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Abstract 

In this work, a new numerical finite difference scheme with the aim of obtaining a new numerical scheme 
that will be used to solve for the solution of Partial Differential Equations (PDE) arising from heat 
conduction equation is developed.  This is significant because in recent times there is a growing interest 
in literatures to obtain a continuous numerical method for solving PDE. The numerical accuracy of 
this new approach is also studied. Detailed numerical results have shown that the new method provides 
better results than the known explicit finite difference method by Schmidt. And in terms of stability, 
the new scheme has been able to clearly shown that it is more stable than the old Schmidt explicit 
method. There is no semi-discretization involved and no reduction of PDE to a system of ODEs in the 
new approach, but rather a system of algebraic equations is directly obtained. MATLAB software was 
used to solve for the desired solutions and the results obtained has shown that the method is near exact 
solutions.  
 
Keywords: Lines; Multistep collocation; Parabolic; Taylor’s polynomial 
 
 
 
INTRODUCTION 
In this study, we intent to obtain a scheme that will estimate the approximate solutions of 
parabolic partial differential equation in one space variable of the form  
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Where t  and x are the time and space coordinates respectively, and the quantities h and k

are the mesh sizes in the space and time directions. 
Of recent, there is a growing interest concerning continuous numerical methods of solution 
for Ordinary Differential Equations (ODEs).  In this work, therefore, we extend a known 
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continuous numerical method of solving ODEs to solve for the solution of heat conduction 
equations in the form of eqn. (1.0). This is achieved by imploring the collocation and 
interpolation method on PDEs directly over multi steps along lines which results in the 
reduction of the PDEs to a system of ODEs. We intend to solve this large system of coupled 
ODEs arising from the reduction method by a semi – discretization (Adam & David, 2002; 
Awoyemi, 2002; Awoyemi, 2003) 
 
The Solution Method 
To set up the solution method, we follow Odekunle (2008), where he postulated that in doing 

so you subdivide the interval bx 0  into N equal subintervals by the grid points 

Nmmhxm ,...,0, ==  where bNh = .  On these meshes we seek −l step approximate 

solutions  ( )txU ,  of the form 

( ) ( )  lmm

p

r

rr xxxtxQatxU +

−

=

= ,,,,
2

0

                                                           (2.0) 

such that .......0 0 bxxx Nm ==
 
To do this, we must implore a basis function say 

2...,,0),,( −= prtxQr  which are assumed known, and ra are constants that we need to  

determine  and we assume that slp + , where s  is the number of collocation points. The 

equality holds if the number of interpolation points used is equal to l  (Bao, Jaksch, & 

Markowich, 2003). There will be flexibility in the choice of the basis function ( )txQr , as may 

be desired for specific application. For this work, we consider the Taylor’s polynomial 

( ) rr

r txtxQ =, . The interpolation values 
nlmnm UU ,1, ,..., −+

 are assumed to have been 

determined from previous steps, while the method seeks to obtain 
nlmU ,+

( Benner & Mena 

,2004; Bensoussan, Prato, Delfour & Mitter, 2007).  
To obtain the required scheme we follow the work of Biazar & Ebrahimi (2005) which pointed 
out that we apply the above interpolation conditions on eqn. (2.0) to obtain 

( ) ( ) ,),(,..., 2200 ngmngmppngm txUtxQatxQa ++−−+ =++ where
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We then write eqn. (2.1) as a simple matrix equation in the augmented form as, 
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Using three interpolation points and one collocation point, implies     that 1=s , 3,4 == lp

and 2,1,0=r . Substituting p in eqn. (2.1) we obtain,  

( ) ( ) ( )
ngmngmngmngm UtxQatxQatxQa ,,,, 221100 ++++ =++                                                        (2.3) 

Substituting l  in g , we have 
15

1
,0,

15

1
−=g  

Putting the values of g  in eqn. (2.3) and writing it as matrix in an augmented form  

we have,  
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From eqn. (2.4) we obtain the following values 
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 Putting the values in eqn. (2.6) in eqn. (2.4) we obtain 
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We solve eqn. (2.7) by Gaussian elimination method to obtain the value of 2a  as
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We then substitute 2,1,0=r in eqn. (2.0) to obtain   

