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Abstract 
The system being modelled is assumed to occupy one and only one state at any moment in time and 
its evolution is represented by transitions from state to state. Also, the physical or mathematical 
behaviour of this system may be represented by describing all the different states it may occupy and by 
indicating how it moves among these states. In this work, the concept of the classification of groups of 
states, between states that are recurrent, meaning that the Markov chain is guaranteed to return to 
these states infinitely often, and states that are transient, meaning that there is a nonzero probability 
that the Markov chain will never return to such a state are investigated, in order to provide some 
insight into the performance measure analysis such as the mean first passage time, 𝑅𝑖𝑗,  the mean 

recurrence time of state 𝑅𝑗𝑗 as well as recurrence iterative matrix 𝑅(𝑘+1). Our quest is to demonstrate 

with illustrative examples on Markov chains with different classes of states, and the following results 
are obtained, the mean recurrence time of state 1 is infinite, as well as the mean first passage times 
from states 2 and 3 to state 1. The mean first passage time from state 2 to state 3 or vice versa is given 
as 1, while the mean recurrence time of both state 2 and state 3 is given as 2. 
 
Keywords: Embedded Markov chain, ergodic Markov chain, mean first passage time, single-
step transition, k-dependent Markov chains, recurrence iterative matrix. 
 
 
INTRODUCTION 
The transitions in Markov chain are assumed to occur instantaneously and the future 
evolution of the system depends only on its current state and not on its past history, then the 
system may be represented by a Markov process. Even when the system does not possess 
this Markov property explicitly, it is often possible to construct a corresponding implicit 
representation. Examples of the use of Markov processes may be found extensively 
throughout the biological, physical, and social sciences as well as in business and 
engineering. The information we would like to obtain concerning a system is the probability 
of being in a given state or set of states at a certain time after the system becomes 
operational. Other measures of interest include the time taken until a certain state is reached 
for the first time.  The values assumed by the random variables 𝑋(𝑡) are called states. The set 
of all possible states forms the state space of the process and this may be discrete or 
continuous. If the state space is discrete, the process is referred to as a chain and the states 
are usually identified with the set of natural numbers {0, 1, 2, . . . } . An example of a discrete 
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state space is the number of customers at a service facility. An example of a continuous state 
space is the length of time a customer has been waiting for service. Other examples of a 
continuous state space could include the level of water in a dam or the temperature inside a 
nuclear reactor where the water level/temperature can be any real number in some 
continuous interval of the real axis. Markov chains are frequently illustrated graphically. 
Circles or ovals are used to represent states. Single-step transition probabilities are 
represented by directed arrows, which are frequently, but not always, labeled with the 
values of the transition probabilities. The absence of a directed arrow indicates that no 
single-step transition is possible. Romanovsky (1970) introduced the application and 
simulation of a discrete Markov Chains and this was extended to the introduction of 
Numerical Solutions of Markov Chains by Stewart (1994, 2009), while the suitability of the 
Markov chain approach is demonstrated in the wind feed in Germany by Pesch et al. (2015).  
Uzun and Kiral (2017) carried out the study to predict the direction of the gold price 
movement, and to determine the probabilistic transition matrix of the closing returns of gold 
prices, using the Markov chain model of fuzzy state, while the application of Markov chain 
using a data mining approach to get a prediction of the monthly rainfall data is shown by 
Aziza et al. (2019). The application of Markov chain on the spread of disease infection which 
shown that Hepatitis B was more infectious overtime than tuberculosis and HIV is 
demonstrated by Clement (2019), while the application of Markov chain to Journalism is 
demonstrated by Vermeer and Trilling (2020), but in this study, the performance measures 
of mean first passage time, 𝑅𝑖𝑗,  the mean recurrence time of state, 𝑅𝑗𝑗 , as well as recurrence 

iterative matrix, 𝑅(𝑘+1) are analysed, for Markov chains with different classes of states, and 
these are demonstrated with illustrative examples. 
 
