted three-
body problem and the motion of the infinitesimal is also required to take place in the orbital 
plane of the two massive bodies. 
 
The restricted three-body problem was constructed by Lagrange (1772). It was followed by 
Sharma (1982) and many more modern mathematicians and astronomers which has given 
rise to the bedrock from which many significant new results have emerged. We can typically 
see that the man-made satellite has assumed the role of the infinitesimal in the Sun-
Earth/Moon model that was originally developed by Lagrange; with the Earth/Moon 
emerging as a single entity located at the Earth-Moon barycenter. By including the Earth’s 
non-spherical nature into the problem, Laplace had enhanced the accuracy of the lunar 
predictions. Ten decades later, when Poynting (1903), began working on the problem, he 
introduced the idea of a better understanding of the motion of the problem by studying the 
flow associated with the governing differential equations. Particularly, he tried to describe 
the motion and stability of three mutually gravitationally attracted bodies. He pointed out a 
notable fact that any sight variation in initial conditions could amount to a drastically 
different dynamical behavior. Singh (2007) confirm the first order normalization in the 
perturbed restricted three body problem (R3BP) with variable masses and the stability of 
triangular points in the generalized photo gravitational. The classical restricted three-body 
problem is unable to characterize the motion of the infinitesimal when certain perturbing 
forces are involved. In recent times, several perturbations such as radiation, variation of 
masses, tri-axiality, P-R drag etc. have been encompassed in the study of the restricted three-
body problem. Poynting had pointed out that perturbations can actually result to variations 
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in the locations of the equilibrium points and may change the entire nature of their stability. 
In this regard, we sought to determine the motion, equilibrium points and linear stability of 
an infinitesimal mass in the circular restricted three body problem (CR3BP) when both 
primaries are luminous triaxial rigid bodies. 
 
MATERIALS AND METHODS 
The Lagrangian and Hamiltonian methods are used to derive the equation of motion for the 
infinitesimal body moving in the vicinity of two massive bodies known as the primaries; 
orbiting circular path about their common center of mass on account of their mutual 
gravitational attraction. These primary bodies are such that the bigger primary is radiating, 
having Poyntin Robertson (P-R) drag effect while the smaller is a triaxial rigid body (Singh 
& Amuda 2013; Singh & Balogun, 2014). Using bary centric rotating reference, the equations 
of motion are derived in dimensionless parameters. But the formulated model uses the 
method of second order partial differential equation with the derivations and findings of 
this work using Matlab R2013a and Mathematica to show the result for the location of 
triangular equilibrium points with their linear stability. 
 

 
Figure 1: The circular Restricted Three Body Problem 

 
We consider a bary centric coordinate system Oxyz  which is rotating with respect to an 

inertial frame of reference and has an angular velocity   about their common z -axis. The 

line joining the primaries is taken as the x -axis. 1m , 2m  are the masses of the bigger and 

smaller primaries respectively.  It is also assumed that both primaries are radiating and 
triaxial in nature, with one of the axes taken as the axis of symmetry such that its equatorial 

plane coincides with the plane of motion. Let 1 , 2  be triaxial parameters of the bigger 

primary while
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The relativistic treatment of the total radiation force emitted by a body was first formulated 
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pF is the radiation pressure force, R


 stands for the position vector of the particle with 

respect to the radiation source, v


 is the velocity vector and c is the velocity of light.  In the 

expression of pF , L is the luminosity of the radiating body. sm ,,  Represent the mass, 

density and cross section of the particle. From equation (1), 1F  is the radiation pressure, 2F is 

the Doppler shift as a result of the motion of the particle and 3F  is as a result of absorption 

and subsequent re-emission of parts of the incident radiation. The forces 2F  and 3F   

combined are referred to as Poynting-Robertson effect. We also considered the 

dimensionless velocity of light ( dc ) which depends on the masses of the primaries in 

question and the distance of separation between them.  
 
