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Abstract 

Rabies is a viral disease of nervous system that is often transmitted to human beings through the bite 
or scratch of rabid animals. The uprising of in-security globally has forced several people to get dogs in 
their houses. In this paper the mathematical model of rabies transmission and control was formulated 
by incorporating vaccination class. The Disease Free Equilibrium (DFE) state of the model was obtain 

and used to compute the basic reproduction number 0R . Local stability analysis of the DFE was carried 

out using Jacobian Matrix techniques.  The DFE is locally asymptotically stable if 10 R . 
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INTRODUCTION  
Rabies is a deadly zoonotic viral disease that spread to human beings from the saliva of 
infected animals. The virus transmission is usually through a bite of a pet. Rabies is almost 
100% fatal at the appearance of symptoms. Domestic dogs are responsible for almost 99% of 
rabies virus transmission to humans. Rabies also affects both domestic and wild animals. It is 
essential to carry out public enlightenment on dog actions and bite prevention for both 
children and adults, (WHO, 2020).  
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Thongtha and Modnak (2021) formulated a mathematical model that described the dynamics 
of rabies virus transmission between dogs and humans. They also carried out equilibrium 
state analysis and optimal control theory was applied to seek vaccination cost minimization 
of rabies outbreak. Musaili and Chepkwony (2020) modified SIR model of infectious diseases 
with the  system of ordinary differential equations to consider the spread of rabies virus in 
dogs incorporating public health enlightenment as a control measure. They calculated the 
reproduction number R0 and obtained both the Disease free and endemic equilibrium points. 
Eze et al. (2020) presented an SEIR and SEIV model to describe the transmission dynamics of 
rabies virus in dogs and humans. They computed the basic reproduction number, the disease 
free and endemic equilibrium points. They also obtained a control solution for the model 
which predicts that using pre-exposure prophylaxis in both dogs and humans and public 
education is the best way of eliminating deaths from rabies. It was shown in their results that 
pre-exposure prophylaxis and post-exposure prophylaxis in humans with use of vaccination 
in the dog population can lead to total elimination of the disease. Asamoah et al. (2017) 
examined an optimal way of eradicating rabies transmission from dogs into the human 
population, using pre-exposure prophylaxis (vaccination) and post-exposure prophylaxis 
(treatment) due to public education. They obtain the disease-free equilibrium, the endemic 
equilibrium, the stability, and the sensitivity analysis of the optimal control model. They used 
Latin hypercube sampling (LHS), the forward-backward sweep scheme and the fourth-order 
Runge-Kutta numerical method to predict that the global alliance for rabies control aimed at 
eliminating deaths from canine rabies by 2030 is attainable through mass vaccination of 
susceptible dogs and continuous use of pre- and post-exposure prophylaxis in humans. Keller 
et al. (2013) studied the spread of raccoon rabies in New York State. They used finite elements 
for the space discretization of a partial differential equation (PDE) model to establish a fine 
spatial grid and locally varied the diffusion coefficient. Rabies epidemics cycles with a period 
of 3-6 years in dog populations in Africa, was modelled using susceptible, exposed, infectious 
and vaccinated model with an intervention response variable, and showed significant 
synchrony (Hampson et al., 2007). A standard SEIR mathematical model for dogs in Ghana 
was formulated. Both SEIR models with vaccination and without vaccination were formulated 
with ordinary differential equations (Addo, 2012). 
 
Most of the above reviewed literatures did not incorporate the vaccination class into the 
populations of dogs and humans. Some of them only considered dog population with just 
three or four classes excluding vaccination class that is the key to control the transmission of 
rabies virus. They computed the basic reproduction number but they did not carry out the 
simulation. In this paper the vaccination classes were incorporated into standard SEIR models 
of both human and dog population.  The equilibrium points of the model were determined 

and the Basic Reproduction Number 0R  was computed using next generation matrix. Local 

stability analysis of the Disease Free Equilibrium (DFE) was carried out and is stable if 10 R

. The Basic Reproduction Number 0R  was simulated graphically with some parameters of the 

model. The graphical representations revealed the parameters that will spread and control the 
rabies virus.  
 