Nomenclature 

𝑓𝑗𝑗
(𝑛)

 Conditional Probability that on leaving state j the first return to state j occurs n steps 

later 
𝑝𝑖𝑗 Probability of moving from state 𝑖 to state 𝑗 

𝑝𝑗𝑗
(𝑛)

  that the Markov chain is once again in state 𝑗 , 𝑛 time steps after leaving it  

𝑅𝑖𝑗 mean first passage time   

𝑅𝑗𝑗 mean recurrence time 

𝑅(𝑘+1) recurrence iterative matrix 
 
Material and Methodology 
Markov chain {𝑋𝑛, 𝑛 =  0, 1, 2, . . . } is a stochastic process that satisfies the following 
relationship, called the Markov property: 
For all natural numbers 𝑛 and all states  𝑥𝑛, 

𝑃𝑟𝑜𝑏{𝑋𝑛+1  =  𝑥𝑛+1|𝑋𝑛  =  𝑥𝑛, 𝑋𝑛−1  =  𝑥𝑛−1, . . . , 𝑋0  =  𝑥0} 
=  𝑃𝑟𝑜𝑏{𝑋𝑛+1  =  𝑥𝑛+1|𝑋𝑛  =  𝑥𝑛}.                                              (1) 

 
 The state in which the system finds itself at time step (𝑛 +  1) depends only on where it is at 
time step 𝑛. The fact that the Markov chain is in state 𝑥𝑛 at time step 𝑛 is the sum total of all 
the information concerning the history of the chain that is relevant to its future evolution.  
For simplification, Eq. (1) is written as 

𝑝𝑖𝑗(𝑛)  =  𝑃𝑟𝑜𝑏{𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖 }    (2) 

 
which are called the single-step transition probabilities, or just the transition probabilities, of 
the Markov chain. They give the conditional probability of making a transition from state 
𝑥𝑛 = 𝑖  to state 𝑋𝑛+1 =  𝑗 when the time parameter increases from 𝑛 to (𝑛 +  1).  
The matrix 𝑃(𝑛), formed by placing 𝑝𝑖𝑗 (𝑛) in row 𝑖 and column 𝑗, for all 𝑖 and 𝑗 , is called the 
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transition probability matrix or chain matrix. We have 

𝑝(𝑛) =

(

 
 
 
 

𝑝00(𝑛) 𝑝01(𝑛) 𝑝02(𝑛)  ⋯ 𝑝0𝑗(𝑛) ⋯

𝑝10(𝑛) 𝑝11(𝑛) 𝑝12(𝑛)  ⋯ 𝑝1𝑗(𝑛) ⋯

𝑝20(𝑛)
⋮

𝑝𝑖0(𝑛)
⋮

𝑝21(𝑛)
⋮

𝑝𝑖1(𝑛)
⋮

𝑝22(𝑛)
⋮

𝑝𝑖2(𝑛)
⋮

  

⋯
⋮
⋯
⋮

  

𝑝2𝑗(𝑛) ⋯

⋮          ⋮
𝑝𝑖𝑗(𝑛) ⋯

⋮        ⋮ )

 
 
 
 

           (3) 

 
Notice that the elements of the matrix P(n) satisfy the following two properties: 

and, for all 𝑖,   {
0 ≤  𝑝𝑖 𝑗  (𝑛)  ≤  1

  ∑ 𝑝𝑖 𝑗  (𝑛) = 1𝑎𝑙𝑙 𝑗 
                             (4) 

 
A matrix that satisfies these properties is called a Markov matrix or stochastic matrix. 
Homogeneous Markov Chain 
A Markov chain is said to be homogeneous if for all states 𝑖 and 𝑗 

𝑝𝑖𝑗 =  𝑃𝑟𝑜𝑏{𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} = 𝑃𝑟𝑜𝑏{𝑋𝑛+𝑚+1  =  𝑗|𝑋𝑛+𝑚  =  𝑖} 

For 𝑛 = 0, 1, 2,⋯  and  𝑚 ≥ 0. 
i.e., for homogenous Markov chain, 
𝑝𝑖𝑗 =  𝑃𝑟𝑜𝑏{𝑋1  =  𝑗|𝑋0  =  𝑖} =  𝑃𝑟𝑜𝑏{𝑋2  =  𝑗|𝑋1  = 𝑖} = 𝑃𝑟𝑜𝑏{𝑋3  =  𝑗|𝑋2  = 𝑖}  = ⋯            

We have replaced  𝑝𝑖 𝑗  (𝑛)   by  𝑝𝑖𝑗  since transitions no longer depend on 𝑛. 

Therefore, when the Markov chain is homogeneous, we find 
𝑃𝑟𝑜𝑏{𝑋𝑛+𝑚  =  𝑎, 𝑋𝑛+𝑚−1  =  𝑏,   ⋯ , 𝑋𝑛+2  =  𝑘, 𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} 
= 𝑝𝑖 𝑗   𝑝𝑗 𝑘  ⋯  𝑝𝑐𝑏   𝑝𝑏𝑎                  (5) 

for all possible values of 𝑛. 
 
