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Abstract 
Ebola virus is a severe often fatal illness in human, which is known to be very dangerous and highly 
infectious disease that seized many lives in west African countries. In this paper, a mathematical 
model for the population dynamics of Ebola virus diseases incorporating bats compartment, recovery 
due to immune response and vaccination was constructed. Pontryagin’s maximum principle has been 
applied on the model to determine the necessary conditions for the optimal control of the Ebola virus 
in the presence of vaccination and fruit bats population, the optimality of most of the controls have 
been analyzed to use a small resources available in other to maximize the performance of the controls. 
The numerical simulation shows that with small resources if 0.1 percent of the people in a society can 
be vaccinated daily, Ebola can be mitigated in the environment. 
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INTRODUCTION 
Ebola virus is a severe often fatal illness in human, a virological taxon species of the genus 
Ebola virus, a distinctive member of the ribonucleic acid virus family. Ebola virus disease is 
extremely infectious and deadly disease that seized many lives and create huge economic 
burden in the affected West African Countries. The virus was named after a river in DRC 
(Democratic Republic of Congo) and it was believed that the genesis was discovered in the 
year 1976 which also affect humans and primates (Murphy et al., 1998; WHO, 2008; 
Abdulrahmanet al., 2015). 
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Ebola virus is one of the most infectious diseases which claimed many lives in West Africa 
(Richards et al., 2006; Stahelin, 2014 and Towner et al., 2006). The virus has caused so many 
deaths in West Africa particularly, in DRC (Formenty et al., 1999; Baron et al., 1983 and 
Martini and Siegert, 1971). From 1976 to date not less than fifty thousand confirmed cases of 
Ebola virus cases have been witnessed in West African Countries. Of these, more than 66% 
died as a result of the virus (WHO, 2021). 
 
Following the history of Ebola virus in the human population through animals to human 
transmission, human to human transmission by direct contact with body fluids/secretions 
of infected persons is identified to be the principal mode of transmission (WHO, 2019; LMH, 
2015 and WHO, 2014). The incubation period of Ebola virus disease (EVD) varies from 2 to 
21 days with an observed average of 8 to 10 days. First symptoms are the sudden onset of 
fever fatigue, muscle pain, headache and sore throat. This is followed by vomiting, diarrhea, 
rash, symptoms of impaired kidney and liver function, and in some cases, both internal and 
external bleeding (e.g. oozing from the gums, blood in the stools) (WHO,2021 and PAH & 
WHO, 2014). There is no risk of transmission during the incubation period. However, 
despite considerable efforts, it remains unclear how the Ebola virus disease (EVD) is 
maintained and transmitted in nature and how the index case (first patient) is infected 
(Berge et al., 2017).  
 
Bats are majorly recognized as a reservoir of Ebola virus (Rhoubari et al., 2018:Leroy et 
al.,2005: Pourrut  et al.,2009:Hayman, 2016). Leroy et al.(2005) suggest that, consumption of 
contaminated fruits by bodily fluids of infected bats is one of the modes of transmission 
(Rhoubari et al., 2018). Many years ago, many mathematical models have been proposed and 
developed to describe the dynamics of EVD (Collins, 2015; Christie et al., 2015: Espinoza et 
al., 2015: Kalu et al., 2016:Lekone and Finkenstadt, 2006: Rachah and Torres, 2017).  

However, these models have primarily treatedhuman to human transmission. In addition, 
they do not take into account bats compartment, natural recovery due to immune response 
and vaccinated humans. For these mathematical and biological reasons, a global 
deterministic model for Ebola is proposed. This paper addressed only optimal control 
strategy on the formulated model. 
 