MATERIALS AND METHODS  
 
Model Formulation  
In this model, two populations are considered; dog and human. We divide each of the 
population into five compartments; susceptible, exposed, infected, vaccinated and recovered, 
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with dog population denoted by ( )tS1 , ( )tE1 , ( )tI1 , ( )tV1 , and ( )tR1 , and human population 

denoted by ( )tS2 , ( )tE2 , ( )tI 2 , ( )tV2 , and ( )tR2 , respectively. 

The dog population, 1  represent the recruitment rate of dogs, some of the dogs in the 

population are given Pre Exposure Prophylaxis (PREP) vaccine represented by 1 . The 

susceptible dogs get in contact with infected dogs at rate 1 to get expose to rabies. Some of 

the dogs that got exposed may develop clinical rabies represented by 11 which make them 

move to the infected class while others may not develop clinical rabies represented by

( )11 1  − . Those dogs with clinical rabies have a small chance of surviving which leads to 

death due to the infection at rate 1  and those that were attended to immediately after being 

exposed to are vaccinated at rate 1 and they were confirmed totally free from rabies move to 

recovered class at rate 1 and after sometime a loss of vaccine immunity can occur at rate 1

and they became susceptible. All dogs in the model have natural mortality rate 1    

  

The human population, 2  represent the recruitment rate of humans. The susceptible humans 

get in contact with infected dogs at rate 2 to get expose to rabies. Some of the humans that 

got exposed may develop clinical rabies represented by 22 which make them move to the 

infected class while others may not develop clinical rabies represented by ( )22 1  − . Those 

humans with clinical rabies have a small chance of surviving which leads to death due to the 

infection at rate 2  and those that were attended to immediately after being exposed to by 

washing the bite with soap and water at rate 2 and are vaccinated at rate 2 and they were 

confirmed totally free from rabies move to recovered class at rate 2 and after sometime a loss 

of vaccine immunity can occur at rate 2 and they became susceptible. All humans in the 

model have natural mortality rate 2 . All parameters are positive.  

 
The model flow diagram is shown in figure 1. The arrow from infected dog to the susceptible 
human shows the infected dog infects the susceptible human.  
 

 
Figure 1: Schematic Diagram of the Model 
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The equations of the model are formulated from the schematic diagram above.  

( )
( ) ( ) 111111111111

1 1 SREIS
dt

tdS
 +−+−+−=                                                            (1)  

( )
( ) 1111111

1 EIS
dt

tdE
 ++−=                                                                                                (2)

( )
( ) 111111

1 IE
dt

tdI
 +−=                                                                                                          (3)                                               

( )
( ) 1111111

1 VES
dt

tdV
 +−+=                                                                                                 (4) 

( )
( ) 11111

1 RV
dt

tdR
 +−=                                                                                                            (5) 

( )
( ) 22222221222

2 1 SREIS
dt

tdS
 −+−+−=                                                                  (6) 

( )
( ) 22222122

2 EIS
dt

tdE
 +++−=                                                                                    (7) 

 
( ) 222222

2 IE
dt

dI
 +−=                                                                                                         (8) 

( ) 22222
2 VE

dt

dV
 +−=                                                                                                            (9) 

( )
( )  2222222

2 REV
dt

tdR
 +−+=                                                                                          (10) 

Equilibrium State of the Model 
At equilibrium the time derivatives are equal to zero, i.e.; 

02222211111 ==========
dt

dR

dt

dV

dt

dI

dt

dE

dt

dS

dt

dR

dt

dV

dt

dI

dt

dE

dt

dS
                                  (11) 