Non –Homogenous Markov Chain 
For non-homogenous Markov chain, 

𝑝𝑖𝑗 =  𝑃𝑟𝑜𝑏{𝑋1  =  𝑗|𝑋0  =  𝑖} ≠  𝑃𝑟𝑜𝑏{𝑋2  =  𝑗|𝑋1  = 𝑖} 

The probability of being in state 𝑗 at time step (𝑛 +  1) and in state k at time step (𝑛 +  2), 
given that the Markov chain is in state 𝑖 at time step 𝑛, is 

𝑃𝑟𝑜𝑏{𝑋𝑛+2  =  𝑘, 𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} 
= 𝑝𝑟𝑜𝑏{𝑋𝑛+2  =  𝑘|𝑋𝑛+1  =  𝑗, 𝑋𝑛  =  𝑖} 𝑝𝑟𝑜𝑏{𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} 

= 𝑝𝑟𝑜𝑏{𝑋𝑛+2  =  𝑘|𝑋𝑛+1  =  𝑗}𝑝𝑟𝑜𝑏{𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} 
= 𝑝𝑖 𝑗𝑘  (𝑛 + 1)𝑝𝑖 𝑗  (𝑛)                 (6) 

 
Which is the probability of the sample path 𝑖, 𝑗, 𝑘 that begins in state 𝑖 at time step 𝑛. 
 More generally, 

𝑃𝑟𝑜𝑏{𝑋𝑛+𝑚  =  𝑎, 𝑋𝑛+𝑚−1  =  𝑏,   ⋯ , 𝑋𝑛+2  =  𝑘, 𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} 
= 𝑝𝑟𝑜𝑏{𝑋𝑛+𝑚  =  𝑎|𝑋𝑛+𝑚−1  =  𝑏}𝑝𝑟𝑜𝑏{𝑋𝑛+𝑚−1  =  𝑏|𝑋𝑛+𝑚−2 =  𝑐}⋯𝑝𝑟𝑜𝑏{𝑋𝑛+2  =  𝑘|𝑋𝑛+1  

=  𝑗}𝑝𝑟𝑜𝑏{𝑋𝑛+1  =  𝑗|𝑋𝑛  =  𝑖} 
= 𝑝𝑏𝑎 (𝑛 + 𝑚 − 1)𝑝𝑐𝑏  (𝑛 + 𝑚 − 2)⋯ 𝑝𝑗𝑘  (𝑛 + 1)𝑝𝑖𝑗  (𝑛)              (7) 

for all possible values of 𝑛.   Stewart (2009) 
 
k-Dependent Markov Chains  
A stochastic process is not a Markov chain if its evolution depends on more than its current 
state, for instance, if transitions at step (𝑛 + 1) depend not only on the state occupied at time 
step 𝑛, but also on the state occupied by the process at time step (𝑛 −  1). Therefore, the 
technique of converting a non-Markovian process to a Markov chain by incorporating 
additional states may be generalized. If a stochastic process has 𝑠 states and is such that 
transitions from each state depend on the history of the process during the two prior steps, 
then a new process consisting of 𝑠2 states may be defined as a Markov chain. If a stochastic 
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process that consists of s states is such that transitions depend on the state of the system 

during the prior 𝑘 time steps, then we may construct a Markov chain with 𝑠𝑘 states. This 
could be stated formally as follows: 
Let {𝑋𝑛, 𝑛 ≥  0} be a stochastic process such that there exists an integer 𝑘 for which 

𝑝𝑟𝑜𝑏 {𝑋𝑛+1  =  𝑥𝑛+1| 𝑋𝑛  =  𝑥𝑛 ,   ⋯ , 𝑋𝑛−𝑘+1  =  𝑥𝑛−𝑘+1, 𝑋𝑛−𝑘  =  𝑥𝑛−𝑘 , ⋯ , 𝑋0  = 𝑥0 } 
𝑝𝑟𝑜𝑏 {𝑋𝑛+1  =  𝑥𝑛+1| 𝑋𝑛  =  𝑥𝑛 ,   ⋯ , 𝑋𝑛−𝑘+1  =  𝑥𝑛−𝑘+1 }                   (8) 
 
for all 𝑛 ≥  𝑘. Thus, the future of the process depends on the previous 𝑘 states occupied. 
Such a process is said to be a 𝐾-dependent process. If 𝑘 =  1, then 𝑋𝑛  is a Markov chain. For 
𝑘 >  1, a new stochastic process {𝑌𝑛, 𝑛 ≥  0}, with 𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, . . . , 𝑋𝑛−𝑘+1), is a Markov 
chain. If the set of states of 𝑋𝑛 is denoted by 𝑆, then the states of the Markov chain 𝑌𝑛 are the 
elements of the cross product 