1. Model formulation and basic properties 
A mathematical modelling for the transmission dynamics of EVD  by incorporating vaccine 
was developed. The model is subdivided into nine (9) compartments and eleven (11) state 

variables, namely: Susceptible humans (S )h ; Latently infected humans (L )h ; Infectious 

humans (I )h ; Isolated humans (J )h ; Remove individuals due to permanent recovery from 

infection (R )h ; Ebola-induced death Dead bodies (humans) before burial (D )h ; Virus in the 

environment ( )V ; Non carrier bats (N )b ; carrier bats (C )b ; Total population of humans 

(T )h  and Total population of bats (T )b .The Sh compartment represents the at-risk humans 

that are prone to the disease. This compartment is generated from daily recruitment due to 

the birth and immigration given by h . They acquired infection and moved to Lh  

compartment through effective contact with humans in the hI , hD , V compartment and 

carrier bats bC  compartment given by the term  

                  

( )( ) ( ) ( )1 2 31 1 1h h b

h

h h h

I D V C

T T T

      


− + − −
= + +                                           (1) 
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 The parameter 1 2,  and 3 are the effective contact rate (human), effective contact rate of 

virus in the environment to human and effective contact rate of carrier bats to human 
respectively.  is the modification parameter associated with reduced contact with the dead 

body (human) compare to infectious humans; and the term ( )1 −  reflect the impact of 

personal hygiene which is enhanced by public enlightenment campaign on Ebola 
transmission; 0 1  . The compartment decrease due to vaccinated individuals at rate  . 

The Lh  compartment represents individuals that have been infected with the virus but have 

not yet developed clinical symptoms of Ebola and thus, cannot infect others. The 

compartment is generated from effective contact between Sh  with hI , hD , V and bC  given 

by (1). They decrease at the rate   due to natural recovery. They reduce at rate    which is 

the progression rate. The hI  compartment represents the symptomatic individuals that are 

infected as well as infectious. The population is generated at rate   from the hL   

compartment due to development of clinical symptoms of Ebola by members of the hL  

compartment. They diminished at rates    and 1  due to isolation and disease induced 

dead rate respectively. The hJ  compartment represents the humans who have developed 

clinical symptoms and have been isolated to be given treatment. The compartment is 

generated from hI   at the rate  and   due to isolation. The compartment decreases at the 

rates   and 2  due to treatment and disease-induced death rates respectively. 

The hR  compartment represents humans that recovered from the disease and it is assumed 

possesses permanent immunity against the disease. The compartment is generated from hL  , 

hJ  and hS  at the rates  ,   and   due to natural recovery, recovery due to treatment and 

vaccination rates respectively. The hD  compartment represents the dead bodies of those that 

die due to the disease from both hJ  and hI  compartments. The class diminishes at the rate 

  due to proper burial and the natural death of human occurs in all the human classes 

(except hD ) at the rate h . The V  compartment represents the virus in the environment. 

This compartment is generated due to the virus shade by ,hI hD   and bC  in the 

environment denoted by 1, 2  and 3  respectively. The class decreases due to natural 

death of virus .  

The bN   compartment represents the Non carrier bats. This compartment is generated from 

daily recruitment given by b . They acquired infection and moved to bC  compartment 

through effective contact with carrier bats in the bC  compartment, given by the term  

                               

4 5b
b

b b

C V

T T

 
 = +                                                                                                   (2) 

where 4  and 5 effective contact rate bats to bats and effective contact rate of virus in the 

environment to bats respectively. The bC  compartment represents the Carrier bats which 

are capable of transmitting the disease to humans and among themselves. The compartment 

is generated from effective contact between bN  with bC  given by (2) as explained earlier. 

Both the bats compartments diminish at the rate b   and b death of bats due to hunting 

and bats’ natural death rate in both the bats’ classes. Considering 
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alltheseassumptionsanddefinitionstogethergivesthefollowingequationfortherateofchangeoft
hesusceptible human with respect to time. 