 
Disease Free Equilibrium State  

Let ( ) ( )0
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be the DFE point 
Substituting equation (12) into (1) to (10) equates to zero and solve gives 
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where, 

( ) ( ) ( ) ( )

( ) ( ) ( )
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
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(14)      

Equation (13) is the Disease Free Equilibrium DFE point of the model  
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Basic Reproduction Number ( )0R  

In this model, the next generation matrix method as described by Driessche and  Watmough 

(2002) is used to get the basic reproduction number 0R . Basic reproduction number

( ) ( )1

0

−= FVR  , where ( )xf i  be the rate of appearance of new infections in compartment i , 
+

iV the rate of transfer of individuals into compartment i by all other means and 
−

iV the rate of 

transfer of individuals out of compartment i . 





















=

0

0

122

111

IS

IS

f




    

                                                                                                                     (15) 

The jacobian matrix of F evaluated at the disease free equilibrium point is given by 

F=
( )



















j

i

x

Ef 0

, where 22,11 ,, IEIEx j = for j=1, 2, 3, 4 and 0E is the disease free equilibrium. 

The Jacobian matrix of (15) evaluated at the disease free equilibrium point is given 















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−

=
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2
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
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
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F                                                                                      (16) 

The rate of transfer of individuals in and out of the infectious compartment i is given by the 
matrix, 















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



−

−
=

22227
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EIK
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
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                                                                                                        (17) 

The Jacobian matrix of (17) evaluated at the disease free equilibrium point is given by, 














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


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                                                                        (18)                                                          

where 22,11 ,, IEIEx j = for j=1, 2, 3, 4 and 0x is the disease free equilibrium 

The inverse of V is computed using guass Jordan method  
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The next generated matrix 1−FV is given by;

 

( ) ( )

















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


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1
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




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




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                       (20)

 

( )1−FV  is the dominant eigenvalue of the ( )1−FV  matrix.
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
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
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

KKK
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KK
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  (21) 

Then,
( )11154132

541111

0




−
=

KKKKK

KK
R                                                                          (22)    

 
Local Stability of Disease Free Equilibrium Point. 
Theorem: The disease free equilibrium point is said to be locally asymptotically stable, if all 
the eigenvalues of the Jacobian matrix at DFE are negative or unstable otherwise.                                                                                                  

Proof:  
The Jacobian matrix of the system of equations at disease free equilibrium is; 

( )

( )

( )
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




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























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−
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=
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8

0
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6
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2
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2
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2

22
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000000020
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
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
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
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







                             

(23)

 
Where,

 

 
( )( )

( )( ) 11111111

2

1

111111





++++

++
=M  

Reducing equation (23) to upper triangular matrix and the characteristic equation gives, 
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( )
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A
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d
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                                                                                                                                                           (24)                                                                         
The determinant of equation (24) gives;   

( )( )( )( )( )

( )( )( )( )( ) 








=−−−−−−−−−−

−−−−−−−−−−

01099887766

5544332211





AAAA

AAAAA

h

                                              (25)       

Therefore, 

  11 A−= or   22 A−=  or   33 A−=   or   44 A−=
  
or    55 A−=

                                        
or   6 h −=  or   67 A−=   or    78 A−= or    89 A−= or 910 A−=                                

(26)  
 

From equation (26) 

0,,,,,,,,, 10987654321    

Hence, the disease free equilibrium point is locally asymptotically stable.   
 
RESULT AND DISCUSSIONS 
The figures 2 to 6 is graphical simulation of the Basic Reproduction Number and some 
selected parameters of the model. 
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Figure 2 shows that, the increase in contact rate of dogs with time increases the reproduction 
number. This shows that no matter how small is the contact of the infected dog with the 
susceptible dog or human will spread the transmission of rabies. Figure 3 reveal that, as 
vaccination rate for the dog increases with time, the reproduction number decreases. This 
implies that the vaccination is the best to curb the transmission of the rabies. In figure 4 it is 
shown that as recovery rate of dog increase with time the basic reproduction number 
increases. This implies that, the treatment of rabies cannot control the transmission. It is 
observed from figure 5 that the higher the loss of vaccination immunity rate the higher the 
basic reproduction number. Figure 6 revealed that, the increase in disease-induced death rate 
of dog decreases the reproduction number. This implies that the more the dogs with rabies 
are killed or died the less the transmission.  
 
CONCLUSION  
The mathematical model of rabies was formulated by incorporating vaccination. There are 
two equilibrium states that exist in the model; Disease Free Equilibrium (DFE) and Endemic  

Equilibrium. The local stability analysis shows that DFE is stable if  10 R  . This implies that 

rabies can be eradicated from the population if the dogs are vaccinated. It was observed from 
the Basic reproduction number that, all the parameters are that of dog even though the model 
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involve both the dog and human populations, this shows once the dog are handled well rabies 
can be eradicated from the population.  
 
 
REFERENCES 
Addo K. M. (2012), An SEIR Mathematical Model for Dog Rabies. Case study: Bongo District, 

Ghana. A PhD thesis, kwame Nkrumah University of Science and Technology, Ghana. 
Asamoah J. K. K., Oduro F. T., Bonyah E.  & Seidu B.  (2017). Modelling of Rabies Transmission 

Dynamics Using Optimal Control Analysis. Journal of Applied Mathematics, Volume 
2017, 1 -23. https://doi.org/10.1155/2017/2451237 

Castillo-Chaves C., Feng Z., & Huang W., (2002), On the Computation of Basic Reproduction 

Number 0R  and its Role on Mathematical Approaches for Emerging and Re- 

Emerging Infectious Disease, An Introduction ,1: 229 
Driessche V. P. &  Watmough J. (2002)."Reproduction Numbers and Sub-threshold Endemic 

Equilibria for Compartmental Models of Disease Transmission".Mathematical 
Biosciences180 (1–2): 29–48. 

Eze O. C., Mbah G. E., Nnaji D. U. & Onyiaji N. E. (2020). Mathematical Modelling of 
Transmission Dynamics of Rabies Virus.  International Journal of Mathematics Trends and 
Technology (IJMTT, 6(1): 41 - 64. DOI: 10.14445/22315373/IJMTT-V66I7P506 

Hampson K., Dushoff J., Bingham J., Bruckner G., Ali Y. H., et al, (2007). Synchronous Cycles 
of Domestic Dog Rabies in Sub-Saharan Africa and Impact of Control Effort, Proc. Natl. 
Acad. Sci. USA 104: 7717-7722. 

Keller J. P., Gerardo-Giorda L. & Veneziani A. (2013), Numerical Simulation of a Susceptible-
Exposed-Infectious Space-Continuous Model for the Spread of Rabies in Raccoons 
across a Realistic land-space. Journal of Biological Dynamics, 7(supl) 31-46. PMID. 
23157180. 

Musaili  J. S. & Chepkwony I.  (2020) . A Mathematical Model of Rabies Transmission 
Dynamics in Dogs Incorporating Public Health Education as a Control Strategy -A 
Case Study of Makueni County. Journal of Advances in Mathematics and Computer 
Science, 35(1): 1-11. DOI: 10.9734/JAMCS/2020/v35i130235 

Thongtha A.   & Modnak C.   (2021). A Mathematical Modeling of Rabies with Vaccination 
and Culling. International Journal of Biomathematics, 14(6): 2150039. 
https://doi.org/10.1142/S179352452150039X  

World Health Organization (WHO) Rabies, (2021), WHO Expert Consultation on Rabies: 
Third Report, Technical Report, World Health Organization. 

 

https://www.worldscientific.com/doi/pdf/10.1142/S179352452150039X?download=true
https://www.worldscientific.com/doi/pdf/10.1142/S179352452150039X?download=true
https://doi.org/10.1142/S179352452150039X