𝑆 × 𝑆 × 𝑆 ×⋯× 𝑆⏟            
𝑘−𝑡𝑖𝑚𝑒𝑠

                                      (9)  Stewart (1994) 

 
Classification of States 

Given 𝑝𝑗𝑗
(𝑛)

 to be the probability that  the Markov chain is once again in state j , n time steps 

after leaving it. In these intervening steps, it is possible that the process visited many 
different states as well as state j itself. 
 

let 𝑓𝑗𝑗
(𝑛)

 define a new conditional probability, that on leaving state j the first return to state j 

occurs n steps later. Therefore, 

  𝑓𝑗𝑗
(𝑛)
=  Prob {first return to state j occurs exactly n steps after leaving it} 

= 𝑃𝑟𝑜𝑏{𝑋𝑛  =  𝑗, 𝑋𝑛−1  ≠  𝑗,   𝑋𝑛+2  ≠  𝑗,⋯ , 𝑋1   ≠  𝑗|𝑋0  =  𝑗}   𝑓𝑜𝑟 𝑛 = 1, 2, 3,⋯ 

To relate 𝑝𝑗𝑗
(𝑛)

 and 𝑓𝑗𝑗
(𝑛)

, we shall  construct a recurrence relation that permits us to compute 

𝑓𝑗𝑗
(𝑛)

. 

to compute  𝑝𝑗𝑗
(𝑛)

 by taking higher powers of the single-step transition probability matrix 𝑝 

such that 

𝑓𝑗𝑗
(𝑖)
= 𝑝𝑗𝑗

(𝑖)
= 𝑝𝑗𝑗    (10) 

 
Which is the probability that the first return to state 𝑗 occurs one step after leaving it 
 

Since      𝑝𝑗𝑗
(0)
= 1. 

Therefore   

𝑃𝑗𝑗
(1)
= 𝑓𝑗𝑗

(1)
𝑝𝑗𝑗
(0)
 . 

Consider 𝑃𝑗𝑗
(2)

,  the probability of being in state j two time steps after leaving it. This can 

happen because the Markov chain simply does not move from state j at either time step or 
else because it leaves state j on the first time step and returns on the second. In order to fit 
our analysis to the recursive formulation, we interpret these two possibilities as follows. 
i.  The Markov chain “leaves” state 𝑗 and “returns” to it for the first time after one step, 

which has probability 𝑓𝑗𝑗
(1)

, and then “returns” again at the second step, which has 

probability  𝑃𝑗𝑗
(1)

. 

ii. The Markov chain leaves state j and does not return for the first time until two steps later, 

which has probability 𝑓𝑗𝑗
(2)

. 
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Thus, 

𝑃𝑗𝑗
(2)
= 𝑓𝑗𝑗

(1)
𝑃𝑗𝑗
(1)
+ 𝑓𝑗𝑗

(2)
= 𝑓𝑗𝑗

(1)
𝑃𝑗𝑗
(1)
+ 𝑓𝑗𝑗

(2)
𝑃𝑗𝑗
(0)

   (11) 

Where 𝑓𝑗𝑗
(2)
  may be computed as 

𝑓𝑗𝑗
(2)
= 𝑃𝑗𝑗

(2)
− 𝑓𝑗𝑗

(1)
𝑃𝑗𝑗
(1)

      (12) 

In a similar manner,  

𝑃𝑗𝑗
(3)
= 𝑓𝑗𝑗

(1)
𝑃𝑗𝑗
(2)
+ 𝑓𝑗𝑗

(2)
𝑃𝑗𝑗
(1)
+ 𝑓𝑗𝑗

(3)
𝑃𝑗𝑗
(0)

 

From which 𝑓𝑗𝑗
(3)

 is computed as 

𝑓𝑗𝑗
(3)
= 𝑃𝑗𝑗

(3)
− 𝑃𝑗𝑗

(2)
− 𝑓𝑗𝑗

(2)
𝑃𝑗𝑗
(1)

 

By continue in this version and by also using the theorem of total probability 

𝑃𝑗𝑗
(𝑛)
= ∑ 𝑓𝑗𝑗

(𝑙)
𝑃𝑗𝑗
(𝑛−𝑙)𝑛

𝑙=1 ,    𝑛 ≥ 1.    (13) 

Recursively, 

𝑓𝑗𝑗
(𝑛)
= ∑ 𝑓𝑗𝑗

(𝑙)
𝑃𝑗𝑗
(𝑛−𝑙)𝑛−1

𝑙=1  ,                 𝑛 ≥ 1.    (14) 

The probability of ever returning to state j is denoted by  𝑓𝑗𝑗
(𝑛)

 and is given by 

𝑓𝑗𝑗 = ∑ 𝑓𝑗𝑗
(𝑛)∞

𝑛=1       (15) 

If 𝑓𝑗𝑗 = 1,  then state 𝑗 is said to be recurrent. In other words, state 𝑗 is recurrent if and only if, 

beginning in state 𝑗 , the probability of returning to 𝑗 is 1, i.e., the Markov chain is 
guaranteed 

to return to this state in the future. In this case, we have 𝑃𝑗𝑗
(𝑛)
> 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 > 0. 

Thus the expected number of visits that the Markov chain makes to a recurrent state j given 
that it 
starts in state j is infinite. We now show that the expected number of visits that the Markov 
chain 
makes to state j given that it starts in state j is equal to 

∑ 𝑝𝑗𝑗
(𝑛)
= ∞∞

𝑛=0  for recurrent state 𝑗. 

Let 𝐼𝑛 = {
1   if the Markov chain is in state j  at time step 𝑛

0                                      otherwise
 

Then   
∑ 𝐼𝑛
∞
𝑛=0  is the total number of time steps that state 𝑗 is occupied. 

 Conditioning on the fact that the Markov chain starts in state 𝑗, the expected number of time 
steps it is in state j is 

𝐸[∑ 𝐼𝑛
∞
𝑛=0 |𝑋0 = 𝑗] = ∑ 𝐸[𝐼𝑛|𝑋0 = 𝑗]

∞
𝑛=0 = ∑ 𝑝𝑟𝑜𝑏[𝑋𝑛|𝑋0 = 𝑗] = ∑ 𝑝𝑗𝑗

(𝑛)∞
𝑛=1

∞
𝑛=0           

(16) 
Thus, when state 𝑗 is recurrent, 

∑𝑝𝑗𝑗
(𝑛)

∞

𝑛=1

= ∞. 

When state 𝑗 is transient, 

∑𝑝𝑗𝑗
(𝑛)

∞

𝑛=1

< ∞. 

When state 𝑗 is recurrent, i.e. when  𝑓𝑗𝑗 = 1, 

The mean recurrence time  𝑅𝑗𝑗  of state  j is given as  

𝑅𝑗𝑗 = ∑ 𝑛𝑓𝑗𝑗
(𝑛)∞

𝑛=1 .       (17) 

This is the average number of steps taken to return to state j for the first time after leaving it. 
A recurrent state j for which 𝑅𝑗𝑗 is finite is called a positive recurrent state or a recurrent non 

null state. 
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If 𝑅𝑗𝑗 = ∞,  we say that state 𝑗 is a null recurrent state. 

Transition between two different states 

Let 𝑓𝑖𝑗
(𝑛)
, 𝑓𝑜𝑟 𝑖 ≠ 𝑗 be the probability that, starting from state 𝑖, the first passage to state j 

occurs 
in exactly n steps. Then, 

𝑓𝑖𝑗
(1)
= 𝑝𝑖𝑗 

From Eq. (13), we derive 

𝑃𝑖𝑗
(𝑛)
= ∑ 𝑓𝑖𝑗

(𝑙)
𝑃𝑗𝑗
(𝑛−𝑙)𝑛

𝑙=1 ,    𝑛 ≥ 1.      (18) 

This is re-arranged to obtain 

𝑓𝑖𝑗
(𝑛)
= 𝑝𝑖𝑗

(𝑛)
− ∑ 𝑓𝑖𝑗

(𝑙)
𝑃𝑗𝑗
(𝑛−𝑙)𝑛−1

𝑙=1  ,                 𝑛 ≥ 1.     (19) 

Let the probability that state 𝑗 is ever reached from state 𝑖 be given by 𝑓𝑖𝑗. Therefore, 

𝑓𝑖𝑗 = ∑𝑓𝑖𝑗
(𝑛)

∞

𝑛=1

 

Such that when: 
𝑓𝑖𝑗 < 1,  the process starting from state 𝑖 may never reach state 𝑗 

𝑓𝑖𝑗 = 1, the expected value of the sequence 𝑓𝑖𝑗
(𝑛)
, 𝑛 = 1, 2,⋯ of first passage probabilities for a 

fixed pair 𝑖  and 𝑗 (𝑖 ≠ 𝑗) is called the mean first passage time and its denoted by 𝑅𝑖𝑗. 

Therefore, 

𝑅𝑖𝑗 = 𝑛∑ 𝑓𝑖𝑗
(𝑛)∞

𝑛=1 ,   𝑓𝑜𝑟  𝑖 ≠ 𝑗                (20) 

Such that 

𝑅𝑖𝑗 = 𝑝𝑖𝑗 +∑ 𝑝𝑖𝑘 (1 + 𝑅𝑘𝑗) = 1
𝑘≠𝑗

+ ∑𝑝𝑖𝑘 𝑅𝑘𝑗
𝑘≠𝑗

 

since the process in state 𝑖 either goes to state j in one step (with probability 𝑝𝑖𝑗), or else goes 

first to some intermediate state 𝑘 in one step (with probability 𝑝𝑖𝑘) and then eventually on to 
𝑗 in an additional 𝑅𝑘𝑗 steps. If 𝑖 = 𝑗  , then 𝑅𝑖𝑗is the mean recurrence time of state 𝑖 and 

Equation 20 continues to hold. 
Let 𝑒 to denote a (column) vector whose components are all equal to 1 and whose length is 
determined by its context. Likewise, we shall use 𝐸 to denote a square matrix whose 
elements are all equal to 1. Notice that 𝐸 =  𝑒𝑒𝑇.  Letting 𝑑𝑖𝑎𝑔{𝑅} be the diagonal matrix 

whose 𝑖𝑡ℎ diagonal element is 𝑅𝑖𝑖 , it follows that 
𝑅𝑖𝑗 = 1 + ∑ 𝑝𝑖𝑘 𝑅𝑘𝑗𝑘 + 𝑝𝑖𝑗 𝑅𝑗𝑗   (21) 

In matrix form, 

𝑅 = 𝐸 + 𝑃(𝑅 −  𝑑𝑖𝑔(𝑅)) 
Where the diagonal elements of 𝑅 are the mean recurrence times, the off-diagonal elements 
are the mean first passage times. The matrix 𝑅 may be obtained iteratively from the equation 

𝑅(𝑘+1) = 𝐸 + 𝑃(𝑅(𝑘) −  𝑑𝑖𝑔(𝑅(𝑘)))   with  𝑅(0) = 𝐸   (22) 

Results 

Illustrative Example on Recurrent State 
Consider the discrete-time Markov chain whose transition diagram is shown in Figure 
below:                                           
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    1/3 
                                                                                                                                                                                                                                                                                           
                                                            
                                                           

                            1/3                                     
                                       1/3                                          1/3 
 
 

           1.0  

              Figure 1: Transition Diagram for Illustrative Example on Recurrent State 
 

Its transition probability matrix is given by 

𝑃 = (
0 1/3 1/3
1/3 0 1/3
0 0 1

). 

The successive power of 𝑃 are given by 

𝑃𝑘 =

{
  
 

  
 
(

0 (1/3)𝑘 1 − (1/3)𝑘

(1/3)𝑘 0 1 − (1/3)𝑘

0 0 1

)    𝑖𝑓 𝑘 = 1, 3, 5    

(
(1/3)𝑘 0 1 − (1/3)𝑘

0 (1/3)𝑘 1 − (1/3)𝑘

0 0 1

)   𝑖𝑓 𝑘 = 2, 4, 6

 

It follows that 

𝑓11
(1)
= 𝑝11

(1)
= 1. 

𝑓11
(2)
= 𝑃11

(2)
− 𝑓11

(1)
𝑃11
(1)
= (

1

3
)
2

− 0 = (
1

3
)
2

, 

𝑓11
(3)
= 𝑃11

(3)
− 𝑃11

(2)
− 𝑓11

(2)
𝑃11
(1)
= 0 − ((

1

3
)
2

× 0) − (0 × (
1

3
)
2

) = 0 

𝑓11
(4)
= 𝑃11

(4)
− 𝑓11

(3)
𝑃11
(1)
− 𝑓11

(2)
𝑃11
(2)
− 𝑓11

(1)
𝑃11
(3)
= (

1

3
)
4

− 0 − ((
1

3
)
2

× (
1

3
)
2

) − 0 = 0. 

Therefore,  

𝑓11
(𝑘)
= 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 3. 

Also, 

𝑓33
(1)
= 𝑝33

(1)
= 1. 

𝑓33
(2)
= 𝑃33

(2)
− 𝑓33

(1)
𝑃33
(1)
= 1 − 1 = 0, 

𝑓33
(3)
= 𝑃33

(3)
− 𝑃33

(2)
− 𝑓33

(2)
𝑃33
(1)
= 1 − 1 − 0 = 0 

We have, 

𝑓33
(0)
= 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 2. 

 

Thus,              𝑓33 = ∑ 𝑓33
(𝑛)
= 1.∞

𝑛=1  

Mean recurrence time is 

3 
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𝑅33 = ∑𝑛𝑓33
(𝑛)

∞

𝑛=1

= 1. 

 

Illustrative Example on Transient State 
The Markov chain with transition probability 𝑃 given below has two transient states 1 and 2, 
and two ergodic states 3 and 4. The matrix 𝑃 and  lim

𝑛→∞
𝑃𝑛 are 

𝑃 = (

0.4 0.5 0.1 0. 0
0.3 0.7 0.0 0.0
0.0
0.0

0.0
0.0

0.0 1.0
0.8 0.2

), 

lim
𝑛→∞

𝑃𝑛 = (

0.0 0.0 4/9  5/9

0.0 0.0 4/9 5/9

0.0
0.0

0.0
0.0

4/9 5/9
4/9 5/9

) (23) 

By using the following result when 𝑗 is a state of a discrete Markov chain 

{
 
 

 
 lim

𝑛→∞
𝑃𝑖𝑗
(𝑛)
= 0,                      if state j is a null recurrent or transient state

lim
𝑛→∞

𝑃𝑖𝑗
𝑛 > 0, 𝑖𝑓  𝑗                is ergodic                                                                                (24)

lim
𝑛→∞

𝑃𝑖𝑗
(𝑛)
= 𝑓𝑖𝑗 lim

𝑛→∞
𝑃𝑗𝑗
(𝑛)
,   for other state i, positive recurrent, transient or otherwise

  

Therefore, 

Since states 1 and 2 are transient, lim
𝑛→∞

𝑃𝑖𝑗
(𝑛)
= 0  for 𝑖 = 0, 1, 2, 3, 4  and  𝑗 = 1, 2. 

Since state 3 and 4 are ergodic, lim
𝑛→∞

𝑃𝑖𝑗
𝑛 > 0    for  𝑗 = 3, 4. 

Since  𝑓𝑖𝑗 = 1 for  𝑖 = 1, 2, 3, 4,   𝑗 = 1, 2   and ∀  𝑖 ≠ 𝑗. 

Illustrative Example on Recurrence, Ergodic and Transient States 

Consider a homogeneous discrete-time Markov chain whose transition probability matrix is 

𝑃 = (
𝑎 𝑏 𝑐
0 0 1
0 1 0

) 

With     0 < 𝑎 < 1.  
In this example 

𝑃11
(𝑛)
= 𝑎𝑛 for   𝑛 = 1, 2, 3,⋯, 

𝑃22
(𝑛)
= 𝑃33

(𝑛)
= 0 for   𝑛 = 1, 3, 5,⋯, 

𝑃22
(𝑛)
= 𝑃33

(𝑛)
= 1 for   𝑛 = 0, 2, 4,⋯ 

And that 

𝑃12
(𝑛)
= 𝑎𝑃12

(𝑛−1)
+ (𝑏 × 1{𝑛 𝑖𝑠 𝑜𝑑𝑑}) + (𝑐 × 1{𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛}),    (25) 

Where 1{.} Is an indicator function, which has the value 1 when the condition inside the 

braces is true and the value 0 otherwise. Then 
 

𝑓11
(1)
= 𝑃11

(1)
= 𝑎 

𝑓11
(2)
= 𝑃11

(2)
− 𝑓11

(1)
𝑝11
(1)
= 𝑎2 − (𝑎 × 𝑎) = 0 

𝑓11
(3)
= 𝑃11

(3)
− 𝑓11

(1)
𝑝11
(2)
− 𝑓11

(2)
𝑝11
(1)
= 𝑃11

(3)
− 𝑓11

(1)
𝑝11
(2)
= 0           (26) 
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It is immediately follow that 𝑓11
(𝑛)
= 0  ∀  𝑛 ≥ 2, and thus the probability of ever returning to 

state 1 is given as 
𝑓11 = 𝑎 < 1. 

 State 1 is therefore a transient state. Also, 

𝑓22
(1)
= 𝑃22

(1)
= 0 

𝑓22
(2)
= 𝑃22

(2)
− 𝑓22

(1)
𝑝22
(1)
= 𝑃22

(2)
= 1 

𝑓22
(3)
= 𝑃22

(3)
− 𝑓22

(1)
𝑝22
(2)
− 𝑓22

(2)
𝑝22
(1)
= 𝑃22

(3)
= 0 

and again it immediately follows that 𝑓22
(3)
= 0  ∀  𝑛 ≥ 3, we then have 

𝑓22 = ∑ 𝑓22
(𝑛)
= 𝑓22

(2)
= 1∞

𝑛=1 , 
 which means that state 2 is recurrent. Furthermore, it is positive recurrent, since 

𝑅22 = ∑𝑛𝑓22
(𝑛)
= 2 < ∞

∞

𝑛=1

 

In a similar fashion, it may be shown that state 3 is also positive recurrent.   

Now for 𝑓12
(𝑛)

: 

𝑓12
(1)
= 𝑏, 

𝑓12
(2)
= 𝑃12

(2)
− 𝑓12

(1)
𝑝22
(1)
= 𝑃12

(2)
= 𝑎𝑃12

(1)
+ 𝑐 = 𝑎𝑏 + 𝑐 

𝑓12
(3)
= 𝑃12

(3)
− 𝑓12

(1)
𝑝22
(2)
− 𝑓12

(2)
𝑝22
(1)
= 𝑃12

(3)
− 𝑓12

(1)
= (𝑎2𝑏 + 𝑎𝑐 + 𝑏) − 𝑏 = (𝑎2𝑏 + 𝑎𝑐) 

Continue in this fashion, we find that 

𝑓12
(4)
= (𝑎3𝑏 + 𝑎2𝑐), 

𝑓12
(5)
= (𝑎4𝑏 + 𝑎3𝑐), etc. 

and it is easy to show that in general we have 
 

𝑓12
𝑛 = (𝑎(𝑛−1)𝑏 + 𝑎(𝑛−2)𝑐). 

It follows that the probability that state 2 is ever reached from state 1 is 

𝑓12 = ∑ 𝑓12
(𝑛)
=

𝑏

1−𝑎
+

𝑐

1−𝑎
= 1∞

𝑛=1 .                     (27) 

Similarly, we may show that 𝑓12 = 1.  Also, it is evident that 

𝑓23
(1)
= 𝑓32

(1)
= 1, 

𝑓23
(𝑛)
= 𝑓32

(𝑛)
= 0  ∀  𝑛 ≥ 2, 

So that 
𝑓23 = 𝑓32 = 1. 

Also 

𝑓21
(𝑛)
= 𝑓31

(𝑛)
= 0  ∀  𝑛 ≥ 1,      (28) 

and so state 1 can never be reached from state 2 or from state 3. 
Therefore, to provide solution to the given illustrative example, and to examine the matrix 𝑀 
of mean first passage times (with diagonal elements equal to the mean recurrence times), we 
shall give specific values to the variables 𝑎, 𝑏, and 𝑐.  
Let 

𝑃 = (
0.7 0.2 0.1
0 0 1
0 1 0

)    and   𝑅(0) = (
1 1 1
1 1 1
1 1 1

) 

Then, using the iterative formula (9.11) we find 

𝑅(1) = (
1.3 1.8 1.9
2.0 2.0 1.0
2.0 1.0 1.0

),    𝑅(2) = (
1.6 2.36 2.53
3.0 2.0 1.0
3.0 1.0 2.0

), etc. 

The iterative process tends to the matrix 

𝑅(∞) = (
∞ 11/3 12/3
∞ 2.0 1.0
∞ 1.0 2.0

)                          (29) 
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Discussion 
It may be readily verified that this matrix of Equation (29) satisfies Equation (22). Thus, the 
mean recurrence time of state 1 is infinite, as are the mean first passage times from states 2 
and 3 to state 1. The mean first passage time from state 2 to state 3 or vice versa is given as 1, 
which must obviously be true since, on leaving either of these states, the process 
immediately enters the other. The mean recurrence time of both state 2 and state 3 is 2. States 
2 and 3 are each periodic with period 2, since, on leaving either one of these states, a return 
to that same state is only possible in a number of steps that is a multiple of 2. These states are 
not ergodic. The first part of Equation (24) allows us to assert that the first column of  lim

𝑛→∞
𝑃𝑛  

contains only zero elements, since state 1 is transient. Also, since states 2 and 3 are both 
periodic, we are not in a position to apply the second part of the Equation. 
Conclusion 
The concept of the classification of groups of states, between states that are recurrent, 
meaning that the Markov chain is guaranteed to return to these states infinitely often, and 
states that are transient, meaning that there is a nonzero probability that the Markov chain 
will never return to such a state are investigated, in order to provide some insight into the 
performance measure analysis such as the mean first passage time, 𝑅𝑖𝑗, the mean recurrence 

time of state 𝑅𝑗𝑗 as well as recurrence iterative matrix 𝑅(𝑘+1). Our quest is to demonstrate 

with illustrative examples on Markov chains with different classes of states and to obtain 
results for performance measures. 
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