                      

( )

( )

( )

( )

1

2

Λ

( )

h
h h h h

h
h h h h

h h

h
h h

h

h

h
hh h h

h
h

dS
S S

dt

dL
S q L

dt

dQ
qL Q

dt

dI
L I

dt

dJ
Q I J

dt

  

   

 

   

    

= − − +

= − + + +

= − +

= − + +

= + − + +

 

                      

( ) ( )

( )

( )

1 2

R

Λ

h
h h h h

h
h h h h h

b b b b

b
b b

h

b
b b

b b b

dR
L S J

dt

dD
I J D

dt

dN
N

dt

dC
C

dt

N

N

   

    

  

  

= + −

= + + + −

= − − +

= − +

+

                                                                     (3) 

with h h h h h h h hT S L Q I J R D= + + + + + + and b b bT N C= +  

 
Optimal Control  
In this section Pontryagin’s maximum principle have been applied on the model to 
determine the necessary conditions for optimal control of the EBV in the presence of 
vaccination and fruit bats population. A time dependent controls has been incorporated into 
the system (3) to determine the optimal strategy for controlling the disease.  Hence we have 

                    

( )( ) ( ) ( )( )
( )

1 21

2

3(1 u ) 1 1 1
Λ

h h

h h h h h

h

bI D V C
S S u S

T

      
 

− − + + − + −
= − − + +  

                   

( )( ) ( ) ( )( )
( )

1 2 31

3

(1 u ) 1 1 1h b

h

h

h hh

h

I D V C
L S L

T
u

      
  

− − + + − −
= + +

+
− +

 

                   
( )1h hh hI L I   = − + +

 

                    
( )42hh h hJ I Ju   + += − +                                                                                     (4) 

                  3 2 4( ) )( ( )h hh h h hR u L u S u J R   = + + + + −+  

                  
( ) ( )1 2h h h h h hD I J D    = + + + −  

                  1 2 3h h bV I D C V   ++= −  

                  

( )
( )5 4 5(1 u )

Λ  
b

b b b b

b

b b

C
N N

V

T
N

 
 

+−
= − − +  

                    

( )
( )45 5(1 u )

 b b

b

b b b

b

C V
C N C

T

 
 = − +

+−
 

For this we consider the objective functional to be minimized as 
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( ) 2 2 2 2 2

1 2 3 4 5 1 2 3 4 1 2 3 4 5
0

, , , ,
ft

h h h bG u u u u u z I z J z D z C Au Bu Cu Du Eu dt = + + + + + + + +      
(5) 

The optimal control functions ( )1u t , ( )2u t , ( )3u t , ( )4u t and ( )5u t  are bounded, Lebesque 

integrable functions, since control parameters are usually between zero and one. The control 

( )1u t and ( )5u t signify the effort in preventing Ebola virus disease in humans and bats 

population respectively, while ( )( )11 u t− and ( )( )51 u t− signify the false effort in preventing 

Ebola virus disease in humans and bats population respectively. The control on vaccination 

of susceptible humans ( )2u t  satisfies 2 30 u g   where 3g  is the vaccine efficacy used on 

susceptible humans. The control on natural recovery rate of latently infected humans ( )3u t  

satisfies 3 40 u g  , where 4g is the efficacy of immunity booster and the control on the 

treatment of isolated humans 4 (t)u satisfies 4 50 u g  , where 5g is the drug efficacy use for 

treatment of isolated humans. Our control problem involves a situation in which the number 
of EBV infected humans, bats and the cost of applying prevention and treatment controls

1 (t)u , 2 (t)u , 3 (t)u , 4 (t)u and 5 (t)u are minimized subject to the system (5). 

ft  is the final time and coefficient 1 2 3 4, , , , , , , D, Ez z z z A B C are the balancing cost factors 

due to scales and importance of the nine parts of the objective function. We seek to find an 

optimal control 
*

1u , 
*

2u , 
*

3u , 
*

4u and 
*

5u such that 

                        
( ) ( ) * * * * *

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5, , , , min , , , , , , , ,G u u u u u G u u u u u u u u u u= 
             

(6) 

where  ={ ( )1 2 3 4 5, , , ,u u u u u such that 1 2 3 4 5, , , ,u u u u u are measurable with 

1 50 1,0 1,u u    2 3 3 40 , 0 ,u g u g    and 4 50 ,u g  for 0, ft t    } is the control 

set. 
The necessary condition that an optimal control solution must satisfy come from the 
Pontryagin et. al. (1986) maximum principle. Pontryagin et. al. (1986) converts (4) and (5) into 

a problem of minimizing point wise a Hamiltonian H with respect to 1u , 2u , 3u , 4u and 5u . 

             

( )( ) ( ) ( )( )
( )

( )( ) ( ) ( )( )
( )

( ) 

1

2 2 2 2 2

1 2 3 1 1 2 3

2 3

4 5

1

1 2

1

2 3

3 4

1 2 3

1 2

(1 u ) 1 1 1
Λ

(1 u ) 1 1 1

h h

h h h h

h

h h h b

b

b

h h

h h h h h

h h

h

h

I D V C
S S

T

I D V C
S L

T

L I I

H z I z J z D z C Au Bu Cu Du Eu

u

u

      
 

      
 





  



     

= + + + + + + + +

  − − + + − + −
− − +

− − + + − + −
− + +

−


+ + 

  

  
+ + 

  

+ ++ + − + + +( ) 

  ( ) ( ) 

 
( )

( )

( )
( )

3 2 4 1 2

5

1 2

4

5 6

4 5

7 8

5

9

3

5 4

( ) ) ( )

(1 u

(

)
Λ  

(1 u )

h

h h b

h

h h h h h h h h h

b

b b b

b

b b

b

b

b b

b

J

u L u S u J R I J D

I D C V

u

C V
N

C V

N
T

C
T

        

 



     

 












+ + +

 +

+ + + + − + + + −

−
+ + − − − +

−

+ +  
 

 +
+  −


+ 

                  

(7) 

where 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and 9 are the adjoin variables or co-state variables. The 

system of equations is found by taking the appropriate partial derivatives of the 
Hamiltonian (7) with respect to the associated state variable. 
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Theorem 1: Given optimal controls 
* * * * *

1 2 3 4 5, , , ,u u u u u and solutions , , , ,h h h hS L I J , ,h hR D ,V

,b bN C of the corresponding state system (4) and (5) that minimize ( )1 2 3 4 5, , , ,G u u u u u over 

 . Then there exists adjoint variable 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and 9  satisfying. 

                   

id H

dt j

 


= −

                                                                                                          
(8) 

where , , , , , , , ,h h h h h h b bj S L I J R D V N C= N ,Cb b ,  1,2,3,...,9i = and with transversality 

condition  

      
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7 8 9 0f f f f f f f f ft t t t t t t t t        = = = = = = = = =          (9) 

and 

                  

( )( ) ( ) ( )( )
( )

1 1

2 1

2 3*

1

(1 u )
mi

1
n

1
1,ma

1
x 0,

2

h h b

h

I

A

D C

T

V
u

    


 


   
= − 

− − + +
 



−



−



+



 

                  

( )6 1*

2 min 1,max 0,
2

hS
u

B

   − 
=    

   

 

                   

( )6 2*

3 min 1,max 0,
2

hL
u

C

   − 
=    

                                                                              

(10) 

                  

( )6 5*

4 min 1,max 0,
2

hJ
u

D

   − 
=    

   

 

                  

( )( )4 5 9 8*

5 min 1,max 0,
2

b b

b

C V N
u

ET

    + − 
=   

   

 

Proof: Corrollary 4.1 of Feming and Rishel (1975) gives the existence of an optimal control 

due to the convexity of the integrand of G with respect to 1 2 3 4, , ,u u u u and 5u a prior 

boundedness of the state solutions and the Lipschitz property of the state system with 
respect to the state variables. The differential equation governing the adjoint variables are 
obtained by differentiation of the Hamiltonian function, evaluated at the optimal control. 
Then the adjoint equations can be written as 

 

( )
( )( ) ( ) ( )( )

( )

( )( ) ( ) ( )( )
( ) ( )

( ) ( )( )

1 2 3

1

11
1 2 2 1

1

2 1 2 2

4 5 5 9 8

2

2 3

(1 u ) 1 1 1

(1 u

1

) 1 1 1

b

h

h h

h

b

b

h

b

b

h h

h

d H
u

dt S

u

I D V C

T

I

C

C

V

D

N

V

u

T

T

 
    





      

      

 

  

 

= − = + + − −

+ − − +

− − + + − + −

− − + + − +

− −

−

+
−

            

(11) 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )
( ) ( )( )

1 1 2 12

2

4 5 5 9 8

2 3 6 3 2

2 3 11

1

1 1h h b

h

h

h

b b

h

b

ud H

dt L T

C V N u
q u u

T

I D V C S         



 
     

 

− + + −− −
= − =

+ − −
+ + + +

−

− +

+

+ +

                

(12) 
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( ) ( )( ) ( ) ( )( ) ( )

( )( )( )
( ) ( )

( ) ( )( )

21 1 2 13
1 2

1 1 2 1

4 1 7 1

4 5 9

3

5 8

2

1 11

1 1

1

1 b

h h

h

h h

h

b b

b

h h hI D V C Sud H
z
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S u

T

C V N u

T

  



  
  

      

 

   

 

− + + − +− −
= − = − +

− − −
− + + + − +

+ − −
+

−

                  

(13) 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( )( )

1 1 2 14
2 2

4 5 5 9 8

5 2 4 6

2

4 7 2 2

311 1 1

1

b

h h

b b

h

h

b

h h

h

ud H
z

dt J T

C V N u
u u

T

I D V C S     



 
       

  




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− −
= − = − +

+ − −
+ + + + − + − +

−

+

+ + − + −

                     (14) 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

1 1 22 3 15
3 2

1 1 2 1 4 5 5 9 8

2

1 1 11

1 1 1

b

h h

h

h h

b

b

h

b

h
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Solving for 
* * * *

1 2 3 4, , ,u u u u  and 
*

5u subject to the constraints, the characterization (11)-

(19) be solved             
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Solving for 
* * * *

1 2 3 4, , ,u u u u  and 
*

5u from (20)-(24) we obtain 



Optimal Control of Mathematical Modelling for Ebola Virus Population Dynamics in the Presence of 
Vaccination 

 

Andrawus J., Abdulrahman S., Singh R.V.K., Manga S.S., DUJOPAS 8 (1b): 126-137, 2022133 

 

                      

( )( ) ( ) ( )( ) ( )2*

1

2 31 11

2

1 1h h hb

h

u
AT

I D V C S       − + + − −+ −
=

               

(25) 

                      

( )6 1*

2
2

hS
u

B

 −
=

                                                                                             
(26) 

                       

( )6 2*

3
2

hL
u

C

 −
=

                                                                                            
(27) 

                       

( )6 5*

4
2

hJ
u

D

 −
=

                                                                                            
(28) 

                       

( )( )4 5 9 8*

5
2

b b

b

C V N
u

ET

  + −
=

                                                                     

(29) 

by standard control arguments involving the bounds on the controls, we conclude 
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for 1,2,3, 4,5i = and where 
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Hence the prove. 
Table 1. Baseline numerical values for the parameters of system (3) 

Parameter Value(per day) Source(s) 

1 2, 3,    0.9,0.7,0.8 Estimated from Abdulrahman (2016) 

4 5,   0.5,0.6 Estimated from Berge et al. (2018) 

1 2,   0.04227,0.027855 Safi and Gumel, 2011; Leung et al.,2004; 
Chowell et al. (2004) 

b  0.00014 Berge et al. (2018) 

  0.03521 Safi and Gumel (2011) 

  (0,1) Control parameter 

  0.1 Gumel et al. (2014) 
  (0,1) Control parameter 
  0.25 Berge et al. (2018) 

  (0,1) Control parameter 

1 2 3, ,    0.11, 0.21, 0.25 Assumed 

   (0,1) Control parameter 

q (0,1) Control parameter 

  (0,1) Control parameter 
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h  136 Safi and Gumel (2011) 

b  10 Berge et al.,2018 

h  0.0000351 Safi and Gumel (2011) 

b  0.0011 Berge et al. (2018) 

 
Numerical Simulations  
In this section, simulations are performed under maple software in order to numerically 
illustrate the impact of sensitive parameters on the long run dynamics of EVD. We will 
simulate our model with most of the baseline parameters drawn from Table 1 
 
Optimal Control Plotting 
To determine the optimality of the model there is a need to simulate model (4) in other to 
minimize the cost of eradicating EBV in a society. 

 

 
Figure 1a, Figure 1b and Figure 1c are comparison of the effectiveness of the effort in preventing EBV in 
humans. Variables and parameters used are as in table 1. 

 
Fig 1a shows the Susceptible humans varying the rate of effort in preventing EBV, the 
susceptible reduces to a stable value and Fig 1b is showing the Infectious humans varying 
the rate of effort in preventing EBV the Infectious humans reduces drastically while Fig 1c is 
showing the Removed humans varying the rate of effort in preventing EBV the Removed 
humans Increases drastically. 
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Figure 2a, Figure 2b and Figure 2c are comparison the effectiveness of the efficacy of vaccine in preventing 
EBV in humans. Parameters used are as in table 1. 

 
Fig 2c is showing the Susceptible humans varying the rate of efficacy of vaccine in 
preventing EBV the susceptible reduces to a stable value and Fig 2b is showing the 
Infectious humans varying the rate of efficacy of vaccine in preventing EBV, the Infectious 
humans reduces drastically while Fig 2a is showing the Removed humans varying the rate 
of efficacy of vaccine in preventing EBV the Removed humans Increases drastically. 

 
Figure 3a and Fig 3b are comparison of effectiveness of the efficacy of Immune buster in preventing EBV in 
humans. Parameters used are as in Table 1. 

Fig 3a is showing the Infectious humans varying the rate of efficacy of Immune buster in 
preventing EBV, the Infectious humans reduces as the Immune buster increases and Fig 3b 
is showing the Removed humans varying the rate of efficacy of Immune buster in 
preventing EBV the Removed humans Increases drastically. 
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DISCUSSION 
Many EVD mathematical models were developed and analyzed to explain human to human 
transmission and animals to human transmission, but very few considered vaccination and 
accessed its impact on the control of the disease. Also, very few considered bat to bat 
transmission. In this paper, we concentrate mainly on optimal control strategy (which 
implies efficacy of vaccination, efficacy of Immune buster and effort of preventing 
transmission) with a target that implementing vaccine does not lead to hundred percent 
vaccinations. 
A qualitative optimal control analysis of model (3) was performed. In this gaze, the main 
results obtain are point out as follows. The result shows that applying optimal control helps 
in eradicating Ebola virus in the society especially when the optimal control is applied to 
vaccine and the effort of controlling the transmission.On the other hand, numerically, we 
have shown that: (1) the disease can be trash out if optimal control can be applied on 
vaccine. (2) the number of infected individuals decreases when the optimal control is 
applied on the effort of reducing transmission of Ebola virus. 
 
CONCLUSION 
The above-mentioned theoretical and numerical studies suggest that vaccination alone 
cannot drive EVD to death but it can reduce it to the minimum. It is recommended to 
develop  a similar model taking into account age-structure which will also help in 
controlling the disease, though this will leads to a large number ofdifferential equations, 
which can be more realistic but less mathematical tractable. 
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