( ) 221100, QaQaQatxU ++=                 (2.8)

  

By substituting 210 , QandQQ in eqn. (2.8) we obtain     

                              (2.9) 

Substituting the value of 2a in eqn. (2.9) we have  
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Taken the first and second derivatives of eqn. (2.10) with respect to x we have 
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  we collocate eqn. (2.11) at ntt = to arrive at  
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Similarly, we reverse the roles of x  and t  in eqn. (2.0), and we also subdivide the interval 

Tt 0 into y  equal subintervals by the grid points ynnktn ,...,0, ==  where Tyk =

(Dehghan, 2003). On these meshes we seek −l step approximate solution to ( )txU ,  of the form  

( ) ( )  lnn

p

r

rr ttttxqatxU +

−

=

= ,,,,
2

0

                                                                            (2.13)  

Such that .......0 0 Tttt yn ==  Again we implore the services of another basis 

function say 2,...,0),,( −= prtxqr  which are assumed known, ra are constants to be 

determined. We assume slp + , where s  is the number of collocation points. The equality 

in equation holds only if the number of interpolation points used is equal to l . There will be 
flexibility in the 

choice of the basis function ( )txqr , as may be desired for specific application. For this method, 

we consider the Taylor’s polynomial giving by ( ) rr

r txtxq =, .  The interpolation values 

1,, ,..., −+lnmnm UU  are assumed to have been determined from previous steps, while the method 

seeks to obtain 
lnmU +,
 (Eyaya, 2010; Penzl, 2000; Pierre, 2008).  

Richard et al., (2001) suggested that to obtain our required scheme we apply the above 
interpolation conditions on eqn. (2.11) to obtain 
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We can write (2.14) as a simple matrix equation in an augmented form as 
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Using two interpolation points and one collocation point in eqn. (2.15) implies that 
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,0=f , and by substitution eqn.(2.15) becomes 
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From eqn. (2.14) we obtain the following values: 
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Substituting the values of eqn. (2.17) into eqn. (2.16), we have this below matrix  
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Solving eqn. (2.18) for value of 1a we obtain  
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Again, when we substitute ,1,0=r into eqn. (2.13), we obtain  
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By substituting the values of 101 ,, qqa in equation (2.19) we have 
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Taken the first derivatives of equation (2.20) with respect to t  we obtain 
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We collocate eqn. (2.21) at mxx =  to yield    
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But from eqn. (1.0) it is clear that eqn. (2.22) is equal to eqn. (2.10), which implies that 
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Eqn. (2.23) is a new numerical scheme for solving the heat equation. 
To illustrate the viability of this method, we use it to solve two problems (5.1) and (5.2) 
respectively with known exact solutions. 
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Stability Analysis 
To find the stability condition for eqn. (2.23) we follow Odekunle (2006), which say that in 
order for us to successfully obtain the stability condition, we let ,1=Mh and denote the errors 
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Let the solution of the finite difference equation which reduces to 
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Error Analysis 
From our equation we have 
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From eqn. (4.1) we find Taylor’s expansion of 
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Also, we have the difference equation to be, 
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Subtracting eqn. (4.3) from eqn. (4.2) we obtain the error equation to be, 
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 in eqn. (4.4) is called the local truncation error 

of the difference formula 
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 is the principal part of the truncation error (Zheyin & Qiang, 

2012) 

The method is of order 22 khk +  
 
 
Numerical Examples 
In this section we give some numerical examples to compute approximate solutions for 
equation (1.0) by the method discussed in this paper. This is in order to test the numerical 
accuracy of the new method. To achieve this, we follow Richard et al., (2001) and Saumaya et 
al., (2012), we truncate the Taylor’s polynomial after second order and use it as the basis 
function for the computation. The resultant interpolant is used to solve the following test 
problems. 
 Example 5.1 
Use the scheme to approximate the solution to the heat equation 

tx
x

U

t

U
=




−




010,0

2

2

   