 
RESULTS   
In the course of applying the model to understanding the dynamics of stellar bodies; Kruger 
60 and Achird, we used Matlab and Mathematica to determine the location of equilibrium 
point with their graphical solutions and to also ascertain the stability of the equilibrium 
points. The classical restricted three-body problem is known to admit five equilibrium 
points, three of which lie along the line joining the primaries, called collinear points (L1, L2, 
L3), and the other two equilibrium points referred to as the triangular points lie symmetrical 
to each other above and below the massive bodies. For this study we considered the 
triangular equilibrium triangular points. Assuming that both primaries are triaxial rigid 

bodies and are sources of radiation. This means that 0,0 '  ii  1, ' ii  2,1i . Let 1  

and 2  represent the perturbations that are caused by the presence of triaxiality, then the 

values of 1r  and 2r  will become  
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On solving system  the exact x -coordinate of the triangular liberation point is found to be  
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On substituting the values of 00 , yx  and 21 , from )8( and )9( respectively, in )3( and )6( , 

then considering only linear terms of small quantities,  
We obtain the triangular equilibrium points as: 
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Therefore, the points of system )11()10( and  form scalene triangles with the primaries. 

The positions of these points depend wholly on the mass ratio, triaxiality, radiation 
pressure. The numerical and graphical results of the analytical results are presented with the 
help of binary systems and assumed values of some potential in order to obtain the positions 
of the equilibrium points together with the linear stability of these equilibrium points.  

 

Table 1: Numerical Data 

Binary 

System 

Masses 

(MSUN) 

Mass 

ratio 

 

Luminosity 

(LSUN) 

Radiation 

 Pressures 

Binary 

Separation 

(ASUN)A 

Dimensionless 

Velocity 

(cd) 
M1 M2 L1 L2 q1 q2 

Kruger 

60 AB) 

0.271 0.176 0.3937 0.01 0.0034 0.99992 0.99996 9.5 46,393.84 

Achird 0.95 0.62 0.3949 1.29 0.06 0.9971 0.9997 71 67,675.52 

Source: SIMBAD Astronomical Database for the binary stars  

 
Here, we computed numerically the positions of the triangular equilibrium points L4, 5 for 
the binary systems Kruger 60 (AB) and Achird using equations (10) and (11). The locations 
of the triangular points for Kruger 60 (AB) and Achird are presented in tables (2) and (3) 

respectively. The classical cases )2,1(1,0'  iq iii  are first shown, then, triaxiality 

factors of the primary bodies are introduced increasingly before the effects of radiation 
pressures, triaxiality and the locations of the triangular points of Kruger 60 (AB).  
 
Table 2: Positions of triangular points for Kruger 60 with increasing triaxiality 

q1 q2 σ1 σ2 σ3 σ4 L4 L5( ) 

1 1 

0 0 0 0 

 0.1063 0.8660  

0.99992 0.99996  0.1063  0.8660   

1 1 

0.0004 0.0003 0.00015 0.00012 

      
0.1058 0.8658 

 0.99992 0.99996 0.1057 0.8658 

1 1 

0.004 0.003 0.0015 0.0012 

0.1009       0.8635 

0.99992 0.99996 0.1009 0.8635 

1 1 

0.04 0.03 0.015 0.012 

0.0521 0.8411 

0.99992 0.99996 0.0521 0.8411 

1 1 

0.4 0.3 0.15 0.12 

-0.4354 0.6166 

0.99992 0.99996 -0.4354 0.6166 

1 1 

0.0004 0.0003 0 0 

0.1057 0.8658  

0.99992 0.99996 0.1057 0.8658  

1 1 

0.004 0.003 0 0 

0.1007 0.8642 

0.99992 0.99996 0.1007 0.8642 

1 1   

0.03 0 0 

0.0505 0.8481 

0.99992 0.99996 0.04 0.0505 0.8481 

1 1 

0.4 0.3 0 0 

-0.4354 0.6166 

0.99992 0.99996 -0.4517 0.6867 

1 1 

0 0 0.0002 0.0001 

0.1063 0.8660 

0.99992 0.99996 0.1063 0.8660 

1 1 

0 0 0.0015 0.0012 

0.1065 0.8653 

0.99992 0.99996 0.1064 0.8653 

1 1 

0 0 0.015 0.012 

0.1079 0.8590 

0.99992 0.99996 0.1079 0.8590 

1 1 

0 0 0.15 0.12 

0.1226 0.7959 

0.99992 0.99996 0.1226 0.7958 
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Table 3: Positions of triangular points for Achird with increasing triaxiality 

q1 q2 σ1 σ2 σ3 σ4 L4 L5( ) 

1 1 

0 0 0 0 

0.1051 0.8660 

0.9971 0.9997 0.1042  0.8654 

1 1 

0.0004 0.0003 0.00015 0.00012 

0.1046 0.8658 

0.9971 0.9997 0.1032 0.8652 

1 1 

0.004 0.003 0.0015 0.0012 

0.0997 0.8635 

0.9971 0.9997 0.0988 0.8629 

1 1 

0.04 0.03 0.015 0.012 

0.0511 0.8411 

0.9971 0.9997 0.0502 0.8404 

1 1 

0.4 0.3 0.15 0.12 

-0.4349 0.6164 

0.9971 0.9997 -0.4357 0.6158 

1 1 

0.0004 0.0003 0 0 

0.1045 0.8658 

0.9971 0.9997 0.1037 0.8652 

1 1 

0.004 0.003 0 0 

0.0995 0.8642 

0.9971 0.9997 0.0987 0.8636 

1 1   

0.03 0 0 

0.0495 0.8481 

0.9971 0.9997 0.04 0.0486 0.8475 

1 1 

0.4 0.3 0 0 

-0.4514 0.6865 

0.9971 0.9997 -0.4522 0.6859 

1 1 

0 0 0.0002 0.0001 

0.1051 0.8660 

0.9971 0.9997 0.1042 0.8653 

1 1 

0 0 0.0015 0.0012 

0.1053 0.8653 

0.9971 0.9997 0.1044 0.8647 

1 1 

0 0 0.015 0.012 

0.1067 0.8590 

0.9971 0.9997 0.1059 0.8584 

1 1 

0 0 0.15 0.12 

0.1216 0.7959 

0.9971 0.9997 0.1207 0.7953 

 
Figure 2: Effect of increasing triaxiality on the position of equilibrium points when both bodies are triaxial 
For Kruger 60 when q1=0.9999 

 
Figure 3: Effect of increasing triaxiality on the position of equilibrium points when both bodies are triaxial 
for Kruger 60 with q1=q2=1 
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Figure 4: Effect of varying triaxiality on the position of equilibrium points when both bodies are triaxial for 
Achird 60 with q1=0.9971, q2=0.9997 

 
Figure 5: Effect of varying triaxiality on the position of equilibrium points when both bodies are triaxial for 

Achird 60 with q1=1=q2 

 
The motion of the infinitesimal mass near one of the equilibrium points is said to be stable if 
for any given small displacement with small velocity, the body will oscillate for a 
considerable time period around that point and when the time elapses, it returns to that 
same point. But when this body departs from the equilibrium point as time increases and 
does not return to the original point, then the motion of the infinitesimal mass is said to be 
unstable.   To examine the stability of the infinitesimal mass around an equilibrium point, let 

the coordinates of the equilibrium point be denoted by ),( 00 yx  and let  ,  be small 

displacements from the point under consideration such that  0xx and  0yy , 

then on substitution we obtain the variational equations of motion as 
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If only linear terms in   ,,,  are taken with the second partial derivatives of   denoted 

by subscripts while the superscript 0 shows that the derivatives are to be evaluated at the 

point ),( 00 yx . The characteristic equation that corresponds to )12(  is written as  
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On evaluating the second partial derivatives at the triangular equilibrium point, we have 
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Substituting for the values of xyyxyyxxyxxyyyxx 
00000000 ,,,,,,,   into equation

)16( , we have 
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The general expression for the roots of equation )16.4(  are given as 
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Table 4: Roots of characteristic equation for Kruger 60 with varying Triaxiality 

q1 q2 σ1 σ2 σ3 σ4 2,1  4,3  

1 1 

0 0 0 0 

6112.1  0  

0.9971 0.9997 6118.1  0  

1 1 

0.0004 0.0003 0.0002 0.0001 

6137.1  0  

0.9971 0.9997 6143.1  0  

1 1 

0.004 0.003 0.0015 0.0012 

6323.1  0  

0.9971 0.9997 6329.1  0  

1 1 0.04 0.03 0.015 0.012 8023.1  0  
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0.9971 0.9997 8028.1  0  

1 1 

0.4 0.3 0.15 0.12 

6004.2  0  

0.9971 0.9997 6006.2  0  

1 1 

0.0004 0.0003 0 0 

6128.1  0  

0.9971 0.9997 6134.1  0  

1 1 

0.004 0.003 0 0 

6269.1  0  

0.9971 0.9997 6275.1  0  

1 1   

0.03 0 0 

7578.1  0  

0.9971 0.9997 0.04 7583.1  0  

1 1 

0.4 0.3 0 0 

5019.2  0  

0.9971 0.9997 5021.2  0  

 
 
DISCUSSION OF RESULTS 
A mathematical model formulated for motions of infinitesimal particle under the influence 
of luminous-triaxial primaries has been investigated in the framework of the circular 
restricted three-body problem (CR3BP). The equations of motion given shows the effect of 
radiation and triaxiality in both primaries, and are seen to be different from that of Singh & 
Balogun (2014) with bigger primary radiating, having P-R drag effect while the smaller 
primary remain triaxial.  Table 2, shows the effects of radiation and triaxiality on the 
locations of the triangular points in CR3BP are investigated. It was observed using Kruger 
60 that on increasing the effect of triaxaility, the triangular points are seen moving towards 
the line joining the primaries in the direction of the bigger primary. The same effect is seen 
by Achird in Table 3, Moreover, as radiation and triaxiality factors increases, there is a shift 
towards the bigger primary and towards the line joining the primaries in all binaries. Table 
1, presents the necessary numerical data obtained from SIMBAD Astronomical Database for 

the binary stars under consideration. Using this data, the radiation pressures 1q  and 2q  are 

computed based on Stefan-Boltzmann’s law, where
Ma

AKL
q


1 . M and L are the mass and 

Luminosity of a star while a  and   are the radius and density of a dust grain from 

radiation. K=1 is the radiation pressure efficiency of the star; 
CG

A
16

3
  represents a 

constant and in C.G.S. system, 5109838.2 A we have also taken 32102  cma  and
34.1  gcm   for any given dust grain in the systems. The dimensionless velocity of light 

for the stars is computed as 

uA

MM

c
A

)( 21 



  Where c, Au and   represent the velocity 

of light, binary separation of the primaries and gravitational constant; M1, M2 are the masses 

of the primaries. In C.G.S. system,  1101099792458.2  cmsc  and 

.106743.6 2128  sgcm  

Numerical experiments were carried out using parameter values in Tables 2 and 3 
respectively and applying the commands for the location of triangular equilibrium points. In 
Figure 2, effect of increasing triaxiality on the position of triangular equilibrium points with 
both bodies are radiating and triaxial for Kruger 60. When q1=0.99992 and q2=0.99996, it 
shows that the position of the equilibrium point moves towards the line joining the primary 
bodies in the direction of the bigger primary. In Figure 3, effect of increasing triaxiality on 
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the position of triangular equilibrium points when both bodies are radiating and triaxial for 
Kruger 60 with q1= q2= 1. It shows that, the position of the equilibrium point moves towards 
the line joining the primary bodies in the direction of the bigger primary. In Figure 4, effect 
of increasing triaxiality on the position of triangular equilibrium points with varying 
radiation parameter when both bodies are radiating and triaxial for Achird with q1=0.9971, 
q2=0.9997, also reveals that the position of the equilibrium point moves towards the line 
joining the primary bodies in the direction of the bigger primary. In Figure 5, effect of 
increasing triaxiality on the position of triangular equilibrium points with varying radiation 
parameter when both bodies are radiating and triaxial for Achird with q1= q2=1, depicts the 
position of the equilibrium point moving towards the line joining the primary bodies in the 
direction of the bigger primary. It is obvious that these perturbations reduce the range of 
stability as seen in Table 4. However, in the absence of perturbations, when 

, the result reduces to the classical problem as contained in 

Szebehely (1967). But in the absence of triaxiality on the bigger primary, radiation factor on 
the smaller primary and P-R drag effect on the smaller primary that is when

, the result agrees with Sharma et al. (2001), Singh &Balogun 

(2014). In this research, we considered ,0,  ii  and 1iq , the findings reveals that both 

bodies are radiating and triaxial in nature. Finally, for the stability of the dynamical system, 
as shown in Table 4, that root of characteristics equation for Kruger 60 with varying 
triaxiality and radiation, with the condition of stability of linear system stated above as if the 
roots are real and all negative, the solution is stable. However, if any of the roots are 
positive, the point is unstable. It was clearly observed base on the results we obtained that, 
the stability of the equilibrium points is said to be unstable due to the nature of the roots of 
characteristic equations. 
 
CONCLUSION 
In the CR3BP with luminous-triaxial primaries, our examination reveals that the triangular, 
equilibrium points are unstable due to the nature of perturbations (Radiation and 
Triaxiality), on both the bigger and smaller primary. The characteristic equations were 
observed to be real containing positive roots as computed in Table 4. 
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