( ) ( ) 0,0,1,0 == ttUtU  

 

 

 
Table 1: Results of Eqn. (2.23) on problem 5.1 

x  

 
Computed solution 

),( txU  

 

Exact solution

),( txU  

 

Schmidt Method 

),( txU  

 

                          Errors 

New Method Schmidt 
Method 

0 0 0 0 0 0 

0.1 0.308008706 0.308002141 0.307963277 6.6 X E-6 2.1 X E-4 

0.2 0.585867367 0.585854886 0.58577788 1.2 X E-5 4.0 X E-4 

0.3 0.806377253 0.806360073 0.806254085 1.7 X E-5 5.6 X E-4 

0.4 0.947953314 0.947932118 0.947808521 2.0 X E-5 6.6 X E-4 

0.5 0.996737101 0.996715865 0.996584857 2.1 X E-5 1.2 X E -4 

0.6 0.947953314 0.947932118 0.947808521 2.0 X E-5 6.6 X E-4 

0.7 0.806377253 0.806360073 0.806254085 1.7 X E-5 5.6 X E-4 

0.8 0.585867367 0.585854886 0.58577788 1.2 X E-5 4.0 X E-4 

0.9 0.398221058 0.308002141 0.307963277 6.6 X E-6 2.1 X E-4 

1.0 0 0 0 0 0 

 
Example 5.2 
Use the scheme to approximate the solution to the heat equation  

t
x

U

t

U
=




−




0,0

2

2

 

 

( ) 10,sin0, = xxxU 
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( ) ( ) 0,0,1,1 ==− ttUtU  

 

( ) 0,11,
2

cos0, =−







= tx

x
xU


 

 
Table 2: Results of Eqn. (2.23) on problem 5.2   

x  

 
Exact Solution  

( )txU ,  

 
 

Computed Solution  

( )txU ,  

 

Schmidt 
method 
 
 
 
 

                  Errors 

New 
Method 
 
 
 
 

Schmidt Method 
 
 

-1.0 0 0 0 0 0 

-0.75 0.380721639 0.380741429 0.380659316 1.9 X E-5 4.2 X E-4 

-0.50 0.703481860 0.703518427 0.703366704 3.7 X E-5 7.9 X E -4 

-0.25 0.919143346 0.919191122 0.918992885 4.8 X E-5 1.0 X E-3 

0 0.994873588 0.994925302 0.995899602 5.2 X E-5 2.3 X E- 3 

0.25 0.919143346 0.911191122 0.918992885 4.8 X E-5 1.0 X E-3 

0.50 0.703481860 0.703518427 0.703366704 3.7 X E-5 7.9 X E -4 

0.75 0.380721639 0.380741429 0.380659316 1.9 X E-5 4.2 X E-4 

1.00 0 0 0 0 0 

 
Discussion of Results 
From tables I and II, which are the results of action of the new numerical scheme it can clearly 
be seen that the new approach produced more accurate results than the results of the known 
explicit method by Schmidt when applied to solving heat equations subject to some initial and 
boundary conditions. The results obtained have shown also that the method is very effective 
in solving parabolic partial differential equations arising from heat conditions. And in terms 
of stability, eqn. (3.4) has clearly shown that the equation is more stable than the Schmidt 
explicit method 
 
Recommendations  
We suggest research and investigation be carried – out into higher fractional and off – grid 
mesh points that might very easily and possibly produce better and more accurate or even 
exact solutions to PDEs arising from heat diffusion. Also, we suggest that research be 
conducted into the possibility of varying the number of collocation points, since we have been 
in this work able to effect the variation of interpolation points.   
 
Conclusion 
A continuous numerical interpolant is proposed for solving parabolic partial differential 
equation in one space variable by descretization. To check the strength, efficiency, viability 
and the accuracy of the numerical method, it is applied to solve two different test problems 
with known exact solutions. The numerical results have confirmed the effectiveness of new 
numerical scheme in solving the heat equations and suggested that it is an interesting and 
viable numerical method which involves the reduction of the PDEs to a system of ODEs.